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1 Introduction
The SPIN model checker

e Open-source software tool used for formal verification of distributed soft-
ware systems.

*These slides are derived from those by Stefano Tonetta (FBK-IRST) and Alberto Griggio
(FBK-IRST), used for FM lab 2005-2009



e Developed at Bell Labs.

e In 2002, recognized by the ACM with Software System Award (like Unix,
TeX, Smalltalk, Postscript, TCP/IP, Tcl/Tk).

e Automated tools convert programs written in Java or in C into SPIN mod-
els.

e The specification language is called PROMELA.
e SPIN has a graphical user interface, XSPIN.
e Homepage: http://spinroot.com/spin/whatispin.html

e Manual: http://spinroot.com/spin/Man/index.html

PrROMELA

e PROMELA is suitable to describe concurrent software.

— dynamic creation of concurrent processes

— (synchronous/asynchronous) communication via message channels
e Programs written in PROMELA can be executed/simulated.
o Simulation shows one execution.

o Verification checks every execution.
Basic commands
e To simulate a program:
spin system.pml
e Interactively:
spin -i system.pml
e To generate a verifier (pan.c):

spin -a system.pml



2 PROMELA examples

2.1 Hello world!
Hello world!

active proctype main()

{
printf("hello world\n")
}

e active instantiates one process of the type that follows.
e proctype denotes that main is a process type.
e main identifies the process type, it’s not a keyword.
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e Note that ’;’ is missing after printf: ’;
statement terminator.

is a statement separator, not a

Remark
e Each process instance has a unique, positive instantiation number.

e A process-instance remains active until the process’ body terminates (if
ever).

Hello world! Alternative

init {
printf ("hello world\n")
}

e init is a process that initializes the system.
e Initially just the initial process is executed.
Simulation:

> spin hello.pml
hello world
1 process created



2.2

Producers/Consumers

Producers/Consumers
File prodcons.pml:

mtype = { P, C };

mtype turn = P;

active proctype producer()

{

do
(turn == P) ->
printf ("Produce\n");
turn = C
od

Producers/Consumers

mtype defines symbolic values.

turn is a global variable.

do ... od (i.e. repetition statement) defines a loop.
Only a break statement can break the loop.
Every option of the loop must start with ’::’.

(turn == P) is the guard of the option.

-> and ; are equivalent (-> indicates a causal relation between successive
statements).

If all guards are false, then the process blocks.

If multiple guards are true, we get non-determinism.

Producers/Consumers
The producer’s definition is equivalent to:

active proctype producer ()

{

again: if

(turn == P) ->
printf ("Produce\n");
turn = C
fi;



goto again

e goto transfers control to the statement labeled by again.

Producers/Consumers
Also equivalent to:

active proctype producer()

{
again: (turn == P) ->
printf ("Produce\n");
turn = C;
goto again
}

e If the guard does not hold, execution blocks until it does.

Producers/Consumers
Also equivalent to:

active proctype producer()
{
again: if
(turn == P) ->
printf ("Produce\n");
turn = C
else -> goto again
fi;
goto again

e else is only executable (true) if all other options are not executable.

Producers/Consumers
Simulation:

> spin prodcons.pml | more
Produce

Consume
Produce

Consume
Produce

Consume
Produce

Consume
Produce

Consume



Producers/Consumers Extended

We can extend the example to more processes for each type:

active [2] proctype producer {...}

The alternation is no more guaranteed. Simulation:

> spin prodcons2_flaw.pml | more
Produce
Consume
Consume
Produce
Consume
Produce
Produce
Consume

Producers/Consumers Extended
Reason:

> spin -i prodcons2_flaw.pml
Select a statement

choice 3: proc 1 (producer) line
4) [((turn==P))]

choice 4: proc O (producer) line
4) [((turn==P))]
Select [1-4]: 3
Select a statement

choice 3: proc 1 (producer) line
2) [printf (’Produce\\n’)]

choice 4: proc O (producer) line
4) [((turn==P))]
Select [1-4]: 4

Producers/Consumers Extended
A correct declaration for the producer:

active [2] proctype producer()

{
do
:: request(turn, P, N) ->
printf ("PYd\n", _pid);
assert(who == _pid);
release(turn, C)
od
}

7 "prodcons2_flaw

7 "prodcons2_flaw

9 "prodcons2_flaw

7 "prodcons2_flaw

.pml"

.pml"

.pml"

.pml"

(state

(state

(state

(state



e assert aborts the program if the expression returns a zero result, other-
wise it is just passed.

