
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

July 21st, 2016

769857918

[COPY WITH SOLUTIONS]

i

21.07.2016: 769857918 1

1 Spin

The 3 Witchers. Write a Promela model for a Game Theory scenario in which 200 agents
participate to a contest for a prize of a million euro. The contest consists of a single-turn poll
during which each agent provides a secret integer in the range [0, 9] to a tracker process. The
winner(s) of the contest are those whose value is the closest to the two thirds of the average value
provided by all the agents.

The voting agents are divided in two groups: 197 simpleton processes, which choose a random
value in [0, 9] and send it to the tracker, and 3 witcher processes which always guess 2. Each agent
sends to the tracker both its own pid and the integer value. Once collected all the 200 guesses, the
tracker computes the winning value (2∗sum/(cc∗3), where sum is the sum of all guesses and cc is
the counter of received messages) and prints it to screen. No feedback communication is necessary.

Check with an assertion that 2 is the winning value.
Is any of these agents rational? why? (No evaluation)

1

21.07.2016: 769857918 2

Solution:

chan pool = [200] of { int, int };

active [3] proctype witcher () {

pool ! _pid(2);

}

active [197] proctype simpleton() {

int r;

if

:: r = 0;

:: r = 1;

:: r = 2;

:: r = 3;

:: r = 4;

:: r = 5;

:: r = 6;

:: r = 7;

:: r = 8;

:: r = 9;

fi;

pool ! _pid(r);

}

active proctype tracker() {

int v, sum, id, cc;

do

:: pool? id(v) ->

sum = sum + v;

cc = cc + 1;

:: cc == 200 ->

break;

od;

sum = 2 * sum / (cc * 3);

printf("Best value is: %d\n", sum);

assert(sum == 2);

}

2

21.07.2016: 769857918 3

2 nuXmv

Blind Hunt. Model a blind mouse which lives in a 7 × 7 room. The mouse takes as input four
arguments: “room”, “cheese”, “cat” and “tile”. Use variables “x” and “y”, both ranging from 0 to
6, to keep track of the position of the mouse and define “pos” to be equal y · 7 + x. Use a variable
“state” with values in { IDLE, HUNGRY, SLEEPY, DEAD } to keep track of the mouse state.
Define “safe spot” to be equal to “tile”, and its corresponding coordinates “ss x” and “ss y” to be
equal to “tile - ss y * 7” and “tile / 7” respectively. Initially, the mouse is in “IDLE” state and
located in his safe spot. Then, model the evolution of the mouse state with the following ordered
list of rules:

• if the mouse is “DEAD” or its next location coincides with that of the cat, then in the next
state the mouse is “DEAD”

• if the mouse is in “IDLE” state, then it can remain “IDLE” or become “HUNGRY” at random
• if in the next state the location of the mouse and cheese coincide, then the mouse becomes
“SLEEPY”

• if the next location of the mouse is its “safe spot” and the mouse is not “HUNGRY”, then
the mouse becomes “IDLE”

• otherwise, the mouse keeps its current state

Encode, using the constraint style, the following requirements (you are allowed to split each con-
straint in several sub-formulas):

• if the mouse is either “HUNGRY” or “SLEEPY”, then it can either remain on the same
location or move by a single square in one of the cardinal directions: it increases or decreases
either “x” or “y”, but not both

• if the mouse is either “IDLE” or “DEAD”, then it remains in the same location
• if the mouse is “HUNGRY”, then in the next state its distance to the cheese will be strictly
smaller than it is now1.

• if the mouse is “SLEEPY”, then either in the next state its distance to its safe spot is strictly
smaller than it is now2 or the mouse is already located in the safe spot and thus its position
will not change

Encode the following properties, and verify with nuXmv that all properties are TRUE:

• if the mouse does never trespass the safe zone boundary3 the mouse will never die
• if the cheese is not always placed within the safe zone boundary, then there exists a future in
which the mouse is “DEAD”

• if –at any given time– the mouse is hungry, then it will eventually eat the cheese (reach its
location), unless it dies in the meanwhile

• if the mouse is hungry infinitely often, then the mouse is sleepy infinitely often
• there exists an execution in which the cheese location never changes
• the mouse does not move along the diagonal
• the cat moves only along the diagonal

Remark: use the file the blind hunt.smv located in /usr/local/docs as starting point.

