
nuXmv: property specification ∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/~trentin

Formal Methods Lab Class, Mar 31, 2015

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani for FM lab 2005/14

Patrick Trentin (DISI) nuXmv: property specification Mar 31, 2015 1 / 29

http://disi.unitn.it/~trentin

Comunications:

no lesson on 7/04 (easter holiday)

no lesson on 14/04 (teaching assistant afk)

thus.. next lesson on 21/04

...take the chance to revise everything covered so far!

Patrick Trentin (DISI) nuXmv: property specification Mar 31, 2015 2 / 29

Contents

1 Property Specification
Invariants
LTL
CTL
Fairness

Patrick Trentin (DISI) nuXmv: property specification Mar 31, 2015 3 / 29

Property Specifications [1/2]

In nuXmv, property specifications:

can be added to any module within a program

can be specified through nuXmv interactive shell

nuXmv > check_ctlspec -p "AG (req -> AF sum = op1 + op2)"

all properties are collected into an internal database, which can be
visualized via the show property command:

nuXmv > show_property

**** PROPERTY LIST [Type, Status, Counter-example Number, Name] ****

-------------------------- PROPERTY LIST -------------------------

000 :AG !(proc1.state = critical & proc2.state = critical)

[CTL True N/A N/A]

001 :AG (proc1.state = entering -> AF proc1.state = critical)

[CTL True N/A N/A]

Every property can be accessed through its database index:
nuXmv > check_ctlspec -n 0

4 / 29

Property Specifications [2/2]

Property verification:

each property is separately verified

the result is either “true” or “false”. In the latter case, a
counterexample is generated

the generation of a counterexample is not possible for all CTL
properties: e.g., temporal operators corresponding to existential path
quantifiers cannot be proved false by showing a single execution path

Different kinds of properties are supported:
properties on the reachable states (propositional formulas which must
hold invariantly in the model)

invariants (INVARSPEC)

properties on the computation paths (linear time temporal logics):

LTL (LTLSPEC)

properties on the computation tree (branching time temporal logics):

CTL (CTLSPEC)

5 / 29

Property Specifications [2/2]

Property verification:

each property is separately verified

the result is either “true” or “false”. In the latter case, a
counterexample is generated

the generation of a counterexample is not possible for all CTL
properties: e.g., temporal operators corresponding to existential path
quantifiers cannot be proved false by showing a single execution path

Different kinds of properties are supported:
properties on the reachable states (propositional formulas which must
hold invariantly in the model)

invariants (INVARSPEC)

properties on the computation paths (linear time temporal logics):

LTL (LTLSPEC)

properties on the computation tree (branching time temporal logics):

CTL (CTLSPEC)

5 / 29

Invariant specifications

Invariant properties are specified via the keyword INVARSPEC:

INVARSPEC <simple_expression>

Invariants are checked via the check invar command

6 / 29

An example: the modulo 4 counter with reset [1/3]

MODULE main -- counter4_reset.smv

VAR b0 : boolean;

b1 : boolean;

reset : boolean;

ASSIGN

init(b0) := FALSE;

next(b0) := case reset : FALSE;

!reset : !b0;

esac;

init(b1) := FALSE;

next(b1) := case reset : FALSE;

TRUE : ((!b0 & b1) | (b0 & !b1));

esac;

DEFINE out := toint(b0) + 2*toint(b1);

INVARSPEC out < 2

7 / 29

An example: the modulo 4 counter with reset [2/3]

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

0 1

2 3

2

0 1

3

8 / 29

An example: the modulo 4 counter with reset [3/3]

The invariant is false

nuXmv > read_model -i counter4reset.smv

nuXmv > go

nuXmv > check_invar

-- invariant out < 2 is false

-- as demonstrated by the following execution sequence

Trace Description: AG alpha Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

b0 = FALSE

b1 = FALSE

reset = FALSE

out = 0

-> State: 1.2 <-

b0 = TRUE

out = 1

-> State: 1.3 <-

b0 = FALSE

b1 = TRUE

out = 2
9 / 29

LTL specifications

LTL properties are specified via the keyword LTLSPEC:

LTLSPEC <ltl_expression>

where <ltl expression> can contain the following temporal
operators:

X F G U

LTL properties are checked via the check ltlspec command

10 / 29

LTL specifications

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

11 / 29

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

12 / 29

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

12 / 29

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

12 / 29

LTL specifications

Specifications Examples:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

12 / 29

LTL specifications

All the previous specifications are false:

NuSMV > check_ltlspec

-- specification F out = 3 is false ...

