Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Universita di Trento, Italy

July 09", 2015

[COPY WITH SOLUTIONS]

976985749



09.07.2015: 976985749 1

Implement a 5-bit counter that alternates counting all odd numbers from 31 to 1 (e.g. 31, 29,
27, ..., 3, 1) and counting all even numbers from 30 to 0 (e.g. 30, 28, 26, 2, 0). Use a variable
“out” to represent the output of the counter. Use five Boolean variables “b0”, “b1”, “b2”, “b3”,
“pb4” to represent the bits of the counter, from the least-significative to the most-significative ones.
Initially, all bits are set to TRUE. The transition relation is described as follows:

° LLbO”
° (Lb 177
° L(b277
° “b377
° Hb477

changes value only when all other bits are FALSE
changes value at each transition

changes value only when “b1” is FALSE

changes value only when both “b1” and “b2” are FALSE

changes value only when “b1”, “b2” and “b3” are all FALSE

Model the 5-bit counter, express the following properties, and check with nuXmv that all prop-
erties are verified.

e it is necessarily always the case that, if out is 1, then at the next step the value of the counter

is 30

e it is necessarily always the case that if out = 31 then in 5 iterations out will evaluate to 21

e it is always the case that bl changes value at each iteration

e it is always the case that, if b1, b2 and b3 are all FALSE, then the next value of b4 is !b4

e infinitely often out is 0

e if out=30 then eventually in the future out=20



09.07.2015: 976985749

Solution:

MODULE main
VAR
bO: boolean; bl: boolean; b2: boolean; b3: boolean; b4: boolean;

DEFINE
out := toint(b0) + 2*xtoint(bl) + 4xtoint(b2) + 8xtoint(b3) + 16xtoint(b4d);

ASSIGN
init(b0) := TRUE; init(bl) := TRUE; init(b2) := TRUE;
init(b3) := TRUE; init(b4) := TRUE;
next(b0) := case
bl & 'b2 & 'b3 & 'b4 : 'bO;
TRUE : bO;
esac;
next(bl) := !bl;
next(b2) := case
bl : 1b2;
TRUE : b2;
esac;
next(b3) := case
bl & 'b2 : 'Db3;
TRUE : b3;
esac;
next(b4) := case
bl & 'b2 & 'b3 : 'b4;
TRUE : b4;
esac;

-- it is necessarily always the case that when out is 1 then at the next
-- step the value of the counter is 30
CTLSPEC AG (out=1 -> AX(out=30))

-— 1t is necessarily always the case that if out = 31 then in &
-- iterations out will evaluate to 21
CTLSPEC AG (out=31 -> AX(AX(AX(AX(AX(out=21))))))

-- it is always the case that bl changes value at each iteration
CTLSPEC AG (bl <-> AX(!Db1))

-- 1t is always the case that, if bl, b2 and b3 are all FALSE,
-- then the next value of b4 is b4
CTLSPEC AG (!'b1&!b2&!b3 -> (b4 <-> AX(!b4)))



09.07.2015: 976985749

-- infinitely often out is O
CTLSPEC AG AF (out = 0)

-— 1f out=30 then eventually in the future out=20
CTLSPEC (out=30 -> AF (out=20))



09.07.2015: 976985749 4

1 Spin

Write a Promela program defining a process sum(n, ¢) which recursively computes the sum of the
first n positive integer numbers sum(n) =n+ (n—1)+ (n —2) + ...+ 1. More in detail, the process
should compute sum(n) as n + sum(n — 1) for (n >= 1) and return the computed value to the
parent process via a message on channel c. In the init function, compute the sum of 100 and verify
that it is equal to 5050 with an assertion check.



09.07.2015: 976985749

Solution:

proctype sum(int n; chan c) {
int result;
chan child = [1] of { int };

if
(n<=1) > c!1
(n > 2) >
run sum(n-1, child);
child?result;
c!n+result
fi
}
init {

int result;

chan child = [1] of { int };
run sum(100, child);
child?result;

printf("result: %d\n", result);
assert(result == 5050);



976985749

09.07.2015:

31

29
27
25

23
21

19
17
15
13
11
09
07
05

03
01

30
28
26
24
22

20

18
16
14
12
10
08
06
04
02

00

b4 b3 b2 bl b0 | out

Figure 1: bits evolution at each transition



