
Spin: LTL Model Checking∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/trentin

Formal Methods Lab Class, March 24, 2017

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/16

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 1 / 22

http://disi.unitn.it/trentin

Contents

1 Verifying LTL properties with Spin

2 Exercises

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 2 / 22

LTL model checking: introduction

the behaviour of a system M is given by the set of all its possible
paths of execution

⋃
πi = si ,0 → si ,1 → ...→ si ,t → ...

bool done = false;

do

:: done;

:: else ->

if

:: true -> done = true;

:: true -> skip;

fi

od;

!done

!done

!done

!done

!done

!done

!done

done

!done

done

!done

!done

done

done done

done

The set of computations can be represented by a finite automaton

or

done

!done

!done

!done done

Note: M |= φ iff ∀i .πi |= φ

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 3 / 22

LTL model checking: Spin

GOAL: verify whether M |= φ

Spin verifier:

builds an automaton AM that encodes all possible executions of M,

builds an automaton A¬φ (“never claim”) that encodes all violations
of φ,

builds an automaton containing all the paths in M that do not satisfy
φ, given by the synchronous product of AM and A¬φ
checks for a possible execution of the automaton
AM×¬φ = AM × A¬φ

Warning: checking that there exists an execution for AM×φ is not
sufficient to prove that M |= φ!

Therefore we must exclude that there exists any accepting execution πi for
¬φ in M. If πi exists, then it is a violation (aka counter-example) of φ in
M. Otherwise, we can conclude that M |= φ.

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 4 / 22

LTL model checking: Spin

GOAL: verify whether M |= φ

Spin verifier:

builds an automaton AM that encodes all possible executions of M,

builds an automaton A¬φ (“never claim”) that encodes all violations
of φ,

builds an automaton containing all the paths in M that do not satisfy
φ, given by the synchronous product of AM and A¬φ
checks for a possible execution of the automaton
AM×¬φ = AM × A¬φ

Warning: checking that there exists an execution for AM×φ is not
sufficient to prove that M |= φ!

Therefore we must exclude that there exists any accepting execution πi for
¬φ in M. If πi exists, then it is a violation (aka counter-example) of φ in
M. Otherwise, we can conclude that M |= φ.

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 4 / 22

LTL specifications

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 5 / 22

LTL syntax with Spin

Grammar:
ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

opd:

true, false, and user-defined names starting with a lower-case letter

unop:

[]: globally/always
<>: finally/eventually
!: not
X: next

binop:

U: until
V: release remember: (ϕVψ) = !(!ϕU!ψ)
&&: and
||: or
->: implication
<->: equivalence

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 6 / 22

Example: LTL model checking [1/2]

Example (foo.pml):
verify that the variable b is always true. (i.e. [] (b == true))

bool b = true;

active proctype main() {

printf("hello world!\n");

b = false;

}

Standard Steps:
add the LTL formula in foo.pml;

ltl p1 { [] b }

generate, compile and run the verifier:

~$ spin -a foo.pml

~$ gcc -o pan pan.c

~$./pan -a -N p1

-a: ask the verifier to also check cyclic executions violating a property

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 7 / 22

Example: LTL model checking [2/2]

Alternative Steps:

(optional) write some symbol definitions:

~$ echo "# define p (b == true)" > foo.aut

generate the never claim to be verified:

~$ spin -f ’!([] p)’ >> foo.aut

generate the verifier:

~$ spin -a -N foo.aut -o1 foo.pml

(the option -N file.aut adds the never claim to the verifier)

compile and run the verifier:

~$ gcc -o pan pan.c

~$./pan

Tip: use the (easier) standard steps!

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 8 / 22

Constructs for complex LTL formulas

pid

unique identifier of a process

last

pid of the process that performed the last state transition;

enabled(pid)

true iff process with identifier pid has at least one executable
statement in its current control state.

Remote References

allow for inspecting the local state of an active process:

procname[pid]@label for labels
procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 9 / 22

Constructs for complex LTL formulas

pid

unique identifier of a process

last

pid of the process that performed the last state transition;

enabled(pid)

true iff process with identifier pid has at least one executable
statement in its current control state.

Remote References

allow for inspecting the local state of an active process:

procname[pid]@label for labels
procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 9 / 22

Constructs for complex LTL formulas

pid

unique identifier of a process

last

pid of the process that performed the last state transition;

enabled(pid)

true iff process with identifier pid has at least one executable
statement in its current control state.

Remote References

allow for inspecting the local state of an active process:

procname[pid]@label for labels
procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 9 / 22

Constructs for complex LTL formulas

pid

unique identifier of a process

last

pid of the process that performed the last state transition;

enabled(pid)

true iff process with identifier pid has at least one executable
statement in its current control state.

Remote References

allow for inspecting the local state of an active process:

procname[pid]@label for labels
procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 9 / 22

Weak Fairness

Weak Fairness: an event E occurs infinitely often.

Example:
every process executes intinitely often

let Ri be true iff the process i is running

then a fairrun is s.t. ∧
i

GFRi

in Spin:

[]<> _last==0 && []<> _last==1 ...

Weak fairness is often used as a pre-condition for other properties.

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 10 / 22

Strong Fairness

Strong Fairness: if an event E1 occurs infinitely often, then an event E2

occurs infinitely often.

Example:
if a process is infinitely often ready to execute a statement, then that
process runs infinitely often.

let Ri be true iff the process i is running

let Ei be true iff the process i can execute a statement

then a strong fairrun is s.t.∧
i

(GFEi → GFRi)

in Spin:

[]<> enabled(0) -> []<>_last==0 && ...

