
nuXmv: Model Checking∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/trentin

Formal Methods Lab Class, April 21, 2017

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/16

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 1 / 39

http://disi.unitn.it/trentin

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 2 / 39

Example: model programs in nuXmv [1/4]

Q: given the following piece of code, computing the GCD, how do we
model and verify it with nuXmv?

void main() {

... // initialization of a and b

while (a!=b) {

if (a>b)

a=a-b;

else
b=b-a;

}

... // GCD=a=b

}

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 3 / 39

Example: model programs in nuXmv [2/4]

Step 1: label the entry point and the exit point of every block

void main() {

... // initialization of a and b

l1: while (a!=b) {

l2: if (a>b)

l3: a=a-b;

else
l4: b=b-a;

}

l5: ... // GCD=a=b

}

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 4 / 39

Example: model programs in nuXmv [3/4]

Step 2: encode the transition system with the assign style

MODULE main()

VAR a: 0..100; b: 0..100;

pc: {l1,l2,l3,l4,l5};

ASSIGN

init(pc):=l1;

next(pc):=

case

pc=l1 & a!=b : l2;

pc=l1 & a=b : l5;

pc=l2 & a>b : l3;

pc=l2 & a<=b : l4;

pc=l3 | pc=l4 : l1;

pc=l5 : l5;

esac;

next(a):=

case

pc=l3 & a > b: a - b;

TRUE: a;

esac;

next(b):=

case

pc=l4 & b >= a: b-a;

TRUE: b;

esac;

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 5 / 39

Example: model programs in nuXmv [4/4]

Step 2: (alternative): use the constraint style

MODULE main

VAR

a : 0..100; b : 0..100; pc : {l1, l2, l3, l4, l5};

INIT pc = l1

TRANS

pc = l1 -> (((a != b & next(pc) = l2) | (a = b & next(pc) = l5))

& next(a) = a & next(b) = b)

TRANS

pc = l2 -> (((a > b & next(pc) = l3) | (a < b & next(pc) = l4))

& next(a) = a & next(b) = b)

TRANS

pc = l3 -> (next(pc) = l1 & next(a) = (a - b) & next(b) = b)

TRANS

pc = l4 -> (next(pc) = l1 & next(b) = (b - a) & next(a) = a)

TRANS

pc = l5 -> (next(pc) = l5 & next(a) = a & next(b) = b)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 6 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 7 / 39

Model Properties [1/2]

A property:
can be added to any module within a program
CTLSPECT AG (req -> AF sum = op1 + op2);

can be specified through nuXmv interactive shell

nuXmv > check_ctlspec -p "AG (req -> AF sum = op1 + op2)"

Notes:
show property lists all properties collected in an internal database:
nuXmv > show_property

**** PROPERTY LIST [Type, Status, Counter-example Number, Name] ****

-------------------------- PROPERTY LIST -------------------------

000 :AG !(proc1.state = critical & proc2.state = critical)

[CTL True N/A N/A]

001 :AG (proc1.state = entering -> AF proc1.state = critical)

[CTL True N/A N/A]

each property can be verified one at a time using its database index:
nuXmv > check_ctlspec -n 0

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 8 / 39

Model Properties [2/2]

Property verification:

each property is separately verified

the result is either “TRUE” or “FALSE + counterexample”

Warning: the generation of a counterexample is not possible for all CTL
properties: e.g., temporal operators corresponding to existential path
quantifiers cannot be proved false by showing a single execution path

Different kinds of properties are supported:

Invariants: properties on every reachable state

LTL: properties on the computation paths

CTL: properties on the computation tree

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 9 / 39

Model Properties [2/2]

Property verification:

each property is separately verified

the result is either “TRUE” or “FALSE + counterexample”

Warning: the generation of a counterexample is not possible for all CTL
properties: e.g., temporal operators corresponding to existential path
quantifiers cannot be proved false by showing a single execution path

Different kinds of properties are supported:

Invariants: properties on every reachable state

LTL: properties on the computation paths

CTL: properties on the computation tree

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 9 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 10 / 39

Invariants

Invariant properties are specified via the keyword INVARSPEC:

INVARSPEC <simple_expression>

Invariants are checked via the check invar command

Remark:
during the checking of invariants, all the fairness conditions
associated with the model are ignored