Producers/Consumers Extended
Definition of request:

inline request(x, y, z) {
atomic { x ==y -> x = z; who = _pid }

}

e inline functions like C macros (their body is directly pasted into the body
of a proctype at each point of invocation)

e atomic: when it starts, the process will keep running until all steps will
complete.

e The executability of the atomic sequence is determined by the first state-
ment.
Producers/Consumers Extended

File prodcons2.pml:

mtype = { P, C, N };

mtype turn = P;
pid who;

inline request(x, y, z) {
atomic { x ==y -> x = z; who = _pid }

}

inline release(x, y) {
atomic { x = y; who = 0 }
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Producers/Consumers Extended
Simulation:

> spin prodcons2.pml | more

P1
C3
PO
C3
P1
C3
P1



c2
PO
C3
P1

Producers/Consumers Extended
Simulation can detect errors

> spin false.pml
spin: line 1 "false.pml", Error: assertion violated
spin: text of failed assertion: assert(0)
#processes: 1

1: proc O (:init:) line 1 "false.pml" (state 1)
1 process created

However, simulation cannot prove that error do not exist.

Producers/Consumers Extended
To prove that the assertions cannot be violated, we generate a verifier:

> spin -a prodcons2.pml
> cc -0 pan pan.c
> ./pan

Full statespace search for:
never claim

(none specified)

assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 28 byte, depth reached 7, errors: O

Producers/Consumers Extended
Back to the flawed Producers/Consumers



mtype = { P, C }; active [2] proctype consumer ()

- p. {
mtype turn = P; do
int msgs; +: (turn == €) ->
&8s printf ("Consume\n");
; msgs--;
active [2] proctype producer() turn = P
{
do od
. ¥

(turn == P) ->
printf ("Produce\n");
msgs++;
turn = C
od
}

active proctype monitor() {
assert(msgs >= 0 && msgs <= 1)

3

spin -a prodcons2_flaw.pml &% gcc -o pan pan.c && ./panspin -t -p prodcons2_flaw.pml

2.3 Mutual Exclusion

The Mutual Exclusion problem
General algorithm

active [2] proctype mutex()

{
again:
/* trying section */
cnt++;
assert(cnt == 1); /* critical section */
cnt-—;
/* exit section */
goto again
}

The Mutual Exclusion problem
First tentative

bit flag;
byte cnt;

active [2] proctype mutex() {
again:
flag !'= 1;



flag = 1;

cnt++;

assert(cnt == 1);
cnt-—;

flag = 0;

goto again

The Mutual Exclusion problem
Second tentative

it x, y;
byte cnt; active proctype BO) {
again:
active proctype AQ) { y = 1;
again: x == 0;
x =1; cnt++;
y == 0; /* critical section */
cnt++; assert(cnt == 1);
/* critical section */ cnt--;
assert(cnt == 1); y = 0;
cnt--; goto again
x = 0; X

goto again

Dekker/Dijkstra algorithm
Trying session:

flagli] = true;

do
1 flagljl —>
if
:: turn == j >
flagl[i] = false;
! (turn == j);
flagl[i] = true
:: else —-> skip
fi
:: else —>
break
od;

e flag indicates an intention to enter the critical section

e turn indicates who has priority between the two processes.
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Dekker /Dijkstra algorithm
Exit session:

turn = j;
flagl[i] = false;

Dekker/Dijkstra algorithm
Verification:

> spin -a dekker.pml
> cc -o pan pan.c
> ./pan

Full statespace search for:

never claim - (none specified)
assertion violations +

acceptance cycles - (not selected)
invalid end states +

State-vector 20 byte, depth reached 67, errors: O

Doran&Thomas change
Is the outer loop really necessary?

flagli] = true;

if
1t flagl[jl ->
if
i turn == j >
flag[i] = false;
!'(turn == j);
flagl[i] = true
: else -> skip
fi
:: else
fi;

Doran&Thomas change
Verification:

> spin -a doran.pml
> cc -o pan pan.c
> ./pan

pan: assertion violated (cnt==1) (at depth 117)
pan: wrote doran.pml.trail

11



doran.pml.trail contains a counterexample with length 117.