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 11 / 22

Example: fairness condition

int count;

bool incr;

#define fair ([]<> \

(incr && _last == 0))

active proctype counter() {

do

:: incr ->

count++

od

}

active proctype env() {

do

:: incr = false

:: incr = true

od

}

Example:

Verify the property count
reaches the value 10.

Verify the property above
under the fairness condition.

Solution:

ltl p1 { <> (count > 9) }

ltl p2 { fair -> <> (count > 9) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 12 / 22

Example: fairness condition

int count;

bool incr;

#define fair ([]<> \

(incr && _last == 0))

active proctype counter() {

do

:: incr ->

count++

od

}

active proctype env() {

do

:: incr = false

:: incr = true

od

}

Example:

Verify the property count
reaches the value 10.

Verify the property above
under the fairness condition.

Solution:

ltl p1 { <> (count > 9) }

ltl p2 { fair -> <> (count > 9) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 12 / 22

Quiz #1

Q: which properties are verified, and which are not? (Why?)

byte x;

active proctype A ()

{

x = 1;

do

:: select(x: 0..10);

od;

}

ltl p1 { x == 0 }

ltl p2 { x != 0 }

ltl p3 { (x == 0) -> X (x != 0) }

ltl p4 { (x == 0) -> <> (x != 0) }

ltl p5 { [] ((x == 0) -> X (x != 0)) }

ltl p6 { [] ((x == 0) -> <> (x != 0)) }

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 13 / 22

Contents

1 Verifying LTL properties with Spin

2 Exercises

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 14 / 22

Exercise 1: Leader Election

Verify the following LTL properties on leader lcr.pml:

eventually, a leader will emerge

F(num leaders > 0)

there can be at most one leader

G!(num leaders > 1)

after a process is elected, it will remain leader forever∧
i

G(electedi → GoneLeader)

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 15 / 22

Exercise 2: Producers/Consumers

Verify the following LTL property on prodcons.pml:

Productions and consumptions must alternate.

G(
∧
i

(Pi → (
∧
k 6=i

!PkU
∨
j

Cj)) ∧
∧
j

(Cj → (
∧
k 6=j

!CkU
∨
i

Pi)))

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 16 / 22

Exercise 3: Mutual Exclusion

Verify the following LTL properties on mutex.pml:

mutual exclusion: there is no reachable state in which more than one
process is in the critical section:

G!(
∨
i 6=j

(Ci ∧ Cj))

progress: if one process is in the trying section, then eventually some
process enters the critical section:

G(
∨
i

Ti → F
∨
i

Ci)

lockout-freedom: in a fair path, if a process enters in the trying
section, then it eventually enters the critical section.

FAIRRUN → G(
∧
i

(Ti → FCi))

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 17 / 22

Exercise 4: Alternating Bit Protocol

Verify the following LTL properties on altbit.pml:

response to impulse: in a fair path, if a message is sent, then it is
eventually received.

(FAIRRUN ∧ GF!loss)→ (G(sendA→ FrecA))

absence of unsolicited response: if a message is received, then it has
been previously sent.

FrecA→ ((¬recA)UsentA)

FIFO: if B is sent after A, then B is received after A.

prec(sendA, sendB)→ prec(recA, recB)

where
prec(p, q) := Fq → (!qUp)

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 18 / 22

Exercise 5: Fifo Process

Verify the following LTL properties on fifo process.pml:

if the fifo is full, a write request is not served

if the fifo is empty, a read request is not served

the counter of fifo elements is always valid (wrt. the size of the FIFO)

in a fair run, if the producer tries to push something on the fifo, then
it will eventually succeed

in a fair run, if the consumer tries to pop something from the fifo,
then it will eventually succeed

Q1: What happens if the fair run requirement is dropped? (Why?)
Q2: What happens if cc < 10 is replaced with true? (Why?)

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 19 / 22

Exercises Solutions

will be uploaded on course website within a couple of days

send me an email if you need help or you just want to propose your
own solution for a review

learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 20 / 22

Optional Exercise: N processes mutual exclusion [1/2]

Model the Black-White Bakery algorithm for N processes:

before entering the critical section, each process i gets a ticket, defined as a pair

〈colori , numberi 〉:
colori is set to the current value of a shared bit color (of type
{black,white})
numberi is set to a value greater than the number of existing tickets
with the same color of its own

once i has a ticket, it waits until its colored ticket is the lowest, and then it enters

the critical section. The order between colored tickets is defined as follows:

if two tickets have different colors, the ticket whose color is different
from the value of the shared bit color is smaller;
if two tickets have the same color, the ticket with the smaller number
is smaller;
if the tickets of two processes have the same color and the same
number then the process with the smaller identifier (pid) enters the
critical section first;

when process i leaves its critical section, it sets the bit color to a value which is
different from the color of its ticket;

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 21 / 22

Optional Exercise: N processes mutual exclusion [2/2]

Optional Exercise:

write a Promela model for the Black-White Bakery algorithm for N
processes

check the following properties on N = 3:

mutual exclusion
progress
lockout-fredom (for N = 2)

and show that there is no deadlock

Warning: the only awards for successfully solving this exercise are fun, an
improved understanding of Promela and some confidence that you may
be ready to take the first part of the exam. :-)

...I am available for help and hints...

...a solution to this exercise will be provided by the end of the course...

Patrick Trentin (DISI) Spin: LTL Model Checking March 24, 2017 22 / 22

	Verifying LTL properties with Spin
	Exercises

