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Abstract—Entity Resolution is an inherently quadratic task that typically
scales to large data collections through blocking. In the context of
highly heterogeneous information spaces, blocking methods rely on
redundancy in order to ensure high effectiveness at the cost of lower
efficiency (i.e., more comparisons). This effect is partially ameliorated by
coarse-grained block processing techniques that discard entire blocks
either a-priori or during the resolution process. In this paper, we intro-
duce meta-blocking as a generic procedure that intervenes between
the creation and the processing of blocks, transforming an initial set
of blocks into a new one with substantially fewer comparisons and
equally high effectiveness. In essence, meta-blocking aims at extracting
the most similar pairs of entities by leveraging the information that is
encapsulated in the block-to-entity relationships. To this end, it first builds
an abstract graph representation of the original set of blocks, with the
nodes corresponding to entity profiles and the edges connecting the
co-occurring ones. During the creation of this structure all redundant
comparisons are discarded, while the superfluous ones can be removed
by pruning of the edges with the lowest weight. We analytically examine
both procedures, proposing a multitude of edge weighting schemes,
graph pruning algorithms as well as pruning criteria. Our approaches are
schema-agnostic, thus accommodating any type of blocks. We evaluate
their performance through a thorough experimental study over three
large-scale, real-world datasets, with the outcomes verifying significant
efficiency enhancements at a negligible cost in effectiveness.

Index Terms—Entity Resolution, Redundancy-positive Blocking, Meta-
blocking

1 Introduction
Entity resolution (ER) is the task of identifying the same
real-world object across different entity profiles. It consti-
tutes an inherently quadratic process, as it requires every
entity profile to be compared with all others. Therefore, it
typically scales to large data collections through approxi-
mate methods that trade off effectiveness (i.e., percentage of
detected duplicates) for efficiency (i.e., number of executed
pair-wise comparisons). Data blocking [12], the most pop-
ular of these methods, groups similar entity profiles into
blocks and exclusively performs the comparisons within
each block. Blocking methods are generally distinguished
in two categories: those forming non-overlapping blocks
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(i.e., redundancy-free), and those placing every entity pro-
file into multiple blocks (i.e., redundancy-bearing).

Redundancy constitutes an indispensable and reli-
able means of reducing the likelihood of missed
matches in the context of highly heterogeneous informa-
tion spaces (HHIS), such as the Web of Data [4] and Datas-
paces [15]. The reason is that HHIS involve extremely large
volumes of data, high levels of noise, and loose schema
binding. Though beneficial for effectiveness, redundancy
comes at the cost of lower efficiency, as it increases the
number of required pair-wise comparisons. In this work, we
investigate ways of compensating for its effect on efficiency
without sacrificing its high effectiveness.

Motivating Examples. As an example, consider the
entity collection presented in Figure 1(a), where the entity
profiles p1 and p2 describe the same real-world objects
as profiles p3 and p4, respectively. Although the values of
the duplicate profiles are relatively similar, every canonical
attribute name has a different form in each of them; the
name of a person, for instance, appears as “FullName”
in p1, as “name” in p2 and as “full name” in p3. This
situation is further aggravated by the tag-style values; e.g.,
the name of person p4 is not associated with any attribute
value. In these settings, redundancy-free blocking methods
can only be applied on top of a schema matching method
that maps all entity profiles into a canonical schema with
attributes of a-priori known quality. However, although
schema matching seems straightforward in our example, it
is not practical in large-scale collections of user-generated
data: Google Base1 alone encompasses 100,000 distinct
schemata corresponding to 10,000 entity types [19]. Thus,
in this work we exclusively consider redundancy-bearing
blocking methods and aim at improving their efficiency.

