Spin:
introduction and examples*
Silvia Tomasi

silvia.tomasi@disi.unitn.it
http://ares.science.unitn.it/~silvia.tomasi/st/Formal_Methods.html

Course on Formal Methods
Lab Class April 20, 2010

Contents
1 Introduction 1

2 PROMELA examples 3
2.1 Helloworld! 3
2.2 Producers/Consumers 4
2.3 Mutual Exclusion Lo oL 9

3 PROMELA overview 13
3.1 Processes 13
3.2 Dataobjects o 14
3.3 Message Channels 15
3.4 Executability 0 o 17

4 Asynchronous Network Problems 18
4.1 Reliable FIFO Communication 18
4.2 Leader Election 20

1 Introduction
The SPIN model checker

e Open-source software tool used for formal verification of distributed soft-
ware systems.

*These slides are derived from those by Stefano Tonetta (FBK-IRST) and Alberto Griggio
(FBK-IRST), used for FM lab 2005-2009

e Developed at Bell Labs.

e In 2002, recognized by the ACM with Software System Award (like Unix,
TeX, Smalltalk, Postscript, TCP/IP, Tcl/Tk).

e Automated tools convert programs written in Java or in C into SPIN mod-
els.

e The specification language is called PROMELA.
e SPIN has a graphical user interface, XSPIN.
e Homepage: http://spinroot.com/spin/whatispin.html

e Manual: http://spinroot.com/spin/Man/index.html

PrROMELA

e PROMELA is suitable to describe concurrent software.

— dynamic creation of concurrent processes

— (synchronous/asynchronous) communication via message channels
e Programs written in PROMELA can be executed/simulated.
o Simulation shows one execution.

o Verification checks every execution.
Basic commands
e To simulate a program:
spin system.pml
e Interactively:
spin -i system.pml
e To generate a verifier (pan.c):

spin -a system.pml

2 PROMELA examples

2.1 Hello world!
Hello world!

active proctype main()

{
printf("hello world\n")
}

e active instantiates one process of the type that follows.
e proctype denotes that main is a process type.
e main identifies the process type, it’s not a keyword.

9

e Note that ’;’ is missing after printf: ’;
statement terminator.

is a statement separator, not a

Remark
e Each process instance has a unique, positive instantiation number.

e A process-instance remains active until the process’ body terminates (if
ever).

Hello world! Alternative

init {
printf ("hello world\n")
}

e init is a process that initializes the system.
e Initially just the initial process is executed.
Simulation:

> spin hello.pml
hello world
1 process created

2.2

Producers/Consumers

Producers/Consumers
File prodcons.pml:

mtype = { P, C };

mtype turn = P;

active proctype producer()

{

do
(turn == P) ->
printf ("Produce\n");
turn = C
od

Producers/Consumers

mtype defines symbolic values.

turn is a global variable.

do ... od (i.e. repetition statement) defines a loop.
Only a break statement can break the loop.
Every option of the loop must start with ’::’.

(turn == P) is the guard of the option.

-> and ; are equivalent (-> indicates a causal relation between successive
statements).

If all guards are false, then the process blocks.

If multiple guards are true, we get non-determinism.

Producers/Consumers
The producer’s definition is equivalent to:

active proctype producer ()

{

again: if

(turn == P) ->
printf ("Produce\n");
turn = C
fi;

goto again

e goto transfers control to the statement labeled by again.

Producers/Consumers
Also equivalent to:

active proctype producer()

{
again: (turn == P) ->
printf ("Produce\n");
turn = C;
goto again
}

e If the guard does not hold, execution blocks until it does.

Producers/Consumers
Also equivalent to:

active proctype producer()
{
again: if
(turn == P) ->
printf ("Produce\n");
turn = C
else -> goto again
fi;
goto again

e else is only executable (true) if all other options are not executable.

Producers/Consumers
Simulation:

> spin prodcons.pml | more
Produce

Consume
Produce

Consume
Produce

Consume
Produce

Consume
Produce

Consume

Producers/Consumers Extended

We can extend the example to more processes for each type:

active [2] proctype producer {...}

The alternation is no more guaranteed. Simulation:

> spin prodcons2_flaw.pml | more
Produce
Consume
Consume
Produce
Consume
Produce
Produce
Consume

Producers/Consumers Extended
Reason:

> spin -i prodcons2_flaw.pml
Select a statement

choice 3: proc 1 (producer) line
4) [((turn==P))]

choice 4: proc O (producer) line
4) [((turn==P))]
Select [1-4]: 3
Select a statement

choice 3: proc 1 (producer) line
2) [printf (’Produce\\n’)]

choice 4: proc O (producer) line
4) [((turn==P))]
Select [1-4]: 4

Producers/Consumers Extended
A correct declaration for the producer:

active [2] proctype producer()

{
do
:: request(turn, P, N) ->
printf ("PYd\n", _pid);
assert(who == _pid);
release(turn, C)
od
}

7 "prodcons2_flaw

7 "prodcons2_flaw

9 "prodcons2_flaw

7 "prodcons2_flaw

.pml"

.pml"

.pml"

.pml"

(state

(state

(state

(state

e assert aborts the program if the expression returns a zero result, other-
wise it is just passed.

