
Spin: Introduction∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/~trentin

Formal Methods Lab Class, Feb 26, 2016

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/15

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 1 / 7

http://disi.unitn.it/~trentin


Course Overview

Course: covers two tools for model checking and formal verification

Part I: Spin

Part II: nuXmv

Slides + Solutions: http://disi.unitn.it/~trentin

=⇒ the slides’ content will be updated wrt. last year

Exam:

examples + solutions will be provided

short manuals of both tools available during exam
=⇒ thus: code that does not even compile is significantly penalized

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 1 / 7

http://disi.unitn.it/~trentin


Contents

1 Course Overview

2 Introduction to Spin

3 Promela examples
Hello world!
Producers/Consumers
Mutual Exclusion

4 Spin’s Output

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 2 / 7



The Spin (= Simple Promela Interpreter) model checker

Tool for formal verification of distributed and concurrent systems
(e.g. operating systems, data communications protocols).

Developed at Bell Labs.
In 2002, recognized by the ACM with Software System Award
(like Unix, TeX, Smalltalk, Postscript, TCP/IP, Tcl/Tk).
Automated tools convert programs written in Java or in C into Spin
models.

The modelling language is called Promela.

Spin has a graphical user interface, ispin.

Materials:

Homepage: http://spinroot.com/spin/whatispin.html

Manual: http://spinroot.com/spin/Man/index.html

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 3 / 7



Promela (= Protocol/Process Meta Language)

Promela is suitable to describe concurrent systems:

dynamic creation of concurrent processes.
(synchronous/asynchronous) communication via message channels.

Possible executions of a program

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 4 / 7



Simulation

can be random, interactive or guided.

useful for inspection of the Promela model

not useful for finding bugs!

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 4 / 7



Verification

check every execution looking for a counterexample for a given
property

can be exhaustive or approximate

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 4 / 7



Verification: counterexample

witnesses a violation of a given property

stored in the current directory with “.trail” extension

can be replayed with -t option

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 4 / 7



Basic commands

To simulate a program:

spin system.pml

Interactively:

spin -i system.pml

To generate a verifier (pan.c):

spin -a system.pml

To run a guided simulation:

spin -t model.pml

To run ispin:

ispin model.pml

Useful commands:

To see available options: spin --

To display processes moves at each simulation step: spin -p system.pml

To display values of global variables: spin -g system.pml

To display values of local variables: spin -I -p system.pml

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 4 / 7



Contents

1 Course Overview

2 Introduction to Spin

3 Promela examples
Hello world!
Producers/Consumers
Mutual Exclusion

4 Spin’s Output

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 5 / 7



Hello world!

active proctype main()

{

printf("hello world\n")

}

active instantiates one process of the type that follows.

proctype denotes that main is a process type.

main identifies the process type, it’s not a keyword.

Note that ’;’ is missing after printf:
’;’ is a statement separator, not a statement terminator.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 5 / 7



Hello world! Alternative

init {

printf("hello world\n")

}

init is a process that initializes the system.

Initially just the initial process is executed.

Simulation:

> spin hello.pml

hello world

1 process created

One process was created to simulate the execution of the model.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 5 / 7



Hello world! Alternative

init {

printf("hello world\n")

}

init is a process that initializes the system.

Initially just the initial process is executed.

Simulation:

> spin hello.pml

hello world

1 process created

One process was created to simulate the execution of the model.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 5 / 7



Producers/Consumers

mtype = { P, C };

mtype turn = P;

active proctype producer(){

do

:: (turn == P) ->

printf("Produce\n");

turn = C

od

}

active proctype consumer(){

do

:: (turn == C) ->

printf("Consume\n");

turn = P

od

}

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 5 / 7



Producers/Consumers (Language Details)

mtype defines symbolic values
(similar to an enum declaration in a C program).

turn is a global variable.

do ... od (do-statement) defines a loop.

Every option of the loop must start with ’::’.

(turn == P) is the guard of the option.

A break/goto statement can break the loop.

-> and ; are equivalent
(-> indicates a causal relation between successive statements).

If all guards are false, then the process blocks
(no statement can be executed).

If multiple guards are true, we get non-determinism.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers

Simulation:

> spin prodcons.pml | more

Produce

Consume

Produce

Consume

Produce

Consume

Produce

Consume

Produce

Consume

...

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

There can be multiple running instances of the same proctype:

active [2] proctype producer {...}

...

active [2] proctype consumer {...}

Simulation:

> spin prodcons2_flaw.pml | more

Produce

Consume

Consume

Produce

Produce

Consume

...

Concurrent execution: after each (atomic) statement, a new process can
be (randomly) scheduled for execution.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

There can be multiple running instances of the same proctype:

active [2] proctype producer {...}

...

active [2] proctype consumer {...}

Simulation:

> spin prodcons2_flaw.pml | more

Produce

Consume

Consume

Produce

Produce

Consume

...