Not all of these methods, though, share the same interpre-
tation of redundancy. For the redundancy-positive blocking
techniques, the number of common blocks between a pair
of entity profiles is proportional to their similarity and,
thus, the likelihood that they are matching. In this cate-
gory fall methods that associate each profile with multiple
blocking keys, such as q-grams [14], Suffix Array [1], [7],
HARRA [17] and schema-agnostic blocking [25], [27]. To
illustrate their functionality, consider Figure 1(b), which
depicts the blocks that are produced after applying the

1. http://www.google.com/base
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Fig. 1. (a) A noisy, heterogeneous entity collection, (b) the resulting set of attribute-agnostic blocks, (c) the blocking graph
corresponding to it, (d) the pruned blocking graph, and (e) an alternative pruned blocking graph, discussed in Section 3.4.

simplest form of schema-agnostic blocking to the entity
collection of Figure 1(a). Each block corresponds to a dis-
tinct token that has been extracted from at least one attribute
value, regardless of the associated attribute name(s). Thus,
the more blocks two entity profiles share, the more likely
they are to describe the same real-world object.

In contrast, redundancy-negative blocking methods re-
gard the high number of common blocks among two entity
profiles as a strong indication that they are unlikely to be
matching. For them, highly similar profiles share just one
block. A typical example of this functionality is Canopy
Clustering [21]: after selecting a random seed pi, the most
similar profiles are placed in the same block with pi and
are removed from the pool of candidate matches; thus, they
cannot be included in any other block.

In the middle of these two extremes lie redundancy-
neutral blocking methods, which involve the same number
of common blocks across all pairs of entity profiles (e.g.,
Sorted Neighborhood [16]). In this category also fall meth-
ods that are not suitable for drawing conclusions about the
matching likelihood of two profiles from the blocks they
have in common (e.g., Semantic Blocking [23]).

We observe that redundancy-negative and redundancy-
neutral blocking methods are not applicable to HHIS. For
example, even though Canopy Clustering and the Sorted
Neighborhood approaches are scalable to large entity col-
lections, they require an a-priori known schema in or-
der to create blocks. The same applies to other related
methods, such as the Adaptive Sorted Neighborhood [31]
and the Sorted Blocks approach [10]. In contrast, the
redundancy-positive techniques have been shown to apply
to HHIS and scale to millions of entity profiles [17],
[25], [27]. Therefore, our work focuses on improving
the efficiency of redundancy-positive blocking methods by
discarding the unnecessary comparisons of their blocks. In
general, comparisons of this kind are distinguished into
two categories: (i) the redundant ones, which repeatedly
compare the same entities across different blocks, and (ii)
the superfluous ones, which involve non-matching entities.
Continuing our example, we can observe that the blocks of
Figure 1(b) involve 9 redundant comparisons in the blocks
“Smith”, “Brown”, “seller” and “91335”. They also involve
6 superfluous comparisons between all possible pairs of
non-matching entities in the blocks “car”, “auto”, “seller”
and “91335”. Skipping comparisons of these types in-
creases blocking efficiency without affecting effectiveness.

Existing block processing techniques enhance the ef-
ficiency of redundancy-positive blocking methods mainly
by operating at the coarse level of entire blocks. For
example, Block Purging [25] a-priori discards oversized

blocks, which involve an excessively high number of unnec-
essary comparisons. To illustrate this notion, consider the
block of “91335” in Figure 1(b): it contains all possible
comparisons of the entity profiles in Figure 1(a) and the
only non-redundant comparisons it involves are superfluous.
A similar technique is Block Pruning [25], which assumes
an ordered set of blocks and terminates their processing
as soon as duplicate overhead (i.e., the cost of identify-
ing new duplicates) exceeds a predefined threshold dhmax.
Processing the blocks of Figure 1(b) in their order of
appearance, the initial duplicate overhead in block “John”
is dh = 1 (i.e., one comparison for one pair of duplicates);
the second pair of duplicates is identified in the fourth block
“Richard” yielding a duplicate overhead dh = 3 (i.e., three
comparisons for one pair of duplicates). For dhmax = 2,
the remaining blocks will not be examined, thus saving
10 comparisons. Due to the coarse granularity of their
functionality, though, existing block processing methods
are unable to distinguish the redundant and superfluous
comparisons from the matching ones (i.e., those involving a
non-redundant pair of duplicate entity profiles). As a result,
they enhance efficiency without controlling their impact on
effectiveness.