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 11 / 39

Example: modulo 4 counter with reset

MODULE main

VAR b0 : boolean; b1 : boolean;

reset : boolean;

ASSIGN

init(b0) := FALSE;

next(b0) := case reset : FALSE;

!reset : !b0;

esac;

init(b1) := FALSE;

next(b1) := case reset : FALSE;

TRUE : ((!b0 & b1) |

(b0 & !b1));

esac;

DEFINE out := toint(b0) + 2*toint(b1);

INVARSPEC out < 2

recall:

2

0 1

3

The invariant is false

nuXmv > read_model -i counter4reset.smv;

nuXmv > go; check_invar

-- invariant out < 2 is false

...

-> State: 1.1 <-

b0 = FALSE

b1 = FALSE

reset = FALSE

out = 0

-> State: 1.2 <-

b0 = TRUE

out = 1

-> State: 1.3 <-

b0 = FALSE

b1 = TRUE

out = 2

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 12 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 13 / 39

LTL specifications

LTL properties are specified via the keyword LTLSPEC:

LTLSPEC <ltl_expression>

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

LTL properties are checked via the check ltlspec command

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 14 / 39

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 15 / 39

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 15 / 39

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 15 / 39

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 15 / 39

LTL specifications

All the previous specifications are false:

NuSMV > check_ltlspec

-- specification F out = 3 is false ...

-- loop starts here --

-> State 1.1 <-

b0 = FALSE

b1 = FALSE

reset = TRUE

out = 0

-> State 1.2 <-

-- specification (out = 0 U (!reset)) is false ...

-- loop starts here --

-> State 2.1 <-

b0 = FALSE

b1 = FALSE

reset = TRUE

out = 0

-> State 2.2 <-

-- specification G (out = 2 -> F out = 3) is false ...

Q: why?

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 16 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 17 / 39

CTL specifications

CTL properties are specified via the keyword CTLSPEC:

CTLSPEC <ctl_expression>

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[]AGP

CTL properties are checked via the check ctlspec command

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 18 / 39

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 19 / 39

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 19 / 39

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 19 / 39

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 19 / 39

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 19 / 39

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 19 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 20 / 39

The need for Fairness Constraints

The specification AF out = 1 is not verified

On the path where reset is always 1, the system loops on a state
where out = 0:

reset = TRUE,TRUE,TRUE,TRUE,TRUE,...

out = 0,0,0,0,0,0...

Similar considerations for other properties:

AF out = 2

AF out = 3

AG (out = 2 -> AF out = 3)

...

=⇒ it would be fair to consider only paths in which the counter is not
reset with such a high frequency so as to hinder its desired functionality

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 21 / 39

Fairness Constraints

nuXmv supports both justice and compassion fairness constraints

Fairness/Justice p: consider only the executions that satisfy infinitely
often the condition p

Strong Fairness/Compassion (p, q): consider only those executions
that either satisfy p finitely often or satisfy q infinitely often
(i.e. p true infinitely often ⇒ q true infinitely often)

Remarks:

verification: properties must hold only on fair paths

Currently, compassion constraints have some limitations
(are supported only for BDD-based LTL model checking)

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 22 / 39

Example: modulo 4 counter with reset

Add the following fairness constraint to the model:

JUSTICE out = 3

(we consider only paths in which the counter reaches value 3 infinitely often)

All the properties are now verified:

nuXmv > reset

nuXmv > read_model -i counter4reset.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification EF out = 3 is true

-- specification AF out = 1 is true

-- specification AG (EF out = 3) is true

-- specification AG (out = 2 -> AF out = 3) is true

-- specification AG (reset -> AX out = 0) is true

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 23 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 24 / 39

Example: 4-bit adder [1/4]

We want to add a request operation to our adder, with the following
semantics: every time a request is issued, the adder starts computing the
sum of its operands. When finished, it stores the result in sum, setting
done to true.

