SPIN: Exercises on Message Channels*

Patrick Trentin
patrick.trentin@unitn.it
http://disi.unitn.it/trentin

Formal Methods Lab Class, March 17, 2017

UNIVERSITA DEGLI STUDI DI
TRENTO

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/16

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 1/24


http://disi.unitn.it/trentin

Q: are the following two pieces of code equivalent? (why?)

do
:: if
it i == 0 -> printf("0");
it i == 1 -> printf("1");
fi;
:: else -> printf("not 0 1");
od;
do
:: i == 0 -> printf("0");
:: i == 1 -> printf("1");
:: else -> printf("not 0 1");
od;

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017



Q: are the following two pieces of code equivalent? (why?)

do
i< 10 -> v[i] = 0; i++;
i i< 10 > v[i] = 1; i++;
i1 >= 10 -> break;
od;
do
1 <10 >
if
:: v[i] = 0;
rov[i] = 1
fi;
i++;
: else -> break;
od;

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 3/24



Q: are the following two pieces of code equivalent? (why?)

do
: channelO17message(...);
:: channelO27message(...);
od;
do
:: true -> channelOl7message(...);
:: true -> channelO27message(...);
od;

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017



Q: what is the behaviour of the following program? (why?)

byte i;
do
i< 10 >
i++;
else ->
break;
assert(i != 5);
od;

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 5/ 24



chan ¢ = [1] of { bit };

active proctype A ()

{

bit i = 0;
atomic {

cli ->

printf("A: sent(%d)\n", i);
};
printf("A: waiting ...\n");
atomic {

c?i ->

printf("A: recv(%d)\n", i);
};

Q: what is the output of the following program? (why?)

active proctype B ()
{
bit i;
atomic {
c?i >
printf("B: recv(%d)\n", i);
};
i++;
atomic {
cli >
printf("B: sent(%d)\n", i);
};

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017

6/ 24



Contents

© Exercises
@ Reliable FIFO Communication

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 7/ 24



Reliable FIFO Communication

Goal: design a reliable FIFO communication over a non-reliable channel.

Alternating Bit Protocol:
@ Sender and Receiver communicate over a couple of channels
sender2receiver and receiver2sender

@ the channels sender2receiver and receiver2sender are unreliable:
messages might be lost or duplicated

sender2receiver
Sender Receiver

receiver2sender

/N
()

8 /24

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017



Alternating Bit Protocol: Sender [1/2]

Sender specs:

o the Sender tags the messages with an alternating bit
(e.g. it sends (msgl, 0), (msg2, 1), (msg3, 0), ... ).

o the Sender repeatedly sends a message with a tag value until it
receives an acknowledgment from the Receiver.

@ Suppose Sender has sent (msg, out_bit) and receives in bit as
acknowledgment:

o if in_bit is equal to out_bit, then it means that Receiver has
received the right message, so it sends a new message with a different
value for out_bit.

o otherwise it sends (msg, out_bit) again.

o the Sender attaches to each message a sequence_number, which is
increased each time the tag value is changed.

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 9 /24



Alternating Bit Protocol: Skeleton

mtype = { MESSAGE, ACK };

chan sender2receiver = [2] of { mtype, bit, int};
chan receiver2sender [2] of { mtype, bit, int};

active proctype Sender () {
}
active proctype Receiver () {

}

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 10 / 24



Alternating Bit Protocol: Sender [2/2]

active proctype Sender () {
bit in_bit, out_bit;
int seq_no;

do
sender2receiver !MESSAGE (out_bit, seq_no) ->
receiver2sender?ACK(in_bit, 0);
if
in_bit == out_bit ->
out_bit = 1 - out_bit;
seq_no++;
1 else —>
skip
fi
od

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017



Alternating Bit Protocol: Receiver [1/2]

Receiver specs:
@ suppose Receiver receives (msg, tag):
o if tag is different from the last received bit, then it means that it is a
new message;
o otherwise, the message is old.
o When the Receiver receives a message, it sends the tag back to the
Sender to communicate the correct message receipt.

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 12 / 24



Alternating Bit Protocol: Receiver [2

active proctype Receiver () {
bit in_bit, old_bit;
int seq_no;

do
sender2receiver?MESSAGE (in_bit, seq_no) ->
if
in_bit !'= old_bit ->
printf ("received: %d\n", seq_no);
old_bit = in_bit;
:: else —>
skip
fi
receiver2sender!ACK(in_bit, 0);
od

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017



Alternating Bit Protocol: Unreliability

inline unreliable_send(channel, type, tag, seqno) {
bool loss = false;
bool duplicate = false;

if
:: channel!type(tag, seqno);
if
: channel!type(tag, seqno); duplicate = true;
:: skip;
fi
:: loss = true;
fi;

}

// + modify Sender and Receiver to use this function

Q: what happens with the unreliable channel? (why?)