Producers/Consumers Extended
Definition of request:

inline request(x, y, z) {
atomic { x ==y -> x = z; who = _pid }

}

e inline functions like C macros (their body is directly pasted into the body
of a proctype at each point of invocation)

e atomic: when it starts, the process will keep running until all steps will
complete.

e The executability of the atomic sequence is determined by the first state-
ment.
Producers/Consumers Extended

File prodcons2.pml:

mtype = { P, C, N };

mtype turn = P;
pid who;

inline request(x, y, z) {
atomic { x ==y -> x = z; who = _pid }

}

inline release(x, y) {
atomic { x = y; who = 0 }

3

Producers/Consumers Extended
Simulation:

> spin prodcons2.pml | more

P1
C3
PO
C3
P1
C3
P1

c2
PO
C3
P1

Producers/Consumers Extended
Simulation can detect errors

> spin false.pml
spin: line 1 "false.pml", Error: assertion violated
spin: text of failed assertion: assert(0)
#processes: 1

1: proc O (:init:) line 1 "false.pml" (state 1)
1 process created

However, simulation cannot prove that error do not exist.

Producers/Consumers Extended
To prove that the assertions cannot be violated, we generate a verifier:

> spin -a prodcons2.pml
> cc -0 pan pan.c
> ./pan

Full statespace search for:
never claim

(none specified)

assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 28 byte, depth reached 7, errors: O

Producers/Consumers Extended
Back to the flawed Producers/Consumers

mtype = { P, C }; active [2] proctype consumer ()

- p. {
mtype turn = P; do
int msgs; +: (turn == €) ->
&8s printf ("Consume\n");
; msgs--;
active [2] proctype producer() turn = P
{
do od
. ¥

(turn == P) ->
printf ("Produce\n");
msgs++;
turn = C
od
}

active proctype monitor() {
assert(msgs >= 0 && msgs <= 1)

3

spin -a prodcons2_flaw.pml &% gcc -o pan pan.c && ./panspin -t -p prodcons2_flaw.pml

2.3 Mutual Exclusion

The Mutual Exclusion problem
General algorithm

active [2] proctype mutex()

{
again:
/* trying section */
cnt++;
assert(cnt == 1); /* critical section */
cnt-—;
/* exit section */
goto again
}

The Mutual Exclusion problem
First tentative

bit flag;
byte cnt;

active [2] proctype mutex() {
again:
flag !'= 1;

flag = 1;

cnt++;

assert(cnt == 1);
cnt-—;

flag = 0;

goto again

The Mutual Exclusion problem
Second tentative

it x, y;
byte cnt; active proctype BO) {
again:
active proctype AQ) { y = 1;
again: x == 0;
x =1; cnt++;
y == 0; /* critical section */
cnt++; assert(cnt == 1);
/* critical section */ cnt--;
assert(cnt == 1); y = 0;
cnt--; goto again
x = 0; X

goto again

Dekker/Dijkstra algorithm
Trying session:

flagli] = true;

do
1 flagljl —>
if
:: turn == j >
flagl[i] = false;
! (turn == j);
flagl[i] = true
:: else —-> skip
fi
:: else —>
break
od;

e flag indicates an intention to enter the critical section

e turn indicates who has priority between the two processes.

10

Dekker /Dijkstra algorithm
Exit session:

turn = j;
flagl[i] = false;

Dekker/Dijkstra algorithm
Verification:

> spin -a dekker.pml
> cc -o pan pan.c
> ./pan

Full statespace search for:

never claim - (none specified)
assertion violations +

acceptance cycles - (not selected)
invalid end states +

State-vector 20 byte, depth reached 67, errors: O

Doran&Thomas change
Is the outer loop really necessary?

flagli] = true;

if
1t flagl[jl ->
if
i turn == j >
flag[i] = false;
!'(turn == j);
flagl[i] = true
: else -> skip
fi
:: else
fi;

Doran&Thomas change
Verification:

> spin -a doran.pml
> cc -o pan pan.c
> ./pan

pan: assertion violated (cnt==1) (at depth 117)
pan: wrote doran.pml.trail

11

doran.pml.trail contains a counterexample with length 117.

