Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Universita di Trento, Italy

May 26", 2017

[COPY WITH SOLUTIONS]

769857918

26.05.2017: 769857918 1

1 Spin

Model the Cligarette Smokers problem using the following specification.

Assume that a cigarette requires three ingredients to be made: TOBACCO, PAPER and MATCHES.
There are three smokers around a table, each of which has an infinite supply of only one ingredient.

Smoker. Each smoker is in a loop waiting for both of his missing ingredients to be put on the
table. Whenever that happens, he grabs the two ingredients from the table (which becomes empty),
rolls a cigarette and smokes it by printing a message. The smoker must also put on the table one
unit of his own resource whenever asked to do so through a channel.

Master Agent. Whenever the table is empty, the master agent sends a message demanding a
unit of resource to be put on the table to two distinct smokers using a channel.

Simulate the system and visually verify that it behaves correctly.

26.05.2017: 769857918

Solution:

##define TOBACCO 1
##define PAPER 2
#define MATCHES 4

unsigned table :

inline smoke()

{
if
:: id & TOBACCO -> printf("Tobacco Smokes\n");
:: id & PAPER -> printf("Paper Smokes\n");
:: id & MATCHES -> printf("Matches Smokes\n");
fi
table = 0;
};
proctype smoker (mtype id; chan master)
{
do
:: atomic {
master?eval (id) -> assert(~(id & table));
table = (tablelid); assert(id&table);
}
:: table == ((TOBACCO|PAPER|MATCHES) & ~id) ->
smoke () ; assert(“table);
od
}
init
{

unsigned i
chan master

: 2 =0; unsigned j :
[0] of { mtype };

run smoker (TOBACCO, master);
run smoker (PAPER, master);
run smoker (MATCHES, master);

do
:: table == ->
select(i: 0..2); select(j: 0..2);
if
ri==3 >3 =(0G+1)%3;
i =3 ->3=(G+2 %3;
: else -> skip;
fi;
master! (1<<i); master! (1<<j);
od;

26.05.2017: 769857918 3

2 nuXmv

Model a battery powered flying drone, using the skeleton file /usr/local/docs/drone.smv, having
the following state variables:

e state: can be either OK or FAILURE, the latter meaning that the drone cannot fly any longer
e power: ranges from 0 to 100, measures the remaining charge of the drone’s battery
e x, vy, z: discrete coordinates of the drone; x and y range in [—30, 30], z ranges in [0, 30]
e vx, vy, vz: drone’s speed vector; vx and vy range in [—1, 1], vz ranges in [—2, 1]

Initially, state is OK, the battery is fully charged and all other variables are equal to 0.

state. Assume that the drone is flying in a room surrounded by a concrete wall in all directions,
so that if the drone is in the immediate proximity of a wall with a positive speed in the direction of
the wall then it will crash against it. The state variable of the drone changes to FAILURE whenever
in the next state of the execution trace the drone crashes against a wall. Otherwise, the state
variable keeps its value.

power. The battery is charged back to full state whenever the drone parks at the origin and is
in OK state. The drone consumes one unit of power when touches the ground but has vertical speed
larger than 0. It also consumes one unit of power when it is flying mid-air with a vertical speed
larger than —2 (i.e. larger than free fall speed). Otherwise, the power level remains unchanged.

position. The position of the robot in the next state is obtained by adding its old position
vector (x,y, z) with its velocity vector (vz, vy, vz).

vx. (resp. vy) changes according to this sorted set of rules:

e if the drone has crashed over the x axis (resp. y) or in the next state touches the ground, vx
(resp. vy) is set to 0.

e if the drone is falling, the speed vx (resp. vy) does not change

e if the drone is powered, it can freely change by one single unit value its current speed

e otherwise, the speed is 0

Express the following properties, and check their expected value with NUXMV:

e LTL. if the drone always flies safe then it will remain in good state forever. (true)

e LTL. if the drone is flying above ground-level infinitely often, then the drone charges infinitely
often too. (true)

e CTL. if the drone experiences a collision, then it is necessarily the case that it will eventually
hit the ground with negative speed. (true)

e CTL. regardless of its position, if the drone is mid-air in OK state and has at least 7% of its
battery left, then it has at least one possible safe landing strategy. (true)

e CTL. write a property s.t. its counter-example is a safe landing strategy for the drone in the
state (0,0,30,0,0,0,5, OK) with (z,y, z, vz, vy, vz, power, state).

e CTL. write a property s.t. its counter-example is a flight plan that goes through the ordered

sequence of states s; = (30,0,0,0,0,0,0K), s, = (30,30,0,0,0,0,0K), s3 = (30, 30,30,0,0,0, OK)

and s4 = (20,30,30,1,0,0,0K) with (z,y, z, vz, vy, vz, state).

e BONUS. use pick_state -s N.NNN to jump at the last state in the counter-example found
for the previous property, and simulate the system with simulate -iv -k 30. What happens
to the drone? What is the final position of the drone at the end of the simulation?