Work Overview and Contributions. In this paper, we
introduce meta-blocking as the task of developing efficient
techniques that operate at the level of individual compar-
isons. These methods utilize abstract blocking informa-
tion to achieve maximum efficiency gains for redundancy-
positive blocking methods at a small and controllable im-
pact on effectiveness. Meta-blocking goes beyond existing
block processing methods by offering principled approaches
that consider the information encapsulated in the set of
block assignments (i.e., the associations between blocks
and entity profiles). In essence, it aims at identifying
the closest pairs of profiles so as to restructure a given
set of blocks into a new one that involves significantly
fewer comparisons, while maintaining the original level of
effectiveness. Meta-blocking is independent from the under-
lying blocking method and generic enough to handle any
redundancy-positive block collection, regardless of whether
it is based on schema information or not.

We note that meta-blocking does not replace but com-
plements the existing blocking methods. It builds on the
intrinsic characteristic of redundancy-positive blocking that
the similarity of two entity profiles is reflected on their
common block assignments. Meta-blocking operates effi-
ciently because it skips the high complexity of computing
pair-wise, string-based entity similarities, relying instead on
the block-to-entity profile associations of the input set of
blocks. Although approximate, this information leads to an
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effective and efficient solution.
Based on these ideas, we introduce a family of meta-

blocking methods that rely on the blocking graph. This is
a structure that is extracted from the input block collection
and connects with edges those pairs of entity profiles that
are compared in at least one block. For instance, the graph
corresponding to the blocks of Figure 1(b) is depicted in
Figure 1(c); its nodes correspond to the profiles of the
input entity collection (Figure 1(a)) and its edges connect
the profiles that share at least one block. The edges are
naturally undirected, and weighted according to a scheme
that determines the trade-off between the computational
cost and the gain of comparing the adjacent entity profiles
(i.e., the benefit for the recall of the ER process, in case they
are matching). In the example of Figure 1(c), we present the
simplest scheme, which sets the weight of each edge equal
to the number of blocks the adjacent entity profiles have
in common. Also applicable are schema-based schemes,
which set edge weights according to the values of one or
more selected attributes.

The blocking graph forms the basis for enhancing effi-
ciency through pruning: edges that do not satisfy a pre-
defined criterion are removed, thus leading to a smaller
number of comparisons. In our example, the blocking graph
of Figure 1(d) can be derived from that of Figure 1(c) by
discarding edges with a weight lower than 2, or by retaining
the two edges with the highest weight. In any case, the
remaining edges determine a new set of blocks that ideally
places every pair of duplicate profiles in a separate block.
Every retained edge is actually transformed into a new
block that contains only its adjacent entity profiles. In our
example, the pruned graph of Figure 1(d) yields two blocks,
b1 = {p1, p3} and b2 = {p2, p4}, that achieve the same recall
as the blocks of Figure 1(b) with just 2 comparisons.

Overall, the contributions of our work are the following:
• We formalize the problem of meta-blocking and intro-

duce the blocking graph as the cornerstone for a family
of solutions that operate independently of the process
that created the input blocks.

• We coin five schema-agnostic schemes for weighting
the edges of a blocking graph.

• We present two schema-agnostic, orthogonal categories
of pruning algorithms along with two orthogonal dimen-
sions for specifying the corresponding pruning criteria.

• We examine the performance of our methods on three
large-scale, real-world datasets, with the results validat-
ing the exceptional performance of our methods.

The rest of the paper is structured as follows: we formal-
ize the task of meta-blocking in Section 2 and we present
several techniques for building and pruning the blocking
graph in Section 3. Section 4 analyzes the results of our
experimental evaluation, and Section 5 wraps up our work.
We discuss the state-of-the-art in blocking-based ER in the
Appendix.
2 Problem Definition
Entity Resolution. At the core of entity resolution lie entity
profiles describing real-world objects. An entity profile is

a uniquely identified collection of information in the form
of name-value pairs. Assuming an infinite set of identifiers
ID, we can formally define an entity profile as follows:

Definition 1 (Entity Profile): An entity profile p is a
tuple 〈id, Ap〉, where id ∈ ID is a unique identifier, and
Ap is a set of name-value pairs 〈n, v〉.
Naturally, the value v in a name-value pair 〈n, v〉 of an entity
profile p may be unspecified. Similarly, the attribute name
n may not be given, thus allowing for the representation of
tag-style values, as illustrated in Figure 1(a). In general, the
model of Definition 1 is flexible enough to accommodate
entity representations of any complexity, such as those
employed in Web and Dataspace applications [19]. In the
following, we refer to this definition using the terms entity
profile, profile and entity interchangeably.