Doran&Thomas change
We can use a breadth-first search to find the shortest counterexample:

> cc -DBFS -0 pan pan.c
> ./pan

pan: assertion violated (cnt==1) (at depth 12)
pan: wrote doran.pml.trail

Doran&Thomas change
Now, we can perform a guided simulation:

> spin -p -t doran.pml

1: proc 1 (mutex) line 8 ... [i = _pid]

2: proc 1 (mutex) line 9 ... [j = (1-_pid)]
3: proc 1 (mutex) line 11 ... [flag[i] = 1]
4: proc 1 (mutex) line 21 ... [else]

5: proc 1 (mutex) line 24 ... [cnt = (cnt+1)]
6: proc O (mutex) line 8 ... [i = _pid]

7: proc O (mutex) line 9 ... [j = (1-_pid)]
8: proc O (mutex) line 11 ... [flag[i] = 1]
9: proc 0 (mutex) line 13 ... [(flag[jl)]

10: proc O (mutex) line 19 ... [else]

11: proc O (mutex) line 19 ... [(1)]

12: proc O (mutex) line 24 ... [cnt = (cnt+1)]

Peterson algorithm
A correct improvement: trying session

flagli] = true;
turn = i;
! (flag[j] && turn == i) ->

exit session
flag[i] = false;
Verification:

> spin -a peterson.pml
> cc -0 pan pan.c
> ./pan

State-vector 20 byte, depth reached 41, errors: 0O
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3 PROMELA overview

PROMELA
e PROMELA design is focused on process interaction at the system level
e Consequent features:

— non-deterministic control structures,
— primitives for process creation,

— primitives for interprocess communication.
e Consequent lacks:

— functions with return values,
— expressions with side-effects,
— data and functions pointers.
PROMELA is a language for building verification models (not a program-

ming language)!

Types of objects
Three basic types of objects:

® processes
e data objects

e message channels

3.1 Processes
Process Initialization

e By means of active (instantiate an initial set of processes):

active [2] proctype you_run()
{

printf("my pid is: %d\n", _pid)
}

e By means of run (creating new processes):

proctype you_run(byte x)

{
printf("x = %d, pid = %d\n", x, _pid)
}
init {
run you_run(0);
run you_run(1)
}

13



Notes
e We cannot pass parameter values to in4t or to active processes.
e A newly created process may not start right after its initialization.

To keep the system finite, only 256 processes can be alive in the same
moment.

e A process “terminates” when it reaches the end of its code.

e A process “dies” when it has terminated and all processes instantiated
later have died.

e A process may terminate without dying.

3.2 Data objects

Variable Scope
There are only two levels of scope:

e global: if it is declared outside all process declarations,

e process local: if it is declared within a process declaration.

init { /* x declared in outer block */

int x;

{ /* y declared in inner block */
int y;
printf("x = %d, y = %d\n", x, y);
X++;
yt++;

¥

/* y remains in scope */
printf("x = %d, y = %d\n", x, y);

Basic types

Type Typical Range
bit 0,1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short —215 2151
int —231 2311
unsigned 0. 2"—1
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Typical declarations

bit x, y; /* two single bits, initially O  */
bool turn = true; /* boolean value, initially true */
byte al12]; /* all elements initialized to 0 */
chan m; /* uninitialized message channel */
mtype n; /* uninitialized mtype variable  */
short b[4] = 89; /* all elements initialized to 89 */
int cnt = 67; /* integer scalar, initially 67  */

unsigned v : 5; /* unsigned stored in 5 bits */
unsigned w : 3 = 5; /* value range 0..7, initially 5 x*/

Data structures
typedef Field {
short f = 3;
byte g
};
typedef Record {
byte al3];
int f1di1;
Field f1d2;
chan p[3];
bit b
};
proctype me(Field z) { z.g = 12 }
init { Record goo; Field foo;
run me(foo)

}

Arrays and Data structures

e A structure can be passed as argument to a run statement, provided it
contains no arrays. (In the example, foo can be passed, goo cannot.)

e Multi-dimensional arrays are not supported, although there are indirect
ways:

typedef Array {
byte el[4]
s

Array al[4];

3.3 Message Channels

Message Channels
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e Channels are used to transfer messages between active processes.
e They store messages in first-in first-out order.
e Two types:

— buffered channels,

— rendezvous ports, also called synchronous channels.

Buffered Channels

e Declaration:
chan gname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields of the
types listed.

e A field can be a user-defined type, but not an array.

e Sending a message:
gname!exprl, expr2,expr3
The process blocks if the channel is full.
e Receiving a message:
gname?varl,var2,var3
The process blocks if the channel is empty.
Alternative
e The first message field is a message type indication:

gname ! exprl (expr2, expr3)
gname?varl (var2,var3)

e Some parameters can be given as constants:
gname?consl,var2,cons2

The process blocks if the channel is empty and if the sent values do not
match the constants.

e The built-in function len can be used to get the number of messages in a
given channel:

len(gname)
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Rendezvous Ports

e Declaration of a rendezvous port: it can pass single byte messages
chan port = [0] of { byte }

e The channel size is zero: the channel port can pass, but can not store
messages.

