NUXMV: Exercises - Part B*

Patrick Trentin
patrick.trentin@unitn.it
http://disi.unitn.it/trentin

Formal Methods Lab Class, June 01, 2018

UNIVERSITA DEGLI STUDI DI
TRENTO

(compiled on 18/05/2018 at 10:20)

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/18

Patrick Trentin (DISI) NUXMV: Exercises - Part B June 01, 2018 1/15


http://disi.unitn.it/trentin

Contents

@ Exercises
@ Alarm System

Patrick Trentin (DISI) 7 Exercises - Part B June 01, 2018 2/15



Exercise: Alarm System [1/3]

Exercise: Model a simple alarm system installed in the safe of a bank.

The alarm system can be activated and deactivated using a pin. After
being activated, the alarm system enters a waiting period of 10 seconds,
time that allows users to evacuate the safe, after which the alarm is
armed. The alarm detects and intrusion when someone is inside the
safe and the alarm is armed, after which it enters a waiting period of 5
seconds to allow the intruder to deactivate the alarm using the pin. If the
alarm is not deactivated after an intrusion is detected, it will fire and
remain fired until deactivation.

The alarm system is comprised by a state variable, with domain { OFF,
EVACUATE, ARMED, INTRUSION, FIRED }, and a s_clock variable, with
domain equal to 0..59. Initially, state is OFF and s_clock is 0.

The alarm system has two boolean inputs: sensor —true iff a person is
detected inside the safe- and use_pin —true iff the pin is being used—.
Express the fact that a person must be inside the safe to use the pin as an
invariant of the inputs.

Patrick Trentin (DISI) NUXMV: Exercises - Part B June 01, 2018 3/15



Exercise: Alarm System [2/3]

The alarm changes state according to this ordered set of rules:
o if the state is OFF and the pin is used, then the next state is EVACUATE
o if the pin is used, then the next state is OFF
o if the state is EVACUATE and the internal clock is 0, then the next
state is ARMED
o if the state is ARMED and a person is detected in the safe, then the
next state is INTRUSION
@ if the state is INTRUSION and the internal clock is 0, then the next
state is FIRED
@ otherwise, the state does not change
The value of s_clock is set to 10 when the state value changes from OFF
to EVACUATE, and it is set to 5 when the state value changes from ARMED
to INTRUSION. Otherwise, its value is decreased by one unit at each
transition until it reaches 0.

Patrick Trentin (DISI) NUXMvV: Exercises - Part B June 01, 2018 4/15



Exercise: Alarm System [3/3]

Encode the following LTL properties, and verify with NuSMV that they
are true:
@ if the input pin is never used, then the alarm state is always OFF
@ it is always true that, whenever an intrusion is detected then sooner
or later the alarm state will be either OFF or FIRED
@ it is always true that “if the alarm is armed in a certain state si, but
the pin is never used starting from s, onward, then it is necessarily
the case that either the sensor won't detect any intruder (starting
from s, onward) or the alarm will eventually fire"
o if the state of the alarm is infinitely often equal to EVACUATE, then
someone must enter the safe infinitely often

Patrick Trentin (DISI) NUXMvV: Exercises - Part B June 01, 2018 5/15



Contents

@ Exercises

@ Gnome Sort

Patrick Trentin (DISI) 7 Exercises - Part B June 01, 2018 6 /15



Exercise: me Sort [1/2]

Exercise:
@ Model the following code as a module in NUSMYV or NUXMV:

procedure gnomeSort(arr, len):

10: pos := 0
11: while (pos < len):
12: if (pos == 0 or arr[pos] >= arr[pos - 11):
13: pos := pos + 1

else:
14: swap(arr[pos], arr[pos - 1])

pos := pos - 1
15: return # self-loop here!
}

@ Declare, inside the main module, the following variables:
e arr, an array initialised to { 9, 7, 5, 3, 1 }
e sorter, an instance of gnomeSort (arr, 5)
@ Verify the following properties:
o the algorithm always terminates
o eventually in the future, the array will be sorted forever
e eventually the array is sorted, and the algorithm is not done until the
array is sorted