Concurrent execution: after each (atomic) statement, a new process can
be (randomly) scheduled for execution.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

> spin -i prodcons2_flaw.pml

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

choice 4: proc 0 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

Select [1-4]: 3

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:9 (state 2) [printf(’Produce\\n’)]

choice 4: proc 0 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

Select [1-4]: 3

Produce

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:10 (state 3) [turn = C]

choice 4: proc 0 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

Select [1-4]: 4

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:10 (state 3) [turn = C]

choice 4: proc 0 (producer) prodcons2_flaw.pml:9 (state 2) [printf(’Produce\\n’)]

Select [1-4]:

Problem: Both processes can pass the guard (turn == P) and execute

printf("Produce") before turn is set to C.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

A correct declaration for the producer:

active [2] proctype producer()

{

do

:: request(turn, P, N) -> // if turn==P then turn=N

printf("P%d\n", _pid);

assert(who == _pid); // "who" is producing

release(turn, C) // turn=C

od

}

assert: if expression is false (i.e. zero) then abort the program, else
ignored.

pid is a predefined, local, read-only variable of type pid that stores
the unique ID of the process.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

Definition of request:

inline request(x, y, z) {

atomic { x == y -> x = z; who = _pid }

}

inline functions like C macros.

the body is directly pasted into the body of a proctype at each point of
invocation.

atomic: prevents the scheduler from changing the running process
until all the statements are executed.

no interleaving with statements of other processes!

The executability of the atomic sequence is determined by the first
statement.

i.e. if x==y is true then the atomic block is executed.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

File prodcons2.pml:

mtype = { P, C, N };

mtype turn = P;

pid who;

... // request

inline release(x, y) { atomic { x = y; who = 0 } }

... // proctype producer

active [2] proctype consumer()

{

do

:: request(turn, C, N) ->

printf("Consume %d\n", _pid);

assert(who == _pid);

release(turn, P)

od

}

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

Simulation:

> spin prodcons2.pml | more

P1

C3

P0

C3

P1

C3

P1

C2

P0

C3

P1

...

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

Simulation can detect errors:

init { assert(false) }

> spin false.pml

spin: line 1 "false.pml", Error: assertion violated

spin: text of failed assertion: assert(0)

#processes: 1

1: proc 0 (:init:) line 1 "false.pml" (state 1)

1 process created

However, simulation can not prove that the code is bug-free!

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

A verifier checks that an assertion is never violated.

We use Spin to generate the verifier of prodcons.pml :

> spin -a prodcons2.pml

> gcc -o pan pan.c

> ./pan

...

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

State-vector 28 byte, depth reached 7, errors: 0

...

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended

Back to the flawed Producers/Consumers

mtype = { P, C };

mtype turn = P;

int msgs;

active [2] proctype producer()

{

do

:: (turn == P) ->

printf("Produce\n");

msgs++;

turn = C

od

}

active [2] proctype consumer()

{

do

:: (turn == C) ->

printf("Consume\n");

msgs--;

turn = P

od

}

active proctype monitor() {

assert(msgs >= 0 && msgs <= 1)

}

> spin -a prodcons2_flaw_msg.pml && gcc -o pan pan.c && ./pan
Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Producers/Consumers Extended (Trail File)

Trail File

prodcons2 flaw.pml.trail contains Spin’s
transition markers corresponding to the contents
of the stack of transitions leading to error states

Meaning:

Step number in execution trace

Id of the process moved in the current step

Id of the transition taken in the current step

-4:-4:-4

1:1:0

2:1:1

3:1:2

4:1:3

5:3:8

6:3:9

7:3:10

8:2:8

9:2:9

10:3:11

11:2:10

12:4:16

> spin -t -p prodcons2_flaw_msg.pml

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



The Mutual Exclusion problem

General algorithm

active [2] proctype mutex()

{

again:

/* trying section */

cnt++;

assert(cnt == 1); /* critical section */

cnt--;

/* exit section */

goto again

}

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



The Mutual Exclusion problem (First tentative)

bit flag; /* signal entering/leaving the section */

byte cnt; /* # procs in the critical section */

active [2] proctype mutex() {

again:

flag != 1; /* It models "while (flag == 1) wait!" */

flag = 1;

cnt++;

assert(cnt == 1);

cnt--;

flag = 0;

goto again

}

Assertion violation: Both processes can pass the flag != 1 before flag is
set to 1.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



The Mutual Exclusion problem (First tentative)

bit flag; /* signal entering/leaving the section */

byte cnt; /* # procs in the critical section */

active [2] proctype mutex() {

again:

flag != 1; /* It models "while (flag == 1) wait!" */

flag = 1;

cnt++;

assert(cnt == 1);

cnt--;

flag = 0;

goto again

}

Assertion violation: Both processes can pass the flag != 1 before flag is
set to 1.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



The Mutual Exclusion problem (Second tentative)

bit x, y; /* signal entering/leaving the section */

byte cnt;

active proctype A() {

again:

/* A waits for B to end */

x = 1;

y == 0;

cnt++;

