
Spin: Overview of PROMELA∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/trentin

Formal Methods Lab Class, March 10, 2017

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/16

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 1 / 34

http://disi.unitn.it/trentin

Contents

1 Promela overview
Processes
Data objects
Message Channels
Labels

2 Exercises

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 2 / 34

Promela

PROMELA is not a programming language,
but rather a meta-language for building verification models.

The design of Promela is focused on the interaction among
processes at the system level;

Provides:

non-deterministic control structures,
primitives for process creation,
primitives for interprocess communication.

Misses:

functions with return values,
expressions with side-effects,
data and functions pointers.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 3 / 34

Types of objects

Three basic types of objects:

processes

data objects

message channels

+ labels

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 4 / 34

Contents

1 Promela overview
Processes
Data objects
Message Channels
Labels

2 Exercises

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 5 / 34

Process Initialization [1/3]

active: process created at initialization phase

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

init + active processes =⇒ instantiated in declaration order

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 6 / 34

Process Initialization [1/3]

active: process created at initialization phase

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

init + active processes =⇒ instantiated in declaration order

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 6 / 34

Process Initialization [1/3]

active: process created at initialization phase

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

init + active processes =⇒ instantiated in declaration order

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 6 / 34

Process Initialization [1/3]

active: process created at initialization phase

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

init + active processes =⇒ instantiated in declaration order

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 6 / 34

Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 7 / 34

Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 7 / 34

Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 7 / 34

Process Initialization [3/3]

Only a limited number of processes (255) can be created:

proctype proc(byte x) {

printf("x = %d\n", x);

run proc(x + 1)

}

init {

run proc(0);

}

~$ spin test.pml

x = 0

x = 1

x = 2

...

spin: too many processes (255 max)

timeout

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes created
after it have died.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 8 / 34

Process Initialization [3/3]

Only a limited number of processes (255) can be created:

proctype proc(byte x) {

printf("x = %d\n", x);

run proc(x + 1)

}

init {

run proc(0);

}

~$ spin test.pml

x = 0

x = 1

x = 2

...

spin: too many processes (255 max)

timeout

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes created
after it have died.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 8 / 34

Process Execution [1/2]

Processes execute concurrently with all other processes.

Processes are scheduled non-deterministically.

Processes are interleaved: statements of different processes do not
occur at the same time (except for synchronous channels).

Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 9 / 34

Process Execution [2/2]

Each process has its own local state:

process counter pid (location within the proctype);
value of the local variables.

A process communicates with other processes:

using global (shared) variables (might need synchronization!);
using channels.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 10 / 34

Statements [1/6]

each statement is atomic

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
timeout: executable only when there is no other executable process
expressions

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 11 / 34

Statements [1/6]

each statement is atomic

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
timeout: executable only when there is no other executable process
expressions

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 11 / 34

Statements [1/6]

each statement is atomic

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
timeout: executable only when there is no other executable process
expressions

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 11 / 34

Statements [2/6]

An expression is executable iff it evaluates to true (i.e. non-zero).

(5 < 30): always executable;
(x < 30): blocks if x is not less than 30;
(x + 30): blocks if x is equal to -30;

Busy-Waiting: the expression (a == b); is equivalent to:

while (a != b) { skip }; /* C-code */

Expressions must be side-effect free
(e.g. b = c++ is not valid).

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 12 / 34

Statements [3/6]

selection: repetition:

if do

:: c_0 -> s_0; ... :: c_0 -> s_0; ...

... ...

:: c_n -> s_n; ... :: c_n -> s_n; ...

:: else -> s_e; ... :: else -> s_e; ...

fi od

{ s i; ... } executed only if c i is executable

if more than one c i is excutable, then executed branch is chosen
non-deterministically

if no c i is executable, then else branch is executed –if present

break: exit from loop

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 13 / 34

Statements [4/6]

timeout

timeout -> s_0; ... s_n;

{ s 0; ... s n; } executed only if no other process is
executable

statement that acts as a global timeout

allows to escape deadlocks

unless
{ s_0; ... s_n; } unless { c_0; s_0’; ... s_n’; }

{ s 0; ... s n; } executed until c 0 becomes executable

{ s 0’; ... s n’; } executed after c 0 becomes executable

similar to exception handling

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 14 / 34

Statements [4/6]

timeout

timeout -> s_0; ... s_n;

{ s 0; ... s n; } executed only if no other process is
executable

statement that acts as a global timeout

allows to escape deadlocks

unless
{ s_0; ... s_n; } unless { c_0; s_0’; ... s_n’; }

{ s 0; ... s n; } executed until c 0 becomes executable

{ s 0’; ... s n’; } executed after c 0 becomes executable

similar to exception handling

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 14 / 34

Statements [5/6]

for
int i; int a[10];

for (i : 1 .. N) {

...