An entity collection E is a set of entity profiles. Two
entity profiles contained in E, pi and p j, are duplicates
or matches, denoted by pi ≡ p j, if they represent the same
real-world object. Given two input entity collections, E1 and
E2, the goal of entity resolution is to identify the duplicate
entity profiles they contain. Depending on the inputs, we
distinguish the following types of ER:

• In Clean-Clean ER, both E1 and E2 are duplicate-free
entity collections.

• In Dirty-Clean ER, E1 is a duplicate-free entity collec-
tion, and E2 is a dirty one (i.e., it contains duplicates
in itself).

• In Dirty-Dirty ER, both E1 and E2 are dirty.

In all cases, the output comprises the pairs of duplicate
profiles, DE1∪E2 , that are contained in the union of the
input entity collections (i.e., the duplicate profiles shared
by E1 and E2 as well as those contained in the individual
entity collections). Note that, for simplicity, we consider
the last two sub-problems to be equivalent to Dirty ER: the
input comprises a single entity collection E that contain
duplicates in itself, as it is formed by the union of the
given collections (i.e., E = E1∪E2). In this case, the output
comprises the set of matching pairs of entity profiles, DE,
that are contained in E.

Blocking for Entity Resolution. ER constitutes an in-
herently quadratic task, requiring the pair-wise comparison
of all profiles in the input entity collection(s). To make
ER scale to large entity collections, blocking restricts the
computational cost to comparisons between similar profiles:
it clusters them into blocks and performs comparisons
solely among the entity profiles within each block.

In more detail, block building techniques transform every
entity profile into a (set of) blocking key(s) that is suitable
for clustering. Profiles with the same (or similar) key(s) are
grouped together into blocks (Figures 1(a) and (b)). The re-
sulting set of blocks B is called block collection. Depending
on the ER problem, its elements may be of two types:

• Unilateral blocks contain entity profiles from the same
dirty entity collection (i.e., Dirty ER). Thus, they are
all candidate matches and should be compared to each
other.
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• Bilateral blocks are internally partitioned in two sub-
blocks that individually contain non-matching entity
profiles from the same clean input collection (i.e.,
Clean-Clean ER). Thus, for a bilateral block bi, com-
parisons are only allowed between its inner blocks b1

i
(⊆E1) and b2

i (⊆E2).

Improving Blocking through Meta-blocking. The qual-
ity of a block collection B is measured in terms of
two competing criteria: efficiency and effectiveness. The
former is directly related to its aggregate cardinality
(||B||), i.e., the total number of comparisons it contains:
||B|| =

∑
bi∈B
||bi||, where ||bi|| is the individual cardinality

of bi (i.e., total number of comparisons entailed in block
bi); we have ||bi||=|bi|·(|bi| − 1)/2 for a unilateral block bi

and ||b j||=|b1
j |·|b

2
j | for a bilateral block. The effectiveness of

B depends on the cardinality of the set DB of detectable
matches (i.e., pairs of duplicate profiles compared in at least
one block).

There is a clear trade-off between the effectiveness and
the efficiency of B: the more comparisons are executed
(i.e., higher ||B||), the higher its effectiveness gets (i.e.,
higher |DB|), but the lower its efficiency is, and vice
versa. Successful block collections achieve a good balance
between these two competing objectives, as estimated by
the following, established measures [3], [7], [22], [25].

(i) Pair Completeness (PC) assesses the portion of
duplicates that share at least one block and, thus, can be
detected. It is formally defined as: PC(B) = |DB|/|DE|,
where |DE| is the number of duplicates in the input entity
collection E. PC takes values in the interval [0, 1], with
higher values indicating higher effectiveness for B.