/* critical section */

assert(cnt == 1);

cnt--;

x = 0;

goto again

}

active proctype B() {

again:

y = 1;

x == 0;

cnt++;

/* critical section */

assert(cnt == 1);

cnt--;

y = 0;

goto again

}

Invalid-end-state: Both processes can execute x = 1 and y = 1 at the
same time and will then be waiting for each other.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



The Mutual Exclusion problem (Second tentative)

bit x, y; /* signal entering/leaving the section */

byte cnt;

active proctype A() {

again:

/* A waits for B to end */

x = 1;

y == 0;

cnt++;

/* critical section */

assert(cnt == 1);

cnt--;

x = 0;

goto again

}

active proctype B() {

again:

y = 1;

x == 0;

cnt++;

/* critical section */

assert(cnt == 1);

cnt--;

y = 0;

goto again

}

Invalid-end-state: Both processes can execute x = 1 and y = 1 at the
same time and will then be waiting for each other.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Dekker/Dijkstra algorithm

/* trying section */

flag[i] = true;

do

:: flag[j] ->

if

:: turn == j ->

flag[i] = false;

!(turn == j);

flag[i] = true

:: else -> skip

fi

:: else ->

break

od;

/* initialization */

pid i = _pid;

pid j = 1 - _pid;

/* exit session */

turn = j;

flag[i] = false;

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Dekker/Dijkstra algorithm

/* trying section */

flag[i] = true;

do

:: flag[j] ->

if

:: turn == j ->

flag[i] = false;

!(turn == j);

flag[i] = true

:: else -> skip

fi

:: else ->

break

od;

/* initialization */

pid i = _pid;

pid j = 1 - _pid;

/* exit session */

turn = j;

flag[i] = false;

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Dekker/Dijkstra algorithm

Verification:

> spin -a dekker.pml

> cc -o pan pan.c

> ./pan

...

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

State-vector 20 byte, depth reached 67, errors: 0

...

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Peterson algorithm

Peterson Implementation:

/* trying session */

flag[i] = true;

turn = i;

!(flag[j] && turn == i) ->

/* exit session */

flag[i] = false;

Verification:

> spin -a peterson.pml

> cc -o pan pan.c

> ./pan

...

State-vector 20 byte, depth reached 41, errors: 0

...

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 6 / 7



Exercises

Simulate you run2.pml and you run3.pml.

Verify prodcons3.pml.

Verify mutex flaw.pml.

Delete “turn==i” in Peterson and verify the correctness.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

> ./pan

pan: assertion violated ((x!=0)) (at depth 11)

pan: wrote model.pml.trail

Assertion Violation

Spin has found a execution trace that violates the assertion

the generated trace is 11 steps long and it is contained in
model.pml.trail

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

(Spin Version 6.0.1 -- 16 December 2010)

+ Partial Order Reduction

Meaning

1 Version of Spin that generated the verifier

2 Optimized search technique

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

Full statespace search for:

never-claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

Meaning

1 Type of search: exhaustive search (Bitstate search for approx.)

2 No never claim was used for this run

3 The search checked for violations of user specified assertions

4 The search did not check for the presence of acceptance or
non-progress cycles

5 The search checked for invalid endstates (i.e., for absence of
deadlocks)

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

State-vector 32 byte, depth reached 13, errors: 0

Meaning

1 The complete description of a global system state required 32 bytes
of memory (per state).

2 The longest depth-first search path contained 13 transitions from the
initial system state.

./pan -mN set max search depth to N steps

3 No errors were found in this search.

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

74 states, stored

30 states, matched

104 transitions (= stored+matched)

1 atomic steps

1.533 memory usage (Mbyte)

Meaning

1 A total of 74 unique global system states were stored in the
statespace.

2 In 30 cases the search returned to a previously visited state in the
search tree.

3 A total of 104 transitions were explored in the search.

4 One of the transitions was part of an atomic sequence.

5 Total memory usage was 1.533 Megabytes,

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

unreached in proctype ProcA

line 7, state 8, "Gaap = 4"

(1 of 13 states)

unreached in proctype :init:

line 21, state 14, "Gaap = 3"

(1 of 19 states)

Meaning

A listing of the state numbers and approximate line numbers for the basic
statements in the specification that were not reached ⇒ since this is a full
statespace search, these transitions are effectively unreachable (dead code).

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7



C Pan’s Output Format

error: max search depth too small

Meaning

It indicates that search was truncated by depth-bound (i.e. the depth
bound prevented it from searching the complete statespace).

./pan -m50

sets a bound on the depth of the search

Nota Bene

When the search is bounded, Spin will not be exploring part of the system
statespace, and the omitted part may contain property violations that you
want to detect ⇒ you cannot assume that the system has no violations!

Patrick Trentin (DISI) Spin: Introduction Feb 26, 2016 7 / 7


	Course Overview
	Introduction to Spin
	Promela examples
	Hello world!
	Producers/Consumers
	Mutual Exclusion

	Spin's Output