}

for (i in a) { // + channels

...

}

also on arrays, e.g. int a[10]

also on channels (peek read!),
e.g. typedef m { ... };
chan c = [9] of { m };

select

select(i: 8..17);

assigns i with a random value in
the interval 8..17, bounds
included

conditional expression

(c_0 -> e_1 : e_2)
evaluates to e 1 if c 0 is true

evaluates to e 2 if c 0 is false

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 15 / 34

Statements [5/6]

for
int i; int a[10];

for (i : 1 .. N) {

...

}

for (i in a) { // + channels

...

}

also on arrays, e.g. int a[10]

also on channels (peek read!),
e.g. typedef m { ... };
chan c = [9] of { m };

select

select(i: 8..17);

assigns i with a random value in
the interval 8..17, bounds
included

conditional expression

(c_0 -> e_1 : e_2)
evaluates to e 1 if c 0 is true

evaluates to e 2 if c 0 is false

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 15 / 34

Statements [5/6]

for
int i; int a[10];

for (i : 1 .. N) {

...

}

for (i in a) { // + channels

...

}

also on arrays, e.g. int a[10]

also on channels (peek read!),
e.g. typedef m { ... };
chan c = [9] of { m };

select

select(i: 8..17);

assigns i with a random value in
the interval 8..17, bounds
included

conditional expression

(c_0 -> e_1 : e_2)
evaluates to e 1 if c 0 is true

evaluates to e 2 if c 0 is false

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 15 / 34

Statements [6/6]

atomic / d step

both can be used to group statements in an atomic sequence, which are
then executed in a single step.

atomic { s_0; ... s_i; ... s_n; }

executable if s 0 is executable

temporary loss of atomicity if
s i, i > 0, not executable

d_step { s_0; ... s_i; ... s_n; }

executable if s 0 is executable

run-time error if s i, i > 0, not
executable

can only contain deterministic
steps

no intermediate state is
generated

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 16 / 34

Contents

1 Promela overview
Processes
Data objects
Message Channels
Labels

2 Exercises

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 17 / 34

Basic types

Type Typical Range

bit 0, 1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

A byte can be printed as a character with the %c format specifier;

There are no floats and no strings;

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 18 / 34

Typical declarations

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* all elements initialized to 0 */

byte a[3] = {’h’,’i’,’\0’}; /* byte array emulating a string */

chan m; /* uninitialized message channel */

mtype n; /* uninitialized mtype variable */

short b[4] = 89; /* all elements initialized to 89 */

int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

All variables are initialized by default to 0.

Array indexes starts at 0.

=⇒ unique initial state for all execution traces of one model!

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 19 / 34

Data structures

A run statement accepts a list
of variables or structures, but no
array.

typedef Record {

byte a[3];

int x;

bit b

};

proctype run_me(Record r) {

r.x = 12

}

init {

Record test;

run run_me(test)

}

Note: but array can still be
enclosed in data structures

Multi-dimensional arrays are not
supported, although there are
indirect ways:

typedef Array {

byte el[4]

};

Array a[4];

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 20 / 34

Variable Scope

Spin (old versions): only two levels of scope
global scope: declaration outside all process bodies.
local scope: declaration within a process body.

Spin (versions 6+): added block-level scope

init {

int x;

{ /* y declared in nested block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Note: since Spin version 2.0, variable declarations are not implicitly
moved to the beginning of a block

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 21 / 34

Variable Scope

Spin (old versions): only two levels of scope
global scope: declaration outside all process bodies.
local scope: declaration within a process body.

Spin (versions 6+): added block-level scope

init {

int x;

{ /* y declared in nested block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Note: since Spin version 2.0, variable declarations are not implicitly
moved to the beginning of a block

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 21 / 34

Contents

1 Promela overview
Processes
Data objects
Message Channels
Labels

2 Exercises

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 22 / 34

Message Channels

A channel is a FIFO (first-in first-out) message queue.

A channel can be used to exchange messages among processes.

