Spin: Exercises - Part B*

Patrick Trentin patrick.trentin@unitn.it http://disi.unitn.it/~trentin

Formal Methods Lab Class, April 08, 2016

Università degli Studi di
Trento
*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi, Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/15

Exercise 1: oscillator

Exercise: Write a Promela model that initializes a global integer variable sum to be 0 . Model a process \mathbf{P}, stuck in an infinite loop, which:

- draws a random value included in $\{1,3\}$ and assigns it to \mathbf{v}
- updates the value of sum as follows:
- if sum is positive valued, it subtracts \mathbf{v} to its value
- otherwise, it adds v to its value

Verify the following ItI properties:

- the value of sum is equal to 0 infinitely often
- the value of sum is never larger than 3 or smaller than -3
- it always the case that if sum is greater than 0 then it will eventually be smaller than 0 , and if sum is smaller than 0 then it will eventually be larger than 0

Q: why is the third property not verified? can you fix it?

Exercise 2: railway station

Exercise: In a railway station trains are countinuously arriving and leaving. Goods are contained in some cargos and, depending on the weight, they are moved from/to either trucks or vans.
Write a Promela program that models this scenario considering each cargo as a message that should be sent/received through the right channel. Each channel (train, truck and van) can contain 16 cargos as a maximum. The maximum weight of each cargo in a van is $\mathbf{1 2 8}$.
You will need two processes:

- ''split'), that splits goods from the train channel, dividing them over the other two channels, truck and van, depending on the weight values attached
- ' 'merge'', that merges the two streams back into one, most likely in a different order, and writes it back into the train channel.

Here are the initial cargo weights on the train: $345,12,6777,32,0$;

Example 3: word counter

Exercise: In each sentence (string hereafter) the number of the characters composing the string is greater or equal than the number of the words contained in the sentence. A word is characterized by delimiters:

- space ' '
- tabulation ' $\backslash \mathrm{t}$ '
- endline ' $\backslash n$ '

Write a spin function count() that perfoms property-based slicing of a string channel, counts the number of characters nc and the number of words nw and checks if the property $n c>=n w$ is always true.

Use the init function to pass to count() a string (remember that you can model a string as a channel of integers corresponding to ASCII characters).

Exercises Solutions

- will be uploaded on course website within a couple of days
- send me an email if you need help or you just want to propose your own solution for a review
- learning programming languages requires practice: try to come up with your own solutions first!