Doran&Thomas change
We can use a breadth-first search to find the shortest counterexample:

> cc -DBFS -0 pan pan.c
> ./pan

pan: assertion violated (cnt==1) (at depth 12)
pan: wrote doran.pml.trail

Doran&Thomas change
Now, we can perform a guided simulation:

> spin -p -t doran.pml

1: proc 1 (mutex) line 8 ... [i = _pid]

2: proc 1 (mutex) line 9 ... [j = (1-_pid)]
3: proc 1 (mutex) line 11 ... [flag[i] = 1]
4: proc 1 (mutex) line 21 ... [else]

5: proc 1 (mutex) line 24 ... [cnt = (cnt+1)]
6: proc O (mutex) line 8 ... [i = _pid]

7: proc O (mutex) line 9 ... [j = (1-_pid)]
8: proc O (mutex) line 11 ... [flag[i] = 1]
9: proc 0 (mutex) line 13 ... [(flag[jl)]

10: proc O (mutex) line 19 ... [else]

11: proc O (mutex) line 19 ... [(1)]

12: proc O (mutex) line 24 ... [cnt = (cnt+1)]

Peterson algorithm
A correct improvement: trying session

flagli] = true;
turn = i;
! (flag[j] && turn == i) ->

exit session
flag[i] = false;
Verification:

> spin -a peterson.pml
> cc -0 pan pan.c
> ./pan

State-vector 20 byte, depth reached 41, errors: 0O

12

3 PROMELA overview

PROMELA
e PROMELA design is focused on process interaction at the system level
e Consequent features:

— non-deterministic control structures,
— primitives for process creation,

— primitives for interprocess communication.
e Consequent lacks:

— functions with return values,
— expressions with side-effects,
— data and functions pointers.
PROMELA is a language for building verification models (not a program-

ming language)!

Types of objects
Three basic types of objects:

® processes
e data objects

e message channels

3.1 Processes
Process Initialization

e By means of active (instantiate an initial set of processes):

active [2] proctype you_run()
{

printf("my pid is: %d\n", _pid)
}

e By means of run (creating new processes):

proctype you_run(byte x)

{
printf("x = %d, pid = %d\n", x, _pid)
}
init {
run you_run(0);
run you_run(1)
}

13

Notes
e We cannot pass parameter values to in4t or to active processes.
e A newly created process may not start right after its initialization.

To keep the system finite, only 256 processes can be alive in the same
moment.

e A process “terminates” when it reaches the end of its code.

e A process “dies” when it has terminated and all processes instantiated
later have died.

e A process may terminate without dying.

3.2 Data objects

Variable Scope
There are only two levels of scope:

e global: if it is declared outside all process declarations,

e process local: if it is declared within a process declaration.

init { /* x declared in outer block */

int x;

{ /* y declared in inner block */
int y;
printf("x = %d, y = %d\n", x, y);
X++;
yt++;

¥

/* y remains in scope */
printf("x = %d, y = %d\n", x, y);

Basic types

Type Typical Range
bit 0,1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short —215 2151
int —231 2311
unsigned 0. 2"—1

14

Typical declarations

bit x, y; /* two single bits, initially O */
bool turn = true; /* boolean value, initially true */
byte al12]; /* all elements initialized to 0 */
chan m; /* uninitialized message channel */
mtype n; /* uninitialized mtype variable */
short b[4] = 89; /* all elements initialized to 89 */
int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */
unsigned w : 3 = 5; /* value range 0..7, initially 5 x*/

Data structures
typedef Field {
short f = 3;
byte g
};
typedef Record {
byte al3];
int f1di1;
Field f1d2;
chan p[3];
bit b
};
proctype me(Field z) { z.g = 12 }
init { Record goo; Field foo;
run me(foo)

}

Arrays and Data structures

e A structure can be passed as argument to a run statement, provided it
contains no arrays. (In the example, foo can be passed, goo cannot.)

e Multi-dimensional arrays are not supported, although there are indirect
ways:

typedef Array {
byte el[4]
s

Array al[4];

3.3 Message Channels

Message Channels

15

e Channels are used to transfer messages between active processes.
e They store messages in first-in first-out order.
e Two types:

— buffered channels,

— rendezvous ports, also called synchronous channels.