Two types:

buffered channels,
synchronous channels (aka rendezvous ports)

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 23 / 34

Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:
=⇒ num msgs in queue = len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 24 / 34

Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:
=⇒ num msgs in queue = len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 24 / 34

Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:
=⇒ num msgs in queue = len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 24 / 34

Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:
=⇒ num msgs in queue = len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 24 / 34

Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:
=⇒ num msgs in queue = len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 24 / 34

Alternative use of Buffered Channels

An alternative syntax for message send/receive involves brackets:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

=⇒ used to highlight the first field, e.g. when it acts as ’message type’

If - at the receiving side - some parameter is set to a constant value:

qname?const1,var2,var3

then the process blocks if the channel is empty or the input message
field does not match the fixed constant value.

=⇒ used to filter messages

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 25 / 34

Alternative use of Buffered Channels

An alternative syntax for message send/receive involves brackets:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

=⇒ used to highlight the first field, e.g. when it acts as ’message type’

If - at the receiving side - some parameter is set to a constant value:

qname?const1,var2,var3

then the process blocks if the channel is empty or the input message
field does not match the fixed constant value.

=⇒ used to filter messages

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 25 / 34

Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

Example:

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 26 / 34

Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

Example:

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 26 / 34

Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

Example:

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 26 / 34

Channels of channels

Message parameters are always passed by value.

We can also pass the value of a channel from a process to another.

Example:

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A() {

chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */

loc?msgtype(121) /* read 121 from channel loc */

}

active proctype B() {

chan who;

glob?who; /* receive channel loc from glob */

who!msgtype(121) /* write 121 on channel loc */

}

Q: what if B sends 122 on channel loc?

both A and B are forever blocked

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 27 / 34

Channels of channels

Message parameters are always passed by value.

We can also pass the value of a channel from a process to another.

Example:

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A() {

chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */

loc?msgtype(121) /* read 121 from channel loc */

}

active proctype B() {

chan who;

glob?who; /* receive channel loc from glob */

who!msgtype(121) /* write 121 on channel loc */

}

Q: what if B sends 122 on channel loc? both A and B are forever blocked

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 27 / 34

Sorted Send and Random Receive [1/2]

sorted send

message is inserted immediately before the oldest message that
succeeds it in numerical order

syntax: chname!!value

e.g.

c!3; c!1; --> c([3, 1])

c!!3; c!!1; --> c([1, 3])

random receive

executable if there exists at least one message buffered in the
message channel that can be received, regardless of its position

syntax: chname??value

e.g. given c([3, 1])

c?1 --> blocks, 1 is not oldest element in queue

c??1 --> ok!

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 28 / 34

Sorted Send and Random Receive [2/2]

proctype S1() {

c!1,2; c!1,1;

c!1,3; c!0,1;

}

proctype R1() {

do

:: c?v1,v2 ->

printf("(%d,%d)\n", v1, v2);

od

}

proctype S2() {

c!!1,2; c!!1,1;

c!!1,3; c!!0,1;

}

proctype R2() {

do

:: c??v1,1 ->

printf("(%d,%d)\n", v1, 1);

od

}

Q: What is the sequence of printed values, for the following combinations?

S1 + R1:

S1 + R2:

S2 + R1:

S2 + R2:

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 29 / 34

Sorted Send and Random Receive [2/2]

proctype S1() {

c!1,2; c!1,1;

c!1,3; c!0,1;

}

proctype R1() {

do

:: c?v1,v2 ->

printf("(%d,%d)\n", v1, v2);

od

}

proctype S2() {

c!!1,2; c!!1,1;

c!!1,3; c!!0,1;

}

proctype R2() {

do

:: c??v1,1 ->

printf("(%d,%d)\n", v1, 1);

od

}

Q: What is the sequence of printed values, for the following combinations?

S1 + R1: (1,2) (1,1) (1,3) (0,1)

S1 + R2:

S2 + R1:

S2 + R2:

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 29 / 34

Sorted Send and Random Receive [2/2]

proctype S1() {

c!1,2; c!1,1;

c!1,3; c!0,1;

}

proctype R1() {

do

:: c?v1,v2 ->

printf("(%d,%d)\n", v1, v2);

od

}

proctype S2() {

c!!1,2; c!!1,1;

c!!1,3; c!!0,1;

}

proctype R2() {

do

:: c??v1,1 ->

printf("(%d,%d)\n", v1, 1);

od

}

Q: What is the sequence of printed values, for the following combinations?