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 14 / 24



Alternating Bit Protocol: Unreliability

inline unreliable_send(channel, type, tag, seqno) {
bool loss = false;
bool duplicate = false;

if
:: channel!type(tag, seqno);
if
: channel!type(tag, seqno); duplicate = true;
:: skip;
fi
:: loss = true;
fi;

}

// + modify Sender and Receiver to use this function

Q: what happens with the unreliable channel? (why?) deadlock, ...

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 14 / 24



Exercise 1: Reliable FIFO Communication

o configure Sender and Receiver to use unreliable_send() .

o fix the Alternating Bit Protocol so that there is no more deadlock
and the input specification is still respected.

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 15 / 24



Contents

© Exercises

@ Process-FIFO

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 16 / 24



Process-FIFO

Goal: design a process fifo(chan in, out) that behaves like a FIFO.

(]

for simplicity (!), it uses an array of bytes for internal storage (of size
FIFO_SIZE)
the following commands can be received through the in channel:

o PUSH: add byte to fifo, return true if successful

e POP: remove and return oldest byte from fifo, returns true on success
= push/pop failure: free choice among blocking and false return

o IS_EMPTY: return true if empty, false otherwise

o IS_FULL: return true if full, false otherwise

messages through the out channel should be of type RETURN only
call simulation: a process sends a command to the fifo, and waits
for an answer

in/out contain an mtype encoding the command, a byte encoding
the pushed/popped value (if any), a bit encoding the Boolean
outcome of a command request and a byte used as UID for the
process that is using the fifo.

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 17 / 24



Exercise 2: Process-FIFO

@ implement a process that behaves like a fifo (see previous slide)

o test the implementation by adding a pair of producer / consumer
processes:

e producer: infinitely adds some random 0. .16 value to the fifo, if it is
not full
o consumer. infinitely pops a value from the fifo, if it is not empty

Disclaimer:
@ next week you will be asked to formally verify the fifo

@ some might rightly call bad design modeling an object with a process

= still, it is a good exercise

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 18 / 24



Contents

© Exercises

@ Leader Election

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 19 / 24



Leader Election Problem

@ NN processes are the nodes of a unidirectional ring network: each
process can send messages to its clockwise neighbor and receive
messages from its counterclockwise neighbor.

@ The requirement is that, eventually, only one process will output that
it is the leader.

@ We assume that every process has a unique id.

@ The leader must have the highest id.

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017



Le Lann, Chang, Roberts (LCR) solution

The algorithm:

@ Initially, every process passes its identifier to its successor.
@ When a process receives an identifier from its predecessor, then:

o if it is greater than its own, it keeps passing on the identifier.
o if it is smaller than its own, it discards the identifier.
e if it is equal to its own identifier, it declares itself leader:

o the leader communicates to its successor that now it is the leader.

o after a process relayed the message with the leader id, it exits.

Complexity: at worst, n’> messages.

Patrick Trentin (DISI)

SPIN: Exercises on Message Channels March 17, 2017

21/ 24



Peterson/Dolev, Klawe, Rodeh solution

The algorithm:

o If a process is “active”, it compares its identifier with the two
counter-clockwise predecessors:

o if the highest of the three is the counter-clock neighbor, the process
proposes the neighbor as leader,
o otherwise, it becomes a “relay”.

o If the process is in “relay” mode, it keeps passing whatever incoming
message.

Complexity: at worst, n - log(n) messages.

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 22 /24



Exercise 3: Leader Election

mtype = { candidate, leader };

chan c[N] = [BUFSIZE] of { mtype, byte I}; o Implement a leader

election algorithm
of your choice.

init { o Verify that there is

byte proc, ij;
atomic { at most one leader.

// TODO: set i random in [0,N]

proctype node(chan prev, next; byte id) { ... }

do

:: proc < N —>
run node(c[proc], c[(proc+1)%N], (N+i-proc)#%N);
proc++
: else —>
break
od — strong solution hint!

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 23 /24



Exercises Solutions

@ will be uploaded on course website later this week

@ send me an email if you need help or you just want to propose your
own solution for a review

@ learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) SPIN: Exercises on Message Channels March 17, 2017 24 / 24



	Exercises
	Reliable FIFO Communication
	Process-FIFO
	Leader Election