Buffered Channels

e Declaration:
chan gname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields of the
types listed.

e A field can be a user-defined type, but not an array.

e Sending a message:
gname!exprl, expr2,expr3
The process blocks if the channel is full.
e Receiving a message:
gname?varl,var2,var3
The process blocks if the channel is empty.
Alternative
e The first message field is a message type indication:

gname ! exprl (expr2, expr3)
gname?varl (var2,var3)

e Some parameters can be given as constants:
gname?consl,var2,cons2

The process blocks if the channel is empty and if the sent values do not
match the constants.

e The built-in function len can be used to get the number of messages in a
given channel:

len(gname)

16

Rendezvous Ports

e Declaration of a rendezvous port: it can pass single byte messages
chan port = [0] of { byte }

e The channel size is zero: the channel port can pass, but can not store
messages.

e Message interaction is synchronous: two processes execute a send and a
receive statement at the same time.

mtype = { msgtype };
chan name = [0] of { mtype, byte };
active proctype AQ
{ name !msgtype (124) ;
name !msgtype (121)

}

active proctype B(O)

{ byte state;
name?msgtype (state)

}

Channels of channels
e Message parameters are always passed by value.

e We can pass the value of a channel from a process to another.

mtype = { msgtype 1};
chan glob = [0] of { chan };
active proctype AQ)

{ chan loc = [0] of { mtype, byte };
glob!loc;
loc?msgtype (121)

}

active proctype B(O)

{ chan who;
glob?who;

who lmsgtype (121)

3.4 Executability

Statements

e Every statement is either executable or blocked.

17

Three main types of statements:

— print statements
— assignments

— expression statements
e Print statements and assignments are always executable.
e Expression statements are executable iff they evaluate to true.

e Expressions must be side effect free.

Exception: the run statement can be considered as a blocking expression:

— it blocks when there are 256 processes alive;

— if it does not block, it creats a new process.

4 Asynchronous Network Problems

4.1 Reliable FIFO Communication
Reliable FIFO Communication Problem

e We want to implement a reliable FIFO communication using less reliable
channels.

e A user Sender sends messages to another user Receiver by means of two
channels Cy and Cy

e (1 and Cy are non-reliable channels.

e The non-reliable channels may lose or duplicate the messages.
. | \
Sender Receiver
V\QD
Alternating Bit Protocol

e Sender tags the messages with an alternating bit (e.g. it sends (0, msgl),
(1, msg2), (0, msg3), ...).

e Sender repeatedly sends a message with its tag until it receives a bit
acknowledgment from Receiver.

18

e Suppose Sender has sent (tag, msg) and receives b as acknowledgment.
If b is equal to tag, then it means that Receiver has received the right
message, so it obtains a new message and tags it with a different value;
otherwise it sends (tag, msg) again.

o Similarly, suppose Receiver receives (tag, msg). If tag is different from
the last received bit, then it means that it is a new message; otherwise,
the message is old. In both cases, Receiver sends tag back to Sender to
communicate the correct receipt of the message.

Alternating Bit Protocol
mtype = { msg, ack };

chan to_sndr = [2] of { mtype, bit };
chan to_rcvr [2] of { mtype, bit};

active proctype Sender ()

{
¥

active proctype Receiver()

{
3

Alternating Bit Protocol

active proctype Sender ()
{

bit seq_out, seq_in;

/* obtain first message */

do
11 to_rcvr!msg(seq_out) ->
to_sndr?ack(seq_in);
if
:: seq_in == seq_out ->
/* obtain new message */
seq_out = 1 - seq_out;
11 else
fi
od

19

Alternating Bit Protocol

active proctype Receiver()

{
bit seq_in;
do
1t to_rcvr?msg(seq_in)
:: to_sndr!ack(seq_in)
od
}

Example of simulation
e Receiver sends 2 ack (then it is blocked)
e Sender sends one message
e two possibilities:

— Receiver receives the message

— Sender receives one ack

Exercise
e Try with:

active proctype Receiver()
{ bit seq_in, last_seq_in;
int received;
do
11 to_rcvr?msg(seq_in, received) ->
if
(seq_in != last_seq_in) ->
printf ("Received: J%d\n", received);
last_seq_in = seq_in
:: else
fi;
to_sndr!ack(seq_in)
od

4.2 Leader Election
Leader Election Problem

e N processes are the nodes of a unidirectional ring network: each process
can send messages to its clockwise neighbor and receive messages from its
counterclockwise neighbor.

20

e The requirement is that, eventually, only one process will output that it
is the leader.

e We assume that every process has a unique identifier.

e The leader must have the highest identifier

Le Lann, Chang, Roberts (LCR) solution

e Initially, every process passes its identifier to its successor.
e When a process receives an identifier from its predecessor, then:

— if it is greater than its own, it keeps passing the identifier;
— if it is smaller, it discards the identifier.
— if it is equal to its own identifier, it declares itself leader.

* The leader informs the others that it is the leader.

x After a process receives the message with the id of the leader, it
exits.

Hint:

mtype = { candidate, leader };
chan c[N] = [BUFSIZE] of { mtype, byte };

proctype node(chan prev, next; byte mynumber) { ... }
init {
do
:: proc <= N -> run node(...);

Exercises

e Implement the Le LCR algorithm.

e Verify there can be at most one leader (using Xspin, next lecture).

21