S1 + R1: (1,2) (1,1) (1,3) (0,1)

S1 + R2: (1,1) (0,1)

S2 + R1:

S2 + R2:

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 29 / 34

Sorted Send and Random Receive [2/2]

proctype S1() {

c!1,2; c!1,1;

c!1,3; c!0,1;

}

proctype R1() {

do

:: c?v1,v2 ->

printf("(%d,%d)\n", v1, v2);

od

}

proctype S2() {

c!!1,2; c!!1,1;

c!!1,3; c!!0,1;

}

proctype R2() {

do

:: c??v1,1 ->

printf("(%d,%d)\n", v1, 1);

od

}

Q: What is the sequence of printed values, for the following combinations?

S1 + R1: (1,2) (1,1) (1,3) (0,1)

S1 + R2: (1,1) (0,1)

S2 + R1: (0,1) (1,1) (1,2) (1,3)

S2 + R2:

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 29 / 34

Sorted Send and Random Receive [2/2]

proctype S1() {

c!1,2; c!1,1;

c!1,3; c!0,1;

}

proctype R1() {

do

:: c?v1,v2 ->

printf("(%d,%d)\n", v1, v2);

od

}

proctype S2() {

c!!1,2; c!!1,1;

c!!1,3; c!!0,1;

}

proctype R2() {

do

:: c??v1,1 ->

printf("(%d,%d)\n", v1, 1);

od

}

Q: What is the sequence of printed values, for the following combinations?

S1 + R1: (1,2) (1,1) (1,3) (0,1)

S1 + R2: (1,1) (0,1)

S2 + R1: (0,1) (1,1) (1,2) (1,3)

S2 + R2: (0,1) (1,1)

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 29 / 34

Contents

1 Promela overview
Processes
Data objects
Message Channels
Labels

2 Exercises

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 30 / 34

Labels

end-state labels

used to mark valid end-states, and tell them apart from a deadlock
situations

by default, the only valid end-state is reached when the process
reaches the syntactic end of its body

includes any label starting with ’end’

progress-state labels

used to mark a state that must be executed for the protocol/process
to make progress

any infinite cycle that does not cross a progress state is a potential
starvation loop

includes any label starting with ’progress’

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 31 / 34

Contents

1 Promela overview
Processes
Data objects
Message Channels
Labels

2 Exercises

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 32 / 34

Basic verification

chan com = [0] of { byte };

byte value;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

... /* fill in for formal verification */

}

init {

run p();

end: com ! 100;

}

Q: is it possible that process p does not read from the channel at all?

Yes

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 32 / 34

Basic verification

chan com = [0] of { byte };

byte value;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

... /* fill in for formal verification */

}

init {

run p();

end: com ! 100;

}

Q: is it possible that process p does not read from the channel at all? Yes

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 32 / 34

Exercises [1/2]

Ex. 1: write a PROMELA model that sums up an array of integers.

declare and (non-deterministically) initialize an integer array with
values in [0, 9].
add a loop that sums even elements and subtracts odd elements.
visually check that it is correct.
Q: is it possible to initialize the array with a randomly chosen value
among any valid integer? how?

Ex. 2: declare a synchronous channel and create two processes:

The first process sends the characters ’a’ through ’z’ onto the channel.
The second process reads the values of the channel and outputs them
as characters.
Check if sooner or later the second process will read the letter ’z’.

Ex. 3: replace the synchronous channel with a buffered channel and
check how the behaviour changes.

Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 33 / 34

Exercises [2/2]

Ex. 4: explain why Produced 0 can appear twice in a row simulating:

mtype = { C, P };

mtype turn = P;

active [2] proctype producer () {

do

:: (turn == P) ->

printf("Produced %d\n", _pid);

turn = C;

od

}

active [2] proctype consumer () {

do

:: (turn == C) ->

printf("Consumer %d\n", _pid);

turn = P;

od

}

Hints:
add a global variable last initialized to −1
assert last != pid after each printf statement
assign pid to last just before releasing the turn
use spin to look for a trace that falsifies the assertion

=⇒ use spin -search -bfs buggy.pml

replay the counter-example
=⇒ use spin -t -p -l -g

Q: how would you fix the code?
Patrick Trentin (DISI) Spin: Overview of PROMELA March 10, 2017 34 / 34

	Promela overview
	Processes
	Data objects
	Message Channels
	Labels

	Exercises