-- loop starts here --

-> State 1.1 <-

b0 = FALSE

b1 = FALSE

reset = TRUE

out = 0

-> State 1.2 <-

-- specification (out = 0 U (!reset)) is false ...

-- loop starts here --

-> State 2.1 <-

b0 = FALSE

b1 = FALSE

reset = TRUE

out = 0

-> State 2.2 <-

-- specification G (out = 2 -> F out = 3) is false ...

Q: why?
13 / 29

CTL specifications

CTL properties are specified via the keyword CTLSPEC:

CTLSPEC <ctl_expression>

where <ctl expression> can contain the following temporal
operators:

AX AF AG A[U]
EX EF EG E[U]

CTL properties are checked via the check ctlspec command

14 / 29

CTL specifications

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[]AGP

15 / 29

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

16 / 29

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

16 / 29

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

16 / 29

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

16 / 29

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

16 / 29

CTL specifications

Specifications Examples:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

16 / 29

The need for Fairness Constraints

Let us consider again the counter with reset

The specification AF out = 1 is not verified

On the path where reset is always 1, the system loops on a state
where out = 0, since the counter is always reset:

reset = TRUE,TRUE,TRUE,TRUE,TRUE,...

out = 0,0,0,0,0,0...

Similar considerations hold for the property AF out = 2. For
instance, the sequence

reset = FALSE,TRUE,FALSE,TRUE,FALSE,...

generates the loop

out = 0,1,0,1,0,1...

which is a counterexample to the given formula

17 / 29

Fairness Constraints

It is desirable that certain conditions hold infinitely often

AGAF p is a fairness property

Fairness conditions are used to eliminate behaviours in which a
certain condition p never holds (i.e. ¬ EFEG ¬p)

nuXmv supports both justice and compassion fairness constraints

Fairness/Justice p: consider only the executions that satisfy infinitely
often the condition p

Strong Fairness/Compassion (p, q): consider only those executions
that either satisfy p finitely often or satisfy q infinitely often
(i.e. p true infinitely often ⇒ q true infinitely often)

Remark:

Currently, compassion constraints have some limitations (are
supported only for BDD-based LTL model checking).

18 / 29

Fairness Constraints

Let us consider again the counter with reset. Let us add the following
fairness constraint:

JUSTICE out = 3

(we restrict to paths in which the counter has value 3 infinitely often)

The following properties are now verified:

nuXmv > reset

nuXmv > read_model -i counter4reset.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification EF out = 3 is true

-- specification AF out = 1 is true

-- specification AG (EF out = 3) is true

-- specification AG (out = 2 -> AF out = 3) is true

-- specification AG (reset -> AX out = 0) is true

19 / 29

The 4-bit adder example

We want to add a request operation to our adder, with the following
semantics: every time a request is issued, the adder starts computing the
sum of its operands. When finished, it stores the result in sum, setting
done to true.

MODULE bit-adder(req, in1, in2, cin)

VAR

sum: boolean; cout: boolean; ack: boolean;

ASSIGN

init(ack) := FALSE;

next(sum) := (in1 xor in2) xor cin;

next(cout) := (in1 & in2) | ((in1 | in2) & cin);

next(ack) := case

req: TRUE;

!req: FALSE;

esac;

20 / 29

The 4-bit adder example

MODULE adder(req, in1, in2)

VAR

bit[0]: bit-adder(

req, in1[0], in2[0], FALSE);

bit[1]: bit-adder(

bit[0].ack, in1[1], in2[1],

bit[0].cout);

bit[2]: bit-adder(...);

bit[3]: bit-adder(...);

DEFINE

sum[0] := bit[0].sum;

sum[1] := bit[1].sum;

sum[2] := bit[2].sum;

sum[3] := bit[3].sum;

overflow := bit[3].cout;

ack := bit[3].ack;

MODULE main

VAR

req: boolean;

a: adder(req, in1, in2);

ASSIGN

init(req) := FALSE;

next(req) :=

case

!req : {FALSE, TRUE};

req :

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

21 / 29

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

22 / 29

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

22 / 29

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

22 / 29

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

22 / 29

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

22 / 29

The 4-bit adder example

nuXmv > read_model -i examples/4-adder-request.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG (req -> AF sum = op1 + op2) is false

-- as demonstrated by the following execution sequence

...

Issue: the adder circuit is unstable after first addition, req flips value due
to a.ack still being true.

Fix:
ASSIGN

next(req) :=

case

!req:

case

!a.ack: {FALSE, TRUE};

TRUE: req;

esac;

req:

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

23 / 29

The 4-bit adder example

nuXmv > read_model -i examples/4-adder-request.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG (req -> AF sum = op1 + op2) is false

-- as demonstrated by the following execution sequence

...

Issue: the adder circuit is unstable after first addition, req flips value due
to a.ack still being true.

Fix:
ASSIGN

next(req) :=

case

!req:

case

!a.ack: {FALSE, TRUE};

TRUE: req;

esac;

req:

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

23 / 29

The simple mutex example

MODULE user(semaphore)

VAR

state : { idle, entering, critical, exiting };

ASSIGN

init(state) := idle;

next(state) :=

case

state = idle : { idle, entering };

state = entering & !semaphore : critical;

state = critical : { critical, exiting };

state = exiting : idle;

TRUE : state;

esac;

next(semaphore) :=

case

state = entering : TRUE;

state = exiting : FALSE;

TRUE : semaphore;

esac;

FAIRNESS

running

24 / 29

The simple mutex example

two processes are never in the critical section at the same time

CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section

CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

The simple mutex example

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later
it will be in the critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

nuXmv > read_model -i examples/mutex_user.smv

nuXmv > go

nuXmv > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

nuXmv > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

...

Issue: proc1 selected for execution only when proc2 is in critical section!

Fix:
FAIRNESS

state = idle

25 / 29

Another mutex example

MODULE mutex(turn, other_non_idle, id)

VAR

state: {idle, waiting, critical};

ASSIGN

init(state) := idle;

next(state) :=

case

state=idle: {idle, waiting};

state=waiting & (!other_non_idle|turn=id): critical;

state=waiting: waiting;

state=critical: idle;

esac;

next(turn) :=

case

next(state) = idle : !id;

next(state) = critical : id;

TRUE : turn;

esac;

DEFINE

non_idle := state in {waiting, critical};

FAIRNESS

running

26 / 29

Another mutex example

MODULE main

VAR

turn: boolean;

p0: process mutex(turn,p1.non_idle,FALSE);

p1: process mutex(turn,p0.non_idle,TRUE);

nuXmv > read_model -i mutex.smv

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical

& p1.state = critical) is true

-- specification AG (p0.state = waiting ->

AF p0.state = critical) is true

27 / 29

Another mutex example

Example: allow a process to stay in critical section for an arbitrary amount
of time. Change the line

state=critical: idle;

into

state=critical: {critical, idle};

Now the second property becomes false:

nuXmv > reset

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical & p1.state = critical) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is false

...

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle

28 / 29

Another mutex example

Example: allow a process to stay in critical section for an arbitrary amount
of time. Change the line

state=critical: idle;

into

state=critical: {critical, idle};

Now the second property becomes false:

nuXmv > reset

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical & p1.state = critical) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is false

...

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle

28 / 29

Another mutex example

Example: allow a process to stay in critical section for an arbitrary amount
of time. Change the line

state=critical: idle;

into

state=critical: {critical, idle};

Now the second property becomes false:

nuXmv > reset

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical & p1.state = critical) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is false

...

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle

28 / 29

Another mutex example

Example: allow a process to stay in critical section for an arbitrary amount
of time. Change the line

state=critical: idle;

into

state=critical: {critical, idle};

Now the second property becomes false:

nuXmv > reset

nuXmv > go

nuXmv > check_ctlspec

-- specification AG !(p0.state = critical & p1.state = critical) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is false

...

Issue: process can stay in critical section forever.

Fix:
FAIRNESS

state=idle
28 / 29

Another mutex example

The third property is still not verified:

nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is false

...

Issue: both processes can be temporarily both waiting (e.g. p0 waits first,
p1 wait for second, and it’s p0 turn)

Fix: change the line
state=waiting & (!other_non_idle|turn=id): critical;

into
state=waiting & (!other_non_idle): critical;

and get
nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is true

29 / 29

Another mutex example

The third property is still not verified:

nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is false

...

Issue: both processes can be temporarily both waiting (e.g. p0 waits first,
p1 wait for second, and it’s p0 turn)

Fix: change the line
state=waiting & (!other_non_idle|turn=id): critical;

into
state=waiting & (!other_non_idle): critical;

and get
nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is true

29 / 29

Another mutex example

The third property is still not verified:

nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is false

...

Issue: both processes can be temporarily both waiting (e.g. p0 waits first,
p1 wait for second, and it’s p0 turn)

Fix: change the line
state=waiting & (!other_non_idle|turn=id): critical;

into
state=waiting & (!other_non_idle): critical;

and get
nuXmv > check_ctlspec -n 2

-- specification AG !(p0.state = waiting & p1.state = waiting) is true

29 / 29

	Property Specification
	Invariants
	LTL
	CTL
	Fairness