e Message interaction is synchronous: two processes execute a send and a
receive statement at the same time.

mtype = { msgtype };
chan name = [0] of { mtype, byte };
active proctype AQ
{ name !msgtype (124) ;
name !msgtype (121)

}

active proctype B(O)

{ byte state;
name?msgtype (state)

}

Channels of channels
e Message parameters are always passed by value.

e We can pass the value of a channel from a process to another.

mtype = { msgtype 1};
chan glob = [0] of { chan };
active proctype AQ)

{ chan loc = [0] of { mtype, byte };
glob!loc;
loc?msgtype (121)

}

active proctype B(O)

{ chan who;
glob?who;

who lmsgtype (121)

3.4 Executability

Statements

e Every statement is either executable or blocked.
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Three main types of statements:

— print statements
— assignments

— expression statements
e Print statements and assignments are always executable.
e Expression statements are executable iff they evaluate to true.

e Expressions must be side effect free.

Exception: the run statement can be considered as a blocking expression:

— it blocks when there are 256 processes alive;

— if it does not block, it creats a new process.

4 Asynchronous Network Problems

4.1 Reliable FIFO Communication
Reliable FIFO Communication Problem

e We want to implement a reliable FIFO communication using less reliable
channels.

e A user Sender sends messages to another user Receiver by means of two
channels Cy and Cy

e (1 and Cy are non-reliable channels.

e The non-reliable channels may lose or duplicate the messages.
. | \
Sender Receiver
V\QD
Alternating Bit Protocol

e Sender tags the messages with an alternating bit (e.g. it sends (0, msgl),
(1, msg2), (0, msg3), ... ).

e Sender repeatedly sends a message with its tag until it receives a bit
acknowledgment from Receiver.
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e Suppose Sender has sent (tag, msg) and receives b as acknowledgment.
If b is equal to tag, then it means that Receiver has received the right
message, so it obtains a new message and tags it with a different value;
otherwise it sends (tag, msg) again.

o Similarly, suppose Receiver receives (tag, msg). If tag is different from
the last received bit, then it means that it is a new message; otherwise,
the message is old. In both cases, Receiver sends tag back to Sender to
communicate the correct receipt of the message.

Alternating Bit Protocol
mtype = { msg, ack };

chan to_sndr = [2] of { mtype, bit };
chan to_rcvr [2] of { mtype, bit};

active proctype Sender ()

{
¥

active proctype Receiver()

{
3

Alternating Bit Protocol

active proctype Sender ()
{

bit seq_out, seq_in;

/* obtain first message */

do
11 to_rcvr!msg(seq_out) ->
to_sndr?ack(seq_in);
if
:: seq_in == seq_out ->
/* obtain new message */
seq_out = 1 - seq_out;
11 else
fi
od
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Alternating Bit Protocol

active proctype Receiver()

{
bit seq_in;
do
1t to_rcvr?msg(seq_in)
:: to_sndr!ack(seq_in)
od
}

Example of simulation
e Receiver sends 2 ack (then it is blocked)
e Sender sends one message
e two possibilities:

— Receiver receives the message

— Sender receives one ack

Exercise
e Try with:

active proctype Receiver()
{ bit seq_in, last_seq_in;
int received;
do
11 to_rcvr?msg(seq_in, received) ->
if
(seq_in != last_seq_in) ->
printf ("Received: J%d\n", received);
last_seq_in = seq_in
:: else
fi;
to_sndr!ack(seq_in)
od

4.2 Leader Election
Leader Election Problem

e N processes are the nodes of a unidirectional ring network: each process
can send messages to its clockwise neighbor and receive messages from its
counterclockwise neighbor.
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e The requirement is that, eventually, only one process will output that it
is the leader.

e We assume that every process has a unique identifier.

e The leader must have the highest identifier

Le Lann, Chang, Roberts (LCR) solution

e Initially, every process passes its identifier to its successor.
e When a process receives an identifier from its predecessor, then:

— if it is greater than its own, it keeps passing the identifier;
— if it is smaller, it discards the identifier.
— if it is equal to its own identifier, it declares itself leader.

* The leader informs the others that it is the leader.

x After a process receives the message with the id of the leader, it
exits.

Hint:

mtype = { candidate, leader };
chan c[N] = [BUFSIZE] of { mtype, byte };

proctype node(chan prev, next; byte mynumber) { ... }
init {
do
:: proc <= N -> run node(...);

Exercises

e Implement the Le LCR algorithm.

e Verify there can be at most one leader (using Xspin, next lecture).
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