1Given X,Y , X ′, Y ′, which are the current and the next coordinates of the mouse respectively, and Xc, Yc, the
current coordinates of the cheese, then the following inequality must hold: (X ′ −Xc)

2 + (Y ′ − Yc)
2 < (X −Xc)

2 +
(Y − Yc)

2

2Same formula as above, with ss x, ss y instead of Xc, Yc
3the safe zone corresponds to any tile s.t. 2 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 4

3

21.07.2016: 769857918 4

Solution:

MODULE room(in_width, in_height)

DEFINE

width := in_width;

height := in_height;

MODULE cheese(room, cat, mouse, tile)

VAR

x : 0..(room.width - 1);

y : 0..(room.height - 1);

DEFINE

pos := y * room.width + x;

INIT

pos = tile;

INVAR

pos != mouse.safe_spot & pos != cat.pos;

TRANS

(mouse.pos = pos -> next(pos) != pos) &

(mouse.pos != pos -> next(pos) = pos);

MODULE cat(room, cheese, mouse, tile)

VAR

x : 0..(room.width - 1);

y : 0..(room.height - 1);

INIT

pos = tile;

DEFINE

pos := y * room.width + x;

INVAR

pos != mouse.safe_spot & pos != cheese.pos;

INVAR

(x > 4) | (x < 2) | (y > 4) | (y < 2);

TRANS

(next(x) = x + 1 | next(x) = x - 1) & (next(y) = y + 1 | next(y) = y - 1);

MODULE mouse(room, cheese, cat, tile)

VAR

x : 0..(room.width - 1);

y : 0..(room.height - 1);

state : { IDLE, HUNGRY, SLEEPY, DEAD };

DEFINE

pos := y * room.width + x;

4

21.07.2016: 769857918 5

safe_spot := tile;

ss_x := (tile - ss_y * room.width);

ss_y := (tile / room.width);

INIT

pos = safe_spot & state = IDLE;

ASSIGN

next(state) := case

next(pos) = next(cat.pos) | state = DEAD : DEAD;

state = IDLE : { IDLE, HUNGRY };

next(pos) = cheese.pos : SLEEPY;

next(pos) = safe_spot & state != HUNGRY : IDLE;

TRUE : state;

esac;

TRANS

(state = HUNGRY | state = SLEEPY)

-> ((next(x) = x + 1 | next(x) = x - 1 | next(x) = x) &

(next(y) = y + 1 | next(y) = y - 1 | next(y) = y));

TRANS

(next(x) != x -> next(y) = y) & (next(y) != y -> next(x) = x);

TRANS

(state = IDLE | state = DEAD) -> (next(x) = x & next(y) = y);

TRANS

state = HUNGRY -> (

(next(x) - cheese.x) * (next(x) - cheese.x) + (next(y) - cheese.y) * (next(y) - cheese.y)

< (x - cheese.x) * (x - cheese.x) + (y - cheese.y) * (y - cheese.y));

TRANS

state = SLEEPY -> (

(next(x) - ss_x) * (next(x) - ss_x) + (next(y) - ss_y) * (next(y) - ss_y)

< (x - ss_x) * (x - ss_x) + (y - ss_y) * (y - ss_y)

| (pos = safe_spot & next(pos) = pos));

MODULE main()

VAR

room : room(7, 7);

cheese : cheese(room, cat, mouse, 0);

cat : cat(room, cheese, mouse, 48);

mouse : mouse(room, cheese, cat, 24);

-- if the mouse does never trespass the safe zone boundary,

-- the mouse will never die

LTLSPEC (G (mouse.x >= 2 & mouse.x <= 4 & mouse.y >= 2 & mouse.y <=4))

-> G mouse.state != DEAD;

5

21.07.2016: 769857918 6

-- if the cheese is not always placed within the safe zone boundary,

-- then there exists a future in which the mouse is ‘‘DEAD’’

CTLSPEC EF (cheese.x > 4 | cheese.x < 2 | cheese.y > 4 | cheese.y < 2)

-> EF mouse.state = DEAD;

-- if --at any given time-- the mouse is hungry,

-- then it will eventually eat the cheese (reach its location),

-- unless it dies in the meanwhile

LTLSPEC G (mouse.state = HUNGRY -> F (mouse.pos = cheese.pos | mouse.state = DEAD));

-- if the mouse is hungry infinitely often, then

-- the mouse is sleepy infinitely often

LTLSPEC G F (mouse.state = HUNGRY) -> G F (mouse.state = SLEEPY);

-- there exists an execution in which the cheese location never changes

CTLSPEC EG cheese.pos = 0;

-- the mouse does not move along the diagonal

INVARSPEC mouse.x = next(mouse.x) | mouse.y = next(mouse.y);

-- the cat only moves along the diagonal

INVARSPEC cat.x != next(cat.x) & cat.y != next(cat.y);

6