(ii) Pairs Quality (PQ) estimates the portion of non-
redundant comparisons that involve matching entities. For-
mally, it is defined as: PQ(B) = |DB|/||B||. It takes values
in [0, 1], with higher values indicating higher efficiency for
B (i.e., fewer superfluous and redundant comparisons).

(iii) Reduction Ratio (RR) measures to which degree
efficiency is enhanced with respect to a baseline block
collection Bbs. It is defined as: RR(B,Bbs) = 1− ||B||/||Bbs||

and takes values in the interval [0, 1] (for ||B|| ≤ ||Bbs||),
with higher values denoting higher efficiency for B.

Meta-blocking aims at restructuring a block collection B
so as to improve its quality. It operates on its elements
independently of their type (i.e., unilateral or bilateral
blocks), relying primarily on the information encapsulated
in their block assignments. Its output comprises a new
block collection B′ that maintains comparable levels of
effectiveness (i.e., PC), while involving lower aggregate
cardinality (i.e., higher efficiency). Formally, this task is
defined as follows:

Problem 1 (Meta-blocking): Given a block collection B,
restructure it into a new one B′ that achieves signifi-
cantly higher levels of efficiency (i.e., PQ(B′)�PQ(B) and
RR(B′,B)�0), while maintaining the original effectiveness
(i.e., PC(B′)≥PC(B)).
Note that the type of output blocks does not need to
coincide with the input ones. As we will see in Section 3.3,

CC

CCmax=2
Ideal Point

Redundancy‐
bearingB’

BC

Redundancy
‐free

bearing

B

2∙|E1|∙

1 BCmax

2 |E1|
|E2|/(|E1|+|E2|)

Fig. 2. The BC-CC metric space along with its main topological
characteristics. The horizontal axis corresponds to Blocking
Cardinality, which measures the redundancy of block collections,
while the vertical one corresponds to Comparisons Cardinality,
which estimates their efficiency.

a unilateral block collection can be transformed into a
bilateral one, and vice versa. Note also that, in general, the
effectiveness of the output block collection can be higher
than that of the input one (i.e., PC(B′) > PC(B)). However,
this can only be achieved by inferring new connections
between entities from the original ones. We consider this
inference problem to be orthogonal to the task we study in
this paper, i.e., how to improve the efficiency of a block
collection without affecting its effectiveness.

Metric Space for Blocking Techniques. The goal of
meta-blocking is to improve the balance between effec-
tiveness and efficiency that a block collection B achieves.
However, the impact on PC and RR can only be computed
after examining analytically all blocks in B and B′. Instead,
we want to estimate their actual values without executing
any comparison, so as to guide the restructuring process. A
close, a-priori approximation of PC and RR is provided by
the orthogonal measures of the BC-CC metric space, which
was originally introduced in [27] for blocking-based Dirty
ER. Here, we extend it to cover blocking-based Clean-
Clean ER, as well, by adding the necessary definitions.

As depicted in Figure 2, the horizontal dimension of the
BC-CC metric space corresponds to Blocking Cardinality
(BC). This measure quantifies the redundancy of a block
collection B as the average number of block assignments
per entity of the input collection(s): BC =

∑
bi∈B
|bi|/|E|,

where |bi| denotes size (i.e., the number of entities) of block
bi. BC takes values in the interval [0, 2·|E1 |·|E2 |

|E1 |+|E2 |
] for Clean-

Clean ER and in [0, |E| − 1] for Dirty ER. Values lower
than 1 indicate block collections that failed to place every
entity profile in at least one block, values equal to 1 usually
correspond to redundancy-free block collections (black dot
in Figure 2), and values over 1 to redundancy-bearing ones
(gray sub-plane in Figure 2). In general, the higher BC is,
the higher is the level of redundancy in B.

The vertical axis measures Comparisons Cardinality
(CC), which estimates the efficiency of a block collection
through the number of block assignments that account for
each comparison: CC =

∑
bi∈B
|bi|/||B||. CC takes values

in the interval [0, 2], with higher values corresponding to
fewer comparisons per block assignment, and higher effi-
ciency (i.e., smaller blocks, on average). Its