nuXMV: Planning as Model Checking

Patrick Trentin patrick.trentin@unitn.it http://disi.unitn.it/~trentin

Formal Methods Lab Class, Apr 21, 2015

Università degli Studi di
Trento
*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi, Thi Thieu Hoa Le, Alessandra Giordani for FM lab 2005/14

Contents

(1) Planning problem
(2) Examples

- The Tower of Hanoi
- Ferryman
- Tic-Tac-Toe

Contents

(1) Planning problem
(2) Examples

- The Tower of Hanoi
- Ferryman
- Tic-Tac-Toe

Planning Problem

- Planning Problem: given $\langle I, G, T\rangle$, where
- I: (representation of) initial state
- G: (representation of) goal state
- T: transition relation
find a sequence of transitions t_{1}, \ldots, t_{n} leading from the initial state to the goal state.
- Idea: encode planning problem as model checking problem

Example: blocks [1/8]

Init : $\quad \operatorname{On}(A, B), \operatorname{On}(B, C), \operatorname{On}(C, T), \operatorname{Clear}(A)$
Goal : $\operatorname{On}(C, B), \operatorname{On}(B, A), O n(A, T)$
Move (a, b, c)
Precond: $\operatorname{Block}(a) \wedge \operatorname{Clear}(a) \wedge O n(a, b) \wedge$
$($ Clear $(c) \vee$ Table $(c)) \wedge$
$a \neq b \wedge a \neq c \wedge b \neq c$
Effect: $\quad \operatorname{Clear}(b) \wedge \neg \operatorname{On}(a, b) \wedge$
$\operatorname{On}(a, c) \wedge \neg \operatorname{Clear}(c)$

Example: blocks [2/8]

MODULE block(id, ab, bl)
VAR
above : \{none, $a, b, c\} ;--$ the block above this one below : \{none, a, b, c\}; -- the block below this one DEFINE

```
    clear := (above = none);
```

INIT
above $=\mathrm{ab}$ \&
below = bl
INVAR
below != id \& above != id -- a block can't be above or below itself

MODULE main

VAR
move : \{move_a, move_b, move_c\}; -- at each step only one block moves
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

Example: blocks [3/8]

- a block can not move only if it has some block above itself

TRANS
(!block_a.clear -> move != move_a) \&
(!block_b.clear \rightarrow move != move_b) \&
(!block_c.clear \rightarrow move != move_c)

Example: blocks [3/8]

- a block can not move only if it has some block above itself

TRANS
(!block_a.clear -> move != move_a) \&
(!block_b.clear \rightarrow move != move_b) \&
(!block_c.clear -> move != move_c)

- Q: what's wrong with following formulation?

TRANS
(block_a.clear -> move = move_a) \&
(block_b.clear -> move = move_b) \&
(block_c.clear -> move = move_c)

Example: blocks [3/8]

- a block can not move only if it has some block above itself

TRANS
(!block_a.clear -> move != move_a) \&
(!block_b.clear $->$ move != move_b) \&
(!block_c.clear -> move != move_c)

- Q: what's wrong with following formulation?

TRANS
(block_a.clear $->$ move $=$ move_a) \&
(block_b.clear -> move = move_b) \&
(block_c.clear -> move = move_c)
A:

- any non-clear block would still be able to move
- move can only have one valid value \Longrightarrow inconsistency whenever there are two clear blocks at the same time

Example: blocks [4/8]

- a moving block changes location and remains clear TRANS

```
(move = move_a -> next(block_a.clear) &
    next(block_a.below) != block_a.below) &
(move = move_b -> next(block_b.clear) &
    next(block_b.below) != block_b.below) &
(move = move_c -> next(block_c.clear) &
    next(block_c.below) != block_c.below)
```

- a non-moving block does not change its location TRANS
(move != move_a \rightarrow next (block_a.below) = block_a.below) \&
(move != move_b \rightarrow next (block_b.below) = block_b.below) \&
(move != move_c -> next(block_c.below) = block_c.below)

Example: blocks [5/8]

- a block remains connected to any non-moving block

```
TRANS
(move != move_a & block_b.above = a
    -> next(block_b.above) = a) &
(move != move_a & block_c.above = a
    -> next(block_c.above) = a) &
(move != move_b & block_a.above = b
    -> next(block_a.above) = b) &
(move != move_b & block_c.above = b
    -> next(block_c.above) = b) &
(move != move_c & block_a.above = c
    -> next(block_a.above) = c) &
(move != move_c & block_b.above = c
    -> next(block_b.above) = c)
```


Example: blocks [5/8]

- a block remains connected to any non-moving block

```
TRANS
    (move != move_a & block_b.above = a
        -> next(block_b.above) = a) &
(move != move_a & block_c.above = a
    -> next(block_c.above) = a) &
(move != move_b & block_a.above = b
    -> next(block_a.above) = b) &
(move != move_b & block_c.above = b
    -> next(block_c.above) = b) &
(move != move_c & block_a.above = c
    -> next(block_a.above) = c) &
    (move != move_c & block_b.above = c
    -> next(block_b.above) = c)
```

- Q: what about "below block"?

Example: blocks [5/8]

- a block remains connected to any non-moving block

```
TRANS
(move != move_a & block_b.above = a
    -> next(block_b.above) = a) &
(move != move_a & block_c.above = a
    -> next(block_c.above) = a) &
(move != move_b & block_a.above = b
    -> next(block_a.above) = b) &
(move != move_b & block_c.above = b
    -> next(block_c.above) = b) &
(move != move_c & block_a.above = c
    -> next(block_a.above) = c) &
(move != move_c & block_b.above = c
    -> next(block_b.above) = c)
```

- Q: what about "below block"?

A: covered in previous slide!

Example: blocks [6/8]

- positioning of blocks is simmetric

```
INVAR
    (block_a.above = b <-> block_b.below = a)
& (block_a.above = c <-> block_c.below = a)
& (block_b.above = a <-> block_a.below = b)
& (block_b.above = c <-> block_c.below = b)
& (block_c.above = a <-> block_a.below = c)
& (block_c.above = b <-> block_b.below = c)
& (block_a.above = none -> (block_b.below != a & block_c.below != a))
& (block_b.above = none -> (block_a.below != b & block_c.below != b))
& (block_c.above = none -> (block_a.below != c & block_b.below != c))
& (block_a.below = none -> (block_b.above != a & block_c.above != a))
& (block_b.below = none -> (block_a.above != b & block_c.above != b))
& (block_c.below = none -> (block_a.above != c & block_b.above != c))
```


Example: blocks [7/8]

Remark: a plan is a sequence of transition leading the initial state to an accepting state

Idea:

- assert property p : "goal state is not reachable"
- if a plan exists, NUXMV produces a counterexample for p
- the counterexample for p is a plan to reach the goal

Example: blocks [7/8]

Remark: a plan is a sequence of transition leading the initial state to an accepting state

Idea:

- assert property p : "goal state is not reachable"
- if a plan exists, NUXMV produces a counterexample for p
- the counterexample for p is a plan to reach the goal

Examples:

- get a plan for reaching "goal state" SPEC

```
!EF(block_a.below = none & block_a.above = b & block_b.below = a &
    block_b.above = c & block_c.below = b & block_c.above = none)
```


Example: blocks [7/8]

Remark: a plan is a sequence of transition leading the initial state to an accepting state

Idea:

- assert property p : "goal state is not reachable"
- if a plan exists, NUXMV produces a counterexample for p
- the counterexample for p is a plan to reach the goal

Examples:

- get a plan for reaching "goal state" SPEC

```
!EF(block_a.below = none & block_a.above = b & block_b.below = a &
block_b.above = c & block_c.below = b & block_c.above = none)
```

- get a plan for reaching a configuration in which all blocks are placed on the table SPEC

```
!EF(block_a.below = none & block_b.below = none &
block_c.below = none)
```


Example: blocks [8/8]

- at any given time, at least one block is placed on the table INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none

Example: blocks [8/8]

- at any given time, at least one block is placed on the table INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none
- at any given time, at least one block has nothing above INVARSPEC
block_a.above = none | block_b.above = none | block_c.above = none

Example: blocks [8/8]

- at any given time, at least one block is placed on the table INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none
- at any given time, at least one block has nothing above INVARSPEC
block_a.above = none | block_b.above = none | block_c.above = none
- we can always reach a configuration in which all nodes are placed on the table
SPEC
AG EF (block_a.below = none \& block_b.below = none \& block_c.below = none)

Example: blocks [8/8]

- at any given time, at least one block is placed on the table INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none
- at any given time, at least one block has nothing above INVARSPEC
block_a.above = none | block_b.above = none | block_c.above = none
- we can always reach a configuration in which all nodes are placed on the table

SPEC

$$
\begin{aligned}
\text { AG EF (block_a.below } & =\text { none \& block_b.below }=\text { none \& } \\
\text { block_c.below } & =\text { none) }
\end{aligned}
$$

- we can always reach the goal state SPEC

AG EF(block_a.below = none \& block_a.above = b \&
block_b.below = a \& block_b.above = c \& block_c.below = b \& block_c.above = none)

Contents

(1) Planning problem

(2) Examples

- The Tower of Hanoi
- Ferryman
- Tic-Tac-Toe

Example: tower of hanoi [1/4]

Game with 3 poles and N disks of different sizes:

- initial state: stack of disks with decreasing size on pole A
- goal state: move stack on pole C

- rules:
- only one disk may be moved at each transition
- only the upper disk can be moved
- a disk can not be placed on top of a smaller disk

Example: tower of hanoi [2/4]

- base system model

MODULE main

VAR
d1 : \{left,middle, right\}; -- largest
d2 : \{left,middle, right\};
d3 : \{left,middle,right\};
d4 : \{left, middle, right\}; -- smallest
move : 1..4; -- possible moves

Example: tower of hanoi [2/4]

- base system model

MODULE main
VAR

```
d1 : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves
```

- disk i is moving DEFINE

```
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);
```


Example: tower of hanoi [2/4]

- base system model

MODULE main
VAR

```
d1 : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves
```

- disk i is moving

DEFINE

```
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);
```

- disk d_{i} can move iff $\forall j>i . d_{i} \neq d_{j}$

```
    clear_d1 := (d1!=d2 & d1!=d3 & d1!=d4);
    clear_d2 := (d2!=d3 & d2!=d4);
    clear_d3 := (d3!=d4);
    clear_d4 := TRUE;
```


Example: tower of hanoi $[3 / 4]$

- initial state

$$
\begin{aligned}
& \text { INIT } \\
& \mathrm{d} 1=\text { left } \& \\
& \mathrm{~d} 2=\text { left } \& \\
& \mathrm{~d} 3=\text { left } \& \\
& \mathrm{~d} 4=\text { left }
\end{aligned}
$$

Example: tower of hanoi $[3 / 4]$

- initial state

$$
\begin{aligned}
& \text { INIT } \\
& \mathrm{d} 1=\text { left } \& \\
& \mathrm{~d} 2=\text { left } \& \\
& \mathrm{~d} 3=\text { left } \& \\
& \mathrm{~d} 4=\text { left }
\end{aligned}
$$

- move description for disk 1

TRANS

```
move_d1 ->
-- disks location changes
next(d1) != d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) = d4 &
-- d1 can move only if it is clear
clear_d1 &
-- d1 can not move on top of smaller disks
next(d1) != d2 &
next(d1) != d3 &
next(d1) != d4
```


Example: tower of hanoi [4/4]

- get a plan for reaching "goal state" SPEC
! EF (d1=right \& d2=right \& d3=right \& d4=right)

Example: tower of hanoi [4/4]

- get a plan for reaching "goal state"

SPEC
! EF (d1=right \& d2=right \& d3=right \& d4=right)

- nuXmV execution:

```
nuXmv > read_model -i hanoi.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(EF (((d1 = right & d2 = right) & d3 = right)
    & d4 = right)) is false
```

-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
-> State: 2.1 <-
d1 = left
$\mathrm{d} 2=$ left
d3 = left
$\mathrm{d} 4=\operatorname{left}$

Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely across a river.

- initial state: all animals are on the right side
- goal state: all animals are on the left side
- rules:
- the ferryman can cross the river with at most one passenger on his boat
- the cabbage and the sheep can not be left unattended on the same side of the river
- the sheep and the wolf can not be left unattended on the same side of the river

Q: can the ferryman transport all the goods to the other side safely?

Example: ferryman [2/4]

- base system model MODULE main
VAR
cabbage : \{right,left\};
sheep : \{right,left\};
wolf : \{right,left\};
man : \{right,left\};
move : \{c, s, w, e\}; -- possible moves

DEFINE

carry_cabbage	$:=($ move $=\mathrm{c}) ;$
carry_sheep	$:=($ move $=\mathrm{s}) ;$
carry_wolf	$:=($ move $=\mathrm{w}) ;$
no_carry	$:=($ move $=\mathrm{e}) ;$

Example: ferryman [2/4]

- base system model MODULE main
VAR

```
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves
```

DEFINE

```
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);
```

- initial state

ASSIGN

```
init(cabbage) := right;
init(sheep) := right;
init(wolf) := right;
init(man) := right;
```


Example: ferryman [3/4]

- ferryman carries cabbage

TRANS

```
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf
```


Example: ferryman [3/4]

- ferryman carries cabbage

TRANS

```
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf
```

- ferryman carries sheep

TRANS
carry_sheep ->
sheep $=\operatorname{man} \&$
next (sheep) ! = sheep \&
next (man) ! = man \&
next (cabbage) = cabbage \&
next(wolf) = wolf

Example: ferryman [3/4]

- ferryman carries cabbage

TRANS

```
carry_cabbage ->
    cabbage = man &
    next(cabbage) != cabbage &
    next(man) != man &
    next(sheep) = sheep &
    next(wolf) = wolf
```

- ferryman carries wolf

TRANS

```
carry_wolf ->
    wolf = man &
    next(wolf) != wolf &
    next(man) != man &
    next(sheep) = sheep &
    next(cabbage) = cabbage
```

- ferryman carries sheep

TRANS

```
carry_sheep ->
    sheep = man &
    next(sheep) != sheep &
    next(man) != man &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```


Example: ferryman [3/4]

- ferryman carries cabbage

TRANS

```
carry_cabbage ->
    cabbage = man &
    next(cabbage) != cabbage &
    next(man) != man &
    next(sheep) = sheep &
    next(wolf) = wolf
```

- ferryman carries sheep

TRANS

```
carry_sheep ->
    sheep = man &
    next(sheep) != sheep &
    next(man) != man &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```

- ferryman carries wolf

TRANS

```
carry_wolf ->
wolf = man &
    next(wolf) != wolf &
    next(man) != man &
    next(sheep) = sheep &
    next(cabbage) = cabbage
```

- ferryman carries nothing

TRANS

```
no_carry ->
    next(man) != man &
    next(sheep) = sheep &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```


Example: ferryman [4/4]

- get a plan for reaching "goal state" DEFINE

```
    safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
    goal := cabbage = left & sheep = left & wolf = left;
```

SPEC
! E[safe_state U goal]

Example: ferryman [4/4]

- get a plan for reaching "goal state"

DEFINE

```
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;
```

SPEC
! E[safe_state U goal]

- nUXMV execution:

```
nuXmv > read_model -i ferryman.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !E [ safe_state U goal ] is false
-- as demonstrated by the following execution sequence
    -> State: 1.1 <-
        cabbage = right
        sheep = right
        wolf = right
        man = right
```

-••

Example: tic-tac-toe [1/5]

Tic-tac-toe is a turn-based game for two adversarial players (X and O) marking the squares of a board (\rightarrow a 3×3 grid). The player who succeeds in placing three respective marks in a horizontal, vertical or diagonal row wins the game.

- Example: 0 wins

- we model tic-tac-toe puzzle as an array of size nine

$22 / 28$

Example: tic-tac-toe $[2 / 5]$

- base system model MODULE main
VAR
B : array $1 . .9$ of $\{0,1,2\}$;
player : 1..2;
move : 0..9;

Example: tic-tac-toe [2/5]

- base system model MODULE main
VAR

```
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;
```

- initial state

INIT
$B[1]=0 \&$
$B[2]=0$ \&
$B[3]=0 \&$
$B[4]=0$ \&
$B[5]=0$ \&
$B[6]=0 \&$
$B[7]=0 \&$
$B[8]=0$ \&
$\mathrm{B}[9]=0$;
INIT
move $=0$;

Example: tic-tac-toe [3/5]

- turns modeling
ASSIGN

```
init(player) := 1;
```

next(player) :=
case
player = 1 : 2;
player = 2 : 1;
esac;

Example: tic-tac-toe [3/5]

- turns modeling

ASSIGN

