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Promela

PROMELA is not a programming language,
but rather a meta-language for building verification models.

The design of Promela is focused on the interaction among
processes at the system level;

Provides:

non-deterministic control structures,
primitives for process creation,
primitives for interprocess communication.

Misses:

functions with return values,
expressions with side-effects,
data and functions pointers.
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Types of objects

Three basic types of objects:

processes

data objects

message channels
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Process Initialization [1/3]

init is always the first process initialized (if declared);

active: process created at initialization phase (right after init)

active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)

}

run: process created when instruction is processed

proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);

run you_run(x + 1) // recursive call!

}

init {

run you_run(0);

}

note: run allows for input parameters!
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Process Initialization [2/3]

No parameter can be given to init nor to active processes.

active proctype proc(byte x) {

printf("x = %d\n", x);

}

~$ spin test.pml

x = 0

If present, active process parameters default to 0.

A process does not necessarily start right after being created

proctype proc(byte x) {

printf("x = %d\n", x);

}

init {

run proc(0);

run proc(1);

}

~$ spin test.pml

x = 0

x = 1

~$ spin test.pml

x = 1

x = 0
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Process Initialization [3/3]

Only a limited number of processes (255) can be created:

proctype proc(byte x) {

printf("x = %d\n", x);

run proc(x + 1)

}

init {

run proc(0);

}

~$ spin test.pml

x = 0

x = 1

x = 2

...

spin: too many processes (255 max)

timeout

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes created
after it have died.
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Process Execution [1/2]

Processes execute concurrently with all other processes.

Processes are scheduled non-deterministically.

Processes are interleaved: statements of different processes do not
occur at the same time (except for synchronous channels).

Statements are atomic: each statement is executed without
interleaving with other processes.

Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).
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Process Execution [2/2]

Each process has its own local state:

process counter pid (location within the proctype);
value of the local variables.

A process communicates with other processes:

using global (shared) variables (might need synchronization!);
using channels.
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Statements [1/2]

Every statement is either executable or blocked.

Always executable:

print statements
assignments
skip
assert
break
...

Not always executable:

the run statement is executable only if there are less than 255
processes alive;
expressions
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Statements [2/2]

An expression is executable iff it evaluates to true (i.e. non-zero).

(5 < 30): always executable;
(x < 30): blocks if x is not less than 30;
(x + 30): blocks if x is equal to -30;

Busy-Waiting: the expression (a == b); is equivalent to:

while (a != b) { skip }; /* C-code */

Expressions must be side-effect free
(e.g. b = c++ is not valid).

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 7 / 12



Contents

1 Promela overview
Processes
Data objects
Message Channels

2 Exercises

Patrick Trentin (DISI) An Overview of PROMELA Mar 03, 2015 8 / 12



Basic types

Type Typical Range

bit 0, 1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

A byte can be printed as a character with the %c format specifier;

There are no floats and no strings;
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Typical declarations

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* all elements initialized to 0 */

byte a[3] = {’h’,’i’,’\0’}; /* byte array emulating a string */

chan m; /* uninitialized message channel */

mtype n; /* uninitialized mtype variable */

short b[4] = 89; /* all elements initialized to 89 */

int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

All variables are initialized by default to 0.

Array indexes starts at 0.

An array variable can be assigned with an array of values (e.g. a = {
1, 2, 3}) only within a process body (it does not work at global
scope).
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Data structures

A run statement accepts a list
of variables or structures, but no
array.

typedef Record {

byte a[3];

int x;

bit b

};

proctype run_me(Record r) {

r.x = 12

}

init {

Record test;

run run_me(test)

}

Note: but array can still be
enclosed in data structures

Multi-dimensional arrays are not
supported, although there are
indirect ways:

typedef Array {

byte el[4]

};

Array a[4];
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Variable Scope

Spin (old versions): only two levels of scope
global scope: declaration outside all process bodies.
local scope: declaration within a process body.

Spin (versions 6+): added block-level scope

init {

int x;

{ /* y declared in nested block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Note: since Spin version 2.0, variable declarations are not implicitly
moved to the beginning of a block
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Message Channels

A channel is a FIFO (first-in first-out) message queue.

A channel can be used to exchange messages among processes.

Two types:

buffered channels,
synchronous channels (aka rendezvous ports)
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Buffered Channels

Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Useful pre-defined functions: len, empty, nempty, full, nfull:

len(qname);

Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.
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Alternative use of Buffered Channels

An alternative syntax for message send/receive involves brackets:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

It can be used to highlight that the first message field is interpreted
as ’message type’.

If - at the receiving side - some parameter is set to a constant value:

qname?const1,var2,var3

then the process blocks if the channel is empty or the input message
field does not match the fixed constant value.
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Synchronous Channels

A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

Messages can be exchanged, but not stored!

Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

mtype = {msgtype};

chan name = [0] of {mtype, byte};

active proctype A() {

byte x = 124;

printf("Send %d\n", x);

name!msgtype(x);

x = 121

printf("Send %d\n", x);

name!msgtype(x);

}

active proctype B() {

byte y;

name?msgtype(y);

printf("Received %d\n", y);

name?msgtype(y);

printf("Received %d\n", y);

}
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Channels of channels

Message parameters are always passed by value.

We can also pass the value of a channel from a process to another.

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A() {

chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */

loc?msgtype(121) /* read 121 from channel loc */

}

active proctype B() {

chan who;

glob?who; /* receive channel loc from glob */

who!msgtype(121) /* write 121 on channel loc */

}

Q: what if B sends 122 on channel loc?

both A and B are forever blocked
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Basic verification

chan com = [0] of { byte };

byte value;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

... /* fill in for formal verification */

}

init {

run p();

end: com ! 100;

}

Q: is it possible that process p does not read from the channel at all?

Yes
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Exercises

Ex. 1: write a PROMELA model that sums up an array of integers.

declare and (non-deterministically) initialize an integer array.
add a loop that sums up the elements.
visually check that it is correct.

Ex. 2: declare a synchronous channel and create two processes:

The first process sends the numbers 0 through 9 onto the channel.
The second process reads the values of the channel and outputs them.
Check if sooner or later the second process will read the number 9.

Ex. 3: replace the synchronous channel with a buffered channel and
check how the behaviour changes.
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