
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

July 13th, 2017

769857918

[COPY WITH SOLUTIONS]

i



13.07.2017: 769857918 1

1 Spin

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard
for an infinite amount of time will almost surely type a given text, such as the complete works of
William Shakespeare.

Model, using Promela, a system comprised by 26 monkeys and one human reviewer.
Each monkey sits in front of a table with only one button, each of which is assigned a unique

lower-case character in the alphabet (i.e. a random character from ’a’ to ’z’ in the ASCII table, note
that there are precisely 26 characters in this interval). Whenever the monkey pushes the button,
the corresponding character is sent to the human operator to be reviewed. The system must be
designed in such a way that no other monkey can send a new character to the human operator
before the latter has finished reviewing the last received character. Each monkey is also instructed
to stop doing any activity as soon as a red light-bulb, placed in front of the room, is turned on.

The human reviewer is given the task of checking the incoming sequence of characters against
a famous quote from the Hamlet “to be or not to be”, ignoring spaces and punctuation marks which
are not being typed by any monkey. As soon as there is a complete match of the full sentence,
the human operator turns on the red light-bulb in the room and terminates. Otherwise, it keeps
checking the incoming characters for a matching sequence.

Use a global, shared, channel typewriter to send characters from the monkeys to the the human
reviewer.

Write an LTL property s.t. the corresponding counter-example found by spin is an execution
trace matching the sequence of characters tobeornottobe, and use Spin to find it.

1



13.07.2017: 769857918 2

Solution:

#define NUM_MONKEYS (’z’ - ’a’ + 1)

chan typewriter = [0] of { byte };

bool matched = false;

active [NUM_MONKEYS] proctype monkey()

{

do

:: typewriter!(’a’ + _pid)

:: matched -> break;

od

}

active proctype reviewer()

{

byte specimen[13] = { ’t’, ’o’, ’b’, ’e’, ’o’, ’r’, ’n’, ’o’, ’t’, ’t’, ’o’, ’b’, ’e’ };

byte idx, c;

do

:: typewriter?c ->

if

:: specimen[idx] == c ->

printf("Match: %c -- %c\n", specimen[idx], c);

idx++;

if

:: idx == 13 ->

matched = true;

break;

:: else ->

skip;

fi

:: else ->

idx = 0;

fi

od

}

ltl p1 { [] ! matched };

2



13.07.2017: 769857918 3

2 nuXmv

Encode the following sorting algorithm for an array of length 4 in NuSMVor nuXmv as a module
selectionSort(arr, len):

procedure selectionSort(arr, len):

l0: while (j < len - 1):

l1: iMin = j

i = j + 1

l2: while (i < len):

l3: if (arr[i] < arr[iMin]):

l4: iMin = i

l5: i++

l6: if (iMin != j):

l7: swap(a[j], a[iMin])

l8: j++

l9: return # self-loop here!

Initialize, inside the module selectionSort, the variables i, j, and iMin to be equal 0 and pc

to be equal l0.
Declare, inside the main module, a variable arr and a variable sorter:

• arr is an array of 4 elements with domain in [1, 10], initialised to { 9, 7, 5, 3 }
• sorter is an instance of selectionSort(arr, len) taking as input arr and its corresponding
length, 4.

Verify that the following properties are true:

• the algorithm always terminates

• eventually in the future, the array will be sorted forever

• eventually the array is sorted, and the algorithm is not done until the array is sorted

3



13.07.2017: 769857918 4

Solution:

MODULE main()

VAR

arr : array 0..3 of 1..10;

sorter : selectionSort(arr, 4);

INIT arr[0] = 9 & arr[1] = 7 & arr[2] = 5 & arr[3] = 3;

MODULE selectionSort(arr, len)

VAR

i : 0..(len + 1); iMin : 0..(len + 1); j : 0..len;

pc : { l0, l1, l2, l3, l4, l5, l6, l7, l8, l9 };

INIT i = 0 & j = 0 & iMin = 0 & pc = l0;

ASSIGN

next(pc) := case

pc = l8 : l0;

pc = l0 & (j < len - 1) : l1;

pc = l1 | pc = l5 : l2;

pc = l2 & (i < len) : l3;

pc = l3 & (i < len & iMin < len & arr[i] < arr[iMin]) : l4;

pc = l3 | pc = l4 : l5;

pc = l2 : l6;

pc = l6 & (iMin != j) : l7;

pc = l6 | pc = l7 : l8;

TRUE : l9;

esac;

next(i) := case

pc = l1 : j + 1;

pc = l5 & (i < len + 1) : i + 1;

TRUE : i;

esac;

next(j) := case

pc = l8 & j < len : j + 1;

TRUE : j;

esac;

next(iMin) := case

pc = l1 : j;

pc = l4 : i;

TRUE : iMin;

esac;

DEFINE

done := pc = l9;

TRANS pc != l7 ->

(next(arr[0]) = arr[0] & next(arr[1]) = arr[1] &

next(arr[2]) = arr[2] & next(arr[3]) = arr[3]);

4



13.07.2017: 769857918 5

TRANS (pc = l7 & iMin = 0 & j < len) -> next(arr[0]) = arr[j];

TRANS (pc = l7 & iMin = 1 & j < len) -> next(arr[1]) = arr[j];

TRANS (pc = l7 & iMin = 2 & j < len) -> next(arr[2]) = arr[j];

TRANS (pc = l7 & iMin = 3 & j < len) -> next(arr[3]) = arr[j];

TRANS (pc = l7 & j = 0 & iMin < len) -> next(arr[0]) = arr[iMin];

TRANS (pc = l7 & j = 1 & iMin < len) -> next(arr[1]) = arr[iMin];

TRANS (pc = l7 & j = 2 & iMin < len) -> next(arr[2]) = arr[iMin];

TRANS (pc = l7 & j = 3 & iMin < len) -> next(arr[3]) = arr[iMin];

TRANS (pc = l7 & j != 0 & iMin != 0) -> next(arr[0]) = arr[0];

TRANS (pc = l7 & j != 1 & iMin != 1) -> next(arr[1]) = arr[1];

TRANS (pc = l7 & j != 2 & iMin != 2) -> next(arr[2]) = arr[2];

TRANS (pc = l7 & j != 3 & iMin != 3) -> next(arr[3]) = arr[3];

-- The algorithm always terminates

CTLSPEC AF AG done ;

-- Eventually in the future, the array will be sorted forever

CTLSPEC AF AG (arr[0] <= arr[1] & arr[1] <= arr[2] & arr[2] <= arr[3]);

-- Eventually the array is sorted, and the algorithm is not done until the array is sorted

CTLSPEC A[!done U (arr[0] <= arr[1] & arr[1] <= arr[2] & arr[2] <= arr[3])] ;

5


