
An Overview of PROMELA∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/~trentin

Formal Methods Lab Class, Mar 03, 2015

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le, Alessandra Giordani for FM lab 2005/14

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 1 / 12

http://disi.unitn.it/~trentin


Contents

1 Promela overview
Processes
Data objects
Message Channels

2 Exercises

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 2 / 12



Promela

PROMELA is not a programming language,
but rather a meta-language for building verification models.

The design of Promela is focused on the interaction among
processes at the system level;

Provides:

non-deterministic control structures,
primitives for process creation,
primitives for interprocess communication.

Misses:

functions with return values,
expressions with side-effects,
data and functions pointers.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 3 / 12



Types of objects

Three basic types of objects:

processes

data objects

message channels

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 4 / 12



Contents

1 Promela overview
Processes
Data objects
Message Channels

2 Exercises

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [1/3]

init is always the first process initialized (if declared);

active: process created at initialization phase (right after init)

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [1/3]

init is always the first process initialized (if declared);

active: process created at initialization phase (right after init)

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [1/3]

init is always the first process initialized (if declared);

active: process created at initialization phase (right after init)

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [3/3]

Only a limited number of processes (255) can be created:

proctype proc(byte x) {

printf("x = %d\n", x);

run proc(x + 1)

}

init {

run proc(0);

}

~$ spin test.pml

x = 0

x = 1

x = 2

...

spin: too many processes (255 max)

timeout

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes created
after it have died.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Initialization [3/3]

Only a limited number of processes (255) can be created:

proctype proc(byte x) {

printf("x = %d\n", x);

run proc(x + 1)

}

init {

run proc(0);

}

~$ spin test.pml

x = 0

x = 1

x = 2

...

spin: too many processes (255 max)

timeout

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes created
after it have died.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 5 / 12



Process Execution [1/2]

Processes execute concurrently with all other processes.

Processes are scheduled non-deterministically.

Processes are interleaved: statements of different processes do not
occur at the same time (except for synchronous channels).

Statements are atomic: each statement is executed without
interleaving with other processes.

Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 6 / 12



Process Execution [2/2]

Each process has its own local state:

process counter pid (location within the proctype);
value of the local variables.

A process communicates with other processes:

using global (shared) variables (might need synchronization!);
using channels.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 7 / 12



Statements [1/2]

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
expressions

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 7 / 12



Statements [1/2]

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
expressions

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 7 / 12



Statements [1/2]

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
expressions

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 7 / 12



Statements [2/2]

An expression is executable iff it evaluates to true (i.e. non-zero).

(5 < 30): always executable;
(x < 30): blocks if x is not less than 30;
(x + 30): blocks if x is equal to -30;

Busy-Waiting: the expression (a == b); is equivalent to:

while (a != b) { skip }; /* C-code */

Expressions must be side-effect free
(e.g. b = c++ is not valid).

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 7 / 12



Contents

1 Promela overview
Processes
Data objects
Message Channels

2 Exercises

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 8 / 12



Basic types

Type Typical Range

bit 0, 1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

A byte can be printed as a character with the %c format specifier;

There are no floats and no strings;

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 9 / 12



Typical declarations

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* all elements initialized to 0 */

byte a[3] = {’h’,’i’,’\0’}; /* byte array emulating a string */

chan m; /* uninitialized message channel */

mtype n; /* uninitialized mtype variable */

short b[4] = 89; /* all elements initialized to 89 */

int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

All variables are initialized by default to 0.

Array indexes starts at 0.

An array variable can be assigned with an array of values (e.g. a = {
1, 2, 3}) only within a process body (it does not work at global
scope).

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 9 / 12



Data structures

A run statement accepts a list
of variables or structures, but no
array.

typedef Record {

byte a[3];

int x;

bit b

};

proctype run_me(Record r) {

r.x = 12

}

init {

Record test;

run run_me(test)

}

Note: but array can still be
enclosed in data structures

Multi-dimensional arrays are not
supported, although there are
indirect ways:

typedef Array {

byte el[4]

};

Array a[4];

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 9 / 12



Variable Scope

Spin (old versions): only two levels of scope
global scope: declaration outside all process bodies.
local scope: declaration within a process body.

Spin (versions 6+): added block-level scope

init {

int x;

{ /* y declared in nested block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Note: since Spin version 2.0, variable declarations are not implicitly
moved to the beginning of a block

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 9 / 12



Variable Scope

Spin (old versions): only two levels of scope
global scope: declaration outside all process bodies.
local scope: declaration within a process body.

Spin (versions 6+): added block-level scope

init {

int x;

{ /* y declared in nested block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Note: since Spin version 2.0, variable declarations are not implicitly
moved to the beginning of a block

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 9 / 12



Contents

1 Promela overview
Processes
Data objects
Message Channels

2 Exercises

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 10 / 12



Message Channels

A channel is a FIFO (first-in first-out) message queue.

A channel can be used to exchange messages among processes.

Two types:

buffered channels,
synchronous channels (aka rendezvous ports)

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:

len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:

len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:

len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:

len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:

len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Alternative use of Buffered Channels

An alternative syntax for message send/receive involves brackets:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

It can be used to highlight that the first message field is interpreted
as ’message type’.

If - at the receiving side - some parameter is set to a constant value:

qname?const1,var2,var3

then the process blocks if the channel is empty or the input message
field does not match the fixed constant value.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Alternative use of Buffered Channels

An alternative syntax for message send/receive involves brackets:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

It can be used to highlight that the first message field is interpreted
as ’message type’.

If - at the receiving side - some parameter is set to a constant value:

qname?const1,var2,var3

then the process blocks if the channel is empty or the input message
field does not match the fixed constant value.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Channels of channels

Message parameters are always passed by value.

We can also pass the value of a channel from a process to another.

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A() {

chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */

loc?msgtype(121) /* read 121 from channel loc */

}

active proctype B() {

chan who;

glob?who; /* receive channel loc from glob */

who!msgtype(121) /* write 121 on channel loc */

}

Q: what if B sends 122 on channel loc?

both A and B are forever blocked

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Channels of channels

Message parameters are always passed by value.

We can also pass the value of a channel from a process to another.

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A() {

chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */

loc?msgtype(121) /* read 121 from channel loc */

}

active proctype B() {

chan who;

glob?who; /* receive channel loc from glob */

who!msgtype(121) /* write 121 on channel loc */

}

Q: what if B sends 122 on channel loc? both A and B are forever blocked

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 11 / 12



Contents

1 Promela overview
Processes
Data objects
Message Channels

2 Exercises

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 12 / 12



Basic verification

chan com = [0] of { byte };

byte value;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

... /* fill in for formal verification */

}

init {

run p();

end: com ! 100;

}

Q: is it possible that process p does not read from the channel at all?

Yes

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 12 / 12



Basic verification

chan com = [0] of { byte };

byte value;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

... /* fill in for formal verification */

}

init {

run p();

end: com ! 100;

}

Q: is it possible that process p does not read from the channel at all? Yes

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 12 / 12



Exercises

Ex. 1: write a PROMELA model that sums up an array of integers.

declare and (non-deterministically) initialize an integer array.
add a loop that sums up the elements.
visually check that it is correct.

Ex. 2: declare a synchronous channel and create two processes:

The first process sends the numbers 0 through 9 onto the channel.
The second process reads the values of the channel and outputs them.
Check if sooner or later the second process will read the number 9.

Ex. 3: replace the synchronous channel with a buffered channel and
check how the behaviour changes.

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 12 / 12


	Promela overview
	Processes
	Data objects
	Message Channels

	Exercises