Patrick Trentin (DISI) NUXMvV: Exercises - Part B June 01, 2018 7/15



Exercise: Gnome Sort [2/2]

Hints:
@ use ‘pc’ to keep track of the possible state values { 10, 11, 12,
13, 14, 15 }
@ declare ‘pos’ in 0..len, initialize 0
@ ensure that the content of ‘arr' does never change when ‘pc != 4’

@ ensure that the content of ‘arr' that is not involved in a ‘swap’
operation does not change even when ‘pc = 14’

o (easier?) encode the constraints over ‘arr’ with constraint-style
modelling

o (easier?) encode the evolution of ‘pc’ and ‘pos’ with
assignment-style modelling

Patrick Trentin (DISI) NUXMvV: Exercises - Part B June 01, 2018 8/15



Contents

@ Exercises

o Elevator

Patrick Trentin (DISI) 7 Exercises - Part B June 01, 2018 9/15



Exercise: Elevator [1/5]

Exercise:
@ Given the model of an elevator system for a 4-floors building,
including the complete description of:
e reservation buttons
e cabin
e door
o controller
@ Enrich the model with properties encoding the requirements that
must be met by each component of the system, and verify that such
requirements are satisfied.

Patrick Trentin (DISI) NUXmvV: Exercises - Part B June 01, 2018 10 / 15



Exercise: Elevator - Button [2/5]

For each floor there is a button to request service, that can be pressed. A
pressed button stays pressed unless reset by the controller. A button that
is not pressed can become pressed non-deterministically.

Requirements:

@ The controller must not reset a button that is not pressed.

Patrick Trentin (DISI) NUXMV: Exercises - Part B

June 01, 2018 11 /15



Exercise: Elevator - Cabin [3/5]

The cabin can be at any floor between 1 and 4. It is equipped with an
engine that has a direction of motion, that can be either standing, up or
down. The engine can receive one of the following commands: nop, in
which case it does not change status; stop, in which case it becomes
standing; up (down), in which case it goes up (down).

Requirements:

@ The cabin can receive a stop command only if the direction is up or
down.

@ The cabin can receive a move command only if the direction is
standing.

@ The cabin can move up only if the floor is not 4.

@ The cabin can move down only if the floor is not 1.

Patrick Trentin (DISI) NUXMvV: Exercises - Part B June 01, 2018 12 / 15



Exercise: Elevator - Door [4/5]

The cabin is also equipped with a door (kept in a separate module in the
SMV program), that can be either open or closed. The door can receive
either open, close or nop commands from the controller, and it responds
opening, closing, or preserving the current state.

Requirements:

@ The door can receive an open command only if the door is closed.

@ The door can receive a close command only if the door is open.

Patrick Trentin (DISI)

NUXMV: Exercises - Part B

June 01, 2018 13 / 15



Exercise: Elevator - Controller [5/5]

The controller takes in input (as sensory signals) the floor and the
direction of motion of the cabin, the status of the door, and the
status of the four buttons. It decides the controls to the engine, to the
door and to the buttons.

Requirements:
@ no button can reach a state where it remains pressed forever.

@ no pressed button can be reset until the cabin stops at the
corresponding floor and opens the door.

@ a button must be reset as soon as the cabin stops at the
corresponding floor with the door open.

@ the cabin can move only when the door is closed.

@ if no button is pressed, the controller must issue no commands and
the cabin must be standing.

Patrick Trentin (DISI) NUXMvV: Exercises - Part B June 01, 2018 14 / 15



Exercises Solutions

@ will be uploaded on course website within a couple of days

@ send me an email if you need help or you just want to propose your
own solution for a review

@ learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) NUXmvV: Exercises - Part B June 01, 2018 15 / 15



	Exercises
	Alarm System
	Gnome Sort
	Elevator