MODULE bit-adder(req, in1, in2, cin)

VAR

sum: boolean; cout: boolean; ack: boolean;

ASSIGN

init(ack) := FALSE;

next(sum) := (in1 xor in2) xor cin;

next(cout) := (in1 & in2) | ((in1 | in2) & cin);

next(ack) := case

req: TRUE;

!req: FALSE;

esac;

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 25 / 39

Example: 4-bit adder [2/4]

MODULE adder(req, in1, in2)

VAR

bit[0]: bit-adder(

req, in1[0], in2[0], FALSE);

bit[1]: bit-adder(

bit[0].ack, in1[1], in2[1],

bit[0].cout);

bit[2]: bit-adder(...);

bit[3]: bit-adder(...);

DEFINE

sum[0] := bit[0].sum;

sum[1] := bit[1].sum;

sum[2] := bit[2].sum;

sum[3] := bit[3].sum;

overflow := bit[3].cout;

ack := bit[3].ack;

MODULE main

VAR

req: boolean;

a: adder(req, in1, in2);

ASSIGN

init(req) := FALSE;

next(req) :=

case

!req : {FALSE, TRUE};

req :

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

DEFINE

done := a.ack;

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 26 / 39

Example: 4-bit adder [3/4]

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 27 / 39

Example: 4-bit adder [3/4]

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 27 / 39

Example: 4-bit adder [3/4]

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 27 / 39

Example: 4-bit adder [3/4]

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 27 / 39

Example: 4-bit adder [3/4]

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 27 / 39

Example: 4-bit adder [4/4]

nuXmv > read_model -i examples/4-adder-request.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG (req -> AF sum = op1 + op2) is false

-- as demonstrated by the following execution sequence

...

Issue: the adder circuit is unstable after first addition, req flips value due
to a.ack still being true.

Fix:
ASSIGN

next(req) :=

case

!req:

case

!a.ack: {FALSE, TRUE};

TRUE: req;

esac;

req:

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 28 / 39

Example: 4-bit adder [4/4]

nuXmv > read_model -i examples/4-adder-request.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG (req -> AF sum = op1 + op2) is false

-- as demonstrated by the following execution sequence

...

Issue: the adder circuit is unstable after first addition, req flips value due
to a.ack still being true.

Fix:
ASSIGN

next(req) :=

case

!req:

case

!a.ack: {FALSE, TRUE};

TRUE: req;

esac;

req:

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 28 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 29 / 39

Example: Simple Mutex [1/2]

MODULE user(semaphore)

VAR

state : { idle, entering,

critical, exiting };

ASSIGN

init(state) := idle;

next(state) :=

case

state = idle : { idle, entering };

state = entering & !semaphore : critical;

state = critical : { critical, exiting };

state = exiting : idle;

TRUE : state;

esac;

next(semaphore) :=

case

state = entering : TRUE;

state = exiting : FALSE;

TRUE : semaphore;

esac;

FAIRNESS

running

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

idle ent.

crit.exit

sem = ⊥ [!sem] sem = >

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 30 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time

CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section

CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Example: Simple Mutex [2/2]

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 31 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 32 / 39

Example: yet another mutex [1/3]

MODULE mutex(turn, other_non_idle, id)

VAR

state: {idle, waiting, critical};

ASSIGN

init(state) := idle;

next(state) :=

case

state=idle: {idle, waiting};

state=waiting & (!other_non_idle|turn=id): critical;

state=waiting: waiting;

state=critical: {critical, idle};

esac;

next(turn) :=

case

next(state) = idle : !id;

next(state) = critical : id;

TRUE : turn;

esac;

DEFINE

non_idle := state in

{waiting, critical};

FAIRNESS

running

MODULE main

VAR

turn: boolean;

p0: process mutex(turn,

p1.non_idle, FALSE);

p1: process mutex(turn,

p0.non_idle, TRUE);

idle

wait. crit.
[!other non idle ∨ turn = id]

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 33 / 39

Example: yet another mutex [2/3]

properties:
CTLSPEC AG !(p0.state=critical & p1.state=critical) --safety

CTLSPEC AG (p0.state=waiting -> AF (p0.state=critical)) --liveness

CTLSPEC AG !(p0.state=waiting & p1.state=waiting) -- no starvation

verification:
nuXmv > read_model -i mutex-another.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical

& p1.state = critical) is true

-- specification AG (p0.state = waiting ->

AF p0.state = critical) is false

-- specification AG !(p0.state = waiting &

p1.state = waiting) is false

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 34 / 39

Example: yet another mutex [2/3]

properties:
CTLSPEC AG !(p0.state=critical & p1.state=critical) --safety

CTLSPEC AG (p0.state=waiting -> AF (p0.state=critical)) --liveness

CTLSPEC AG !(p0.state=waiting & p1.state=waiting) -- no starvation

verification:
nuXmv > read_model -i mutex-another.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical

