Spin: Exercises - Part B*

Patrick Trentin

patrick.trentin@unitn.it http://disi.unitn.it/trentin

Formal Methods Lab Class, April 18, 2018

Università degli Studi di
Trento
(compiled on $17 / 05 / 2018$ at 12:53)
*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi, Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/18

Exercise 1: Elaaden Vault

Exercise: Five ControlPillars, numbered from 0 to 4, control the gate of an ancient vault. Initially, pillars 1, 3 and 4 are in ON state, while 0 and 2 are OFF. The gate opens when all pillars are contemporarily set to ON.

- Each ControlPillar waits for input commands sent through their input channel ctl. Whenever a pillar receives a command, it atomically changes its own state -and the state of its immediate left and right neighbours- to the opposite value. To this extent, pillars 0 and 4 must be considered neighbours of each other.
- A spaceship Commander keeps sending command messages to randomly chosen control pillars, up until the gate opens.

Write a property p1 s.t. its counter-example is a sequence of button-switches that will open the gate.

Q: how can Spin be used to find the minimum-length sequence that opens the gate?

Exercise 2: oscillator

Exercise: Write a Promela model that initializes a global integer variable sum to be 0 . Model a process \mathbf{P}, stuck in an infinite loop, which:

- draws a random value included in $\{1,3\}$ and assigns it to \mathbf{v}
- updates the value of sum as follows:
- if sum is positive valued, it subtracts \mathbf{v} to its value
- otherwise, it adds v to its value

Verify the following ItI properties:

- the value of sum is equal to 0 infinitely often
- the value of sum is never larger than 3 or smaller than -3
- it always the case that if sum is greater than 0 then it will eventually be smaller than 0 , and if sum is smaller than 0 then it will eventually be larger than 0

Q: why is the third property not verified? can you fix it?

Exercise 3: cigarette smokers

Exercise: Assume that a cigarette requires three ingredients to be made: TOBACCO, PAPER and MATCHES. There are three smokers around a table, each of which has an infinite supply of only one ingredient.

- Smoker. Each smoker is in a loop waiting for both of his missing ingredients to appear on the table. Whenever that happens, he grabs the ingredients (the table becomes empty), rolls a cigarette and smokes it by printing a message. A smoker must also put one unit of his own resource on the table whenever asked to do so.
- Master Agent. Whenever the table is empty, the master agent sends a message demanding a unit of resource to be put on the table to two distinct smokers using a channel. The master agent chooses the smokers that have to put their own resource on the table using a uniform random distribution.

Simulate the system and visually verify that it behaves correctly: the simulation output consists of an infinite execution trace in which each smoker smokes infinitely often.

Exercise 4: railway station

Exercise: In a railway station trains are countinuously arriving and leaving. Goods are contained in some cargos and, depending on the weight, they are moved from/to either trucks or vans.
Write a Promela program that models this scenario considering each cargo as a message that should be sent/received through the right channel. Each channel (train, truck and van) can contain 16 cargos as a maximum. The maximum weight of each cargo in a van is $\mathbf{1 2 8}$.
You will need two processes:

- ''split'), that splits goods from the train channel, dividing them over the other two channels, truck and van, depending on the weight values attached
- ' 'merge'', that merges the two streams back into one, most likely in a different order, and writes it back into the train channel.

Here are the initial cargo weights on the train: $345,12,6777,32,0$;

Example 5: word counter

Exercise: In each sentence (string hereafter) the number of the characters composing the string is greater or equal than the number of the words contained in the sentence. A word is characterized by delimiters:

- space ' '
- tabulation ' $\backslash \mathrm{t}$ '
- endline ' $\backslash n$ '

Write a spin function count() that perfoms property-based slicing of a string channel, counts the number of characters nc and the number of words nw and checks if the property $n c>=n w$ is always true.

Use the init function to pass to count() a string (remember that you can model a string as a channel of integers corresponding to ASCII characters).

Exercises Solutions

- will be uploaded on course website within a couple of days
- send me an email if you need help or you just want to propose your own solution for a review
- learning programming languages requires practice: try to come up with your own solutions first!