26.05.2017: 769857918

Solution:

MODULE main ()

VAR
state: { OK, FAILURE }; power: O..1
x: -30..30; y: -30..30; =z: 0..30

vx: -1..1; vy: -1..1; vz: -2.

ASSIGN
init (x)
init (vx)
init (power)

init(y) := 0; init(
init(vy) := 0; init(
100; init(state)

next (state) case
next(collision)
TRUE
esac;

: FAILURE;
. state;

next (power) case
x=0&y=0%&z
vz = 0 & state
power = 0
touch_ground & vz > O
'touch_ground & vz > -2
TRUE
esac;

0K

0&

: 100;
. 0
! power
! power
! power

next (x)
-30 <=
X + VX

case
(x +vx) & (x
< =30

> 30

+ vx) <= 3
X + vx
esac;
next (y) case
-30 <= (y + vy) & (y
(y + vy) < -30
(y + vy) > 30
esac;
next(z) case
0 <= (z +vz) & (z
(z +vz) <0
(z + vz) > 30
esac;

+ vy) <=3

+ vz) <= 3

next (vx) case

crash_x | next(touch_ground)
is_falling
has_power & vx =
has_power & vx
has_power

TRUE

esac;

.1;

00;
z) = 0;
vz) := 0;
0K;
- 1;
- 1;
0 : x + vx;
. =30;
: 30;
0 :y + vy;
. =30;
: 30;
0 : z + vz;
. 0
: 30;

: 03

T VX,

s {vx, vx -1}
c {vx, vx + 1}
c{vx, vx + 1, vx - 1 };
: 05

>

>

26.05.2017: 769857918

next(vy) := case
crash_y | next(touch_ground) : O;
is_falling T Vy;
has_power & vy = 1 s { vy, vy - 1 3}
has_power & vy = -1 s { vy, vy + 1 3}
has_power t{vy, vy + 1, vy - 1 };
TRUE : 05

esac;
next(vz) := ...

-- if the drone always flies safe then it will remain in good state forever [LTL, TRUE]
LTLSPEC G (safe_flight) -> G state = OK;

-- if the drone is flying above ground-level infinitely often, then the drone charges
—-— infinitely often too. [LTL, TRUE]
LTLSPEC G F (!touch_ground) -> G F (power = 100);

-- if the drone experiences a collision, then it is necessarily the case that it will
-- eventually hit the ground with negative speed [CTL, TRUE]
CTLSPEC AG (collision -> AF (z =0 & vz < 0));

-- regardless of its position, if the drone is mid-air in OK state and has at least 7% of
-- its battery left, then it has at least one possible safe landing strategy. [CTL, TRUE]
CTLSPEC AG ((state = OK & power >= 7 & z > 0) -> EF good_parking) ;

-- write a property s.t. its counter-example is a safe landing strategy for the drone in

-- the state (0, 0, 30, 0, 0, 0, 5, OK) with (x, y, z, vx, vy, vz, power, state) [CTL]

CTLSPEC AG ((x = 0& y=0&2z=30&vx=0&vy=0&vz =0 & power = 5 & state = 0K)
-> AF (state = FAILURE));

-- write a CTL property s.t. its counter—example is a flight plan that goes through the
-- ordered sequence of states s1, s2, s3, s4 (see above definitions) [CTL]
CTLSPEC !(EF (sl & EF (s2 & EF (s3 & EF s4)))) ;
-- or, equivalently,
CTLSPEC ! E [TRUE U (sl &
E [TRUE U (82 &
E [TRUE U (s3 &
E[LTRUEU s41)1)1)1;

-- BONUS: use ’pick_state -s N.NNN’ to jump at the last state in the counter-example
-- found for the previous property, and simulate the system with ’simulate -iv -k 30’.
-- - What happens to the drone?

-- It falls due to lack of power, eventually crashing against the X wall

-- - What is the final position of the drone at the end of the simulation?

-- (30, 30, 0)