& p1.state = critical) is true

-- specification AG (p0.state = waiting ->

AF p0.state = critical) is false

-- specification AG !(p0.state = waiting &

p1.state = waiting) is false

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 34 / 39

Example: yet another mutex [2/3]

properties:
CTLSPEC AG !(p0.state=critical & p1.state=critical) --safety

CTLSPEC AG (p0.state=waiting -> AF (p0.state=critical)) --liveness

CTLSPEC AG !(p0.state=waiting & p1.state=waiting) -- no starvation

verification:
nuXmv > read_model -i mutex-another.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical

& p1.state = critical) is true

-- specification AG (p0.state = waiting ->

AF p0.state = critical) is false

-- specification AG !(p0.state = waiting &

p1.state = waiting) is false

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 34 / 39

Example: yet another mutex [3/3]

The third property is still not verified:

nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is false

...

Issue: both processes can be temporarily both waiting (e.g. p0 waits first,
p1 wait for second, and it’s p0 turn)

Fix: change the line
state=waiting & (!other_non_idle|turn=id): critical;

into
state=waiting & (!other_non_idle): critical;

and get
nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is true

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 35 / 39

Example: yet another mutex [3/3]

The third property is still not verified:

nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is false

...

Issue: both processes can be temporarily both waiting (e.g. p0 waits first,
p1 wait for second, and it’s p0 turn)

Fix: change the line
state=waiting & (!other_non_idle|turn=id): critical;

into
state=waiting & (!other_non_idle): critical;

and get
nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is true

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 35 / 39

Example: yet another mutex [3/3]

The third property is still not verified:

nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is false

...

Issue: both processes can be temporarily both waiting (e.g. p0 waits first,
p1 wait for second, and it’s p0 turn)

Fix: change the line
state=waiting & (!other_non_idle|turn=id): critical;

into
state=waiting & (!other_non_idle): critical;

and get
nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is true

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 35 / 39

Contents

1 Modelling a Program in nuXmv

2 Model Properties
Invariants
LTL
CTL

3 Fairness Constraints

4 Examples
4-bit adder
Simple Mutex
Yet Another Mutex

5 Exercises

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 36 / 39

Exercises [1/2]

Simple Transition System: explain why all three properties are verified on
the following transition system:
MODULE main

VAR

state : {ROOT, A1, B1, C1, D1, F1, M1};

ASSIGN

init(state) := ROOT;

next(state) := case

state = ROOT : A1;

state = A1 : {B1, C1};

state = B1 : D1;

state = D1 : F1;

TRUE : state;

esac;

CTLSPEC

AG(state=A1 -> AX (A [state=B1 U (state=D1 -> EX state=F1)]));

CTLSPEC

AG(state=A1 -> AX (A [state=B1 U (state=F1 -> EX state=C1)]));

CTLSPEC

AG(state=A1 -> AX (A [state=M1 U (state=F1 -> EX state=C1)]));

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 37 / 39

Exercises [2/2]

Bubblesort: implement a transition system which sorts the following input
array {4, 1, 3, 2, 5} with increasing order. Verify the following properties:

There exists no path in which the algorithm ends

There exists no path in which the algorithm ends with a sorted array

Tip: you might use the following bubblesort pseudocode as reference:

procedure bubbleSort(A : list of sortable items)

n = length(A)

repeat

swapped = false

for i = 1 to n-1 inclusive do

/* if this pair is out of order */

if A[i-1] > A[i] then

/* swap them and remember something changed */

swap(A[i-1], A[i])

swapped = true

end if

end for

until not swapped

end procedure

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 38 / 39

Exercises Solutions

will be uploaded on course website within a couple of days

send me an email if you need help or you just want to propose your
own solution for a review

learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) nuXmv: Model Checking April 21, 2017 39 / 39

	Modelling a Program in nuXmv
	Model Properties
	Invariants
	LTL
	CTL

	Fairness Constraints
	Examples
	4-bit adder
	Simple Mutex
	Yet Another Mutex

	Exercises

