
nuXmv: Exercises - Part B∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/~trentin

Formal Methods Lab Class, May 20, 2016

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/15

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 1 / 9

http://disi.unitn.it/~trentin


Contents

1 Exercises
Odd/Even Counter
Overflow Counter

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 2 / 9



Exercise: Odd/Even Counter [1/2]

Implement a 5-bit counter that alternates counting all odd numbers from
31 to 1 (e.g. 31, 29, 27, ..., 3, 1) and counting all even numbers from 30
to 0 (e.g. 30, 28, 26, 2, 0). Use a variable “out” to represent the output
of the counter. Use five Boolean variables “b0”, “b1”, “b2”, “b3”, “b4”
to represent the bits of the counter, from the least-significative to the
most-significative ones. Initially, all bits are set to TRUE. The transition
relation is described as follows:

“b0” changes value only when all other bits are FALSE

“b1” changes value at each transition

“b2” changes value only when “b1” is FALSE

“b3” changes value only when both “b1” and “b2” are FALSE

“b4” changes value only when “b1”, “b2” and “b3” are all FALSE

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 3 / 9



Exercise: Odd/Even Counter [2/2]

Model the 5-bit counter, express the following properties, and check with
nuXmv that all properties are verified.

it is necessarily always the case that, if out is 1, then at the next step
the value of the counter is 30

it is necessarily always the case that if out = 31 then in 5 iterations
out will evaluate to 21

it is always the case that b1 changes value at each iteration

it is always the case that, if b1, b2 and b3 are all FALSE, then the
next value of b4 is !b4

infinitely often out is 0

if out=30 then eventually in the future out=20

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 4 / 9



Contents

1 Exercises
Odd/Even Counter
Overflow Counter

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 5 / 9



Exercise: Overflow Counter [1/3]

Implement a 3-bit counter which counts the number of times an input
boolean variable “bin” changes value from FALSE to TRUE. Use three
boolean variables “b0”, “b1”, “b2” to represent the bits of the counter,
from the least-significant to the most-significant one. Use an output
variable “out” to represent the value of the counter. Use a variable
“overflow”, with values in the set {NO, YES}, to keep track of a counter
overflow event. Use a variable “obin” to keep track of the previous value
of the input variable “bin”, and an output variable “rise” to express the
fact that “bin” changed value from FALSE to TRUE in the current step.
Use an input boolean variable “reset” to reset the value of “b0”, “b1”,
“b2” and “obin” to their initial value. Initially, “b0”, “b1”, “b2”, “bin”
and “obin” should be set to FALSE, while “overflow” should evaluate ’NO’.

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 6 / 9



Exercise: Overflow Counter [2/3]

Implement, using the assign-syntax, the following transitions:

“obin” is set to FALSE if “reset” is TRUE, and to “bin” otherwise

“b0” is set to FALSE if “reset” is TRUE, it is set to “!b0” if “rise”
is TRUE, and keeps its value otherwise

“b1” is set to FALSE if “reset” is TRUE, it is set to “!b1” if “rise &
b0” is TRUE, and keeps its value otherwise

“b2” is set to FALSE if “reset” is TRUE, it is set to “!b2” if “rise &
b0 & b1” is TRUE, and keeps its value otherwise

“overflow” is set to ’NO’ if “reset” is TRUE, it is set to ’YES’ if
“rise & b0 & b1 & b2” is TRUE, and keeps its value otherwise

Manually verify that the simulation works as intended.

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 7 / 9



Exercise: Overflow Counter [3/3]

Express the following properties, and have nuXmv verify that all
properties are FALSE.

CTL: it is necessarily always the case that infinitely often the counter
is 0

CTL: it is necessarily always the case that eventually the counter is
always different than 0

CTL: it is necessarily always the case that , if “overflow” is ’YES’ in a
given state then it also holds that “overflow” is ’YES’ until “reset”

CTL: it is necessarily always the case that when “b0”, “b1” and “b2”
are TRUE then from the next state eventually the value of counter
will go back to 0

LTL: if “rise” is TRUE infinitely often, then “overflow” is ’YES’
infinitely often as well

Bonus Point: explain why the latter formula is verified if CTL is used
instead of LTL.
Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 8 / 9



Exercises Solutions

will be uploaded on course website within a couple of days

send me an email if you need help or you just want to propose your
own solution for a review

learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) nuXmv: Exercises - Part B May 20, 2016 9 / 9


	Exercises
	Odd/Even Counter
	Overflow Counter