```
init(player) := 1;
next(player) :=
    case
        player = 1 : 2;
        player = 2 : 1;
    esac;
```

- move modeling

TRANS

```
next(move=1) ->
    B[1] = 0 & next(B[1]) = player &
    next (B[2])=B[2] &
    next(B[3])=B[3] &
    next (B[4])=B[4] &
    next (B[5])=B[5] &
    next (B[6])=B[6] &
    next(B[7])=B[7] &
    next(B[8])=B[8] &
    next (B [9])=B [9]
```


Example: tic-tac-toe [4/5]

- "end" state

DEFINE

$$
\begin{aligned}
& \text { win1 }:=(B[1]=1 \& B[2]=1 \& B[3]=1)|(B[4]=1 \& B[5]=1 \& B[6]=1)| \\
& (B[7]=1 \& B[8]=1 \& B[9]=1)|(B[1]=1 \& B[4]=1 \& B[7]=1)| \\
& (B[2]=1 \& B[5]=1 \& B[8]=1)|(B[3]=1 \& B[6]=1 \& B[9]=1)| \\
& (B[1]=1 \& B[5]=1 \& B[9]=1) \mid(B[3]=1 \& B[5]=1 \& B[7]=1) \text {; } \\
& \text { win2 }:=(B[1]=2 \& B[2]=2 \& B[3]=2)|(B[4]=2 \& B[5]=2 \& B[6]=2)| \\
& \text { (} B[7]=2 \& B[8]=2 \& B[9]=2) \quad \mid(B[1]=2 \& B[4]=2 \& B[7]=2) \\
& (B[2]=2 \& B[5]=2 \& B[8]=2)|(B[3]=2 \& B[6]=2 \& B[9]=2)| \\
& (B[1]=2 \& B[5]=2 \& B[9]=2) \mid(B[3]=2 \& B[5]=2 \& B[7]=2) ; \\
& \text { draw := !win1 \& !win2 \& } \\
& B[1]!=0 \text { \& } B[2]!=0 \text { \& } B[3]!=0 \text { \& } B[4]!=0 \text { \& } \\
& B[5]!=0 \text { \& } B[6]!=0 \text { \& } B[7]!=0 \text { \& } B[8]!=0 \text { \& } B[9]!=0 \text {; }
\end{aligned}
$$

TRANS
(win1 | win2 | draw) <-> next(move)=0

Example: tic-tac-toe [5/5]

A strategy is a plan that need to be accomplished for winning the game "if the opponent has two in a row, play the third to block them"

- player 2 does not have a "winning" strategy SPEC
! (AX (EX (AX (EX (AX (EX (AX (EX (AX win2))))))))
- player 2 has a "non-losing" strategy SPEC

```
AX (EX (AX (EX (AX (EX (AX (EX (AX !win1)))))))
```


Verification:

```
nuXmv > read_model -i tictactoe.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(AX (EX (AX (EX (AX (EX
    (AX (EX (AX win2))))))))) is true
```

-- specification AX (EX (AX (EX (AX (EX
$(\operatorname{AX}(\operatorname{EX}(A X \quad$! win1)))))))) is true

Exercises [1/2]

- Tower of Hanoi: extend the tower of hanoi to handle five disks, and check that the goal state is reachable.
- Ferryman: another ferryman has to bring a fox, a chicken, a caterpillar and a crop of lettuce safely across a river.
- initial state: all goods are on the right side
- goal state: all goods are on the left side
- rules:
- the ferryman can cross the river with at most two passengers on his boat
- the fox eats the chicken if left unattended on the same side of the river
- the chicken eats the caterpillar if left unattended on the same side of the river
- the caterpillar eats the lettuce if left unattended on the same side of the river

Can the ferryman bring every item safely on the other side?

Exercises [2/2]

- Tic-Tac-Toe: encode and verify the following properties
- player 2 has also a "non-winning" strategy
- player 2 does not have a "losing" strategy
- player 2 does not have a "drawing" strategy
- player 2 has a "non-drawing" strategy
- player 1 does not have a "winning" strategy
- player 1 has a "non-losing" strategy
- player 1 has also a "non-winning" strategy
- player 1 does not have a "losing" strategy
- player 1 does not have a "drawing" strategy
- player 1 has a "non-drawing" strategy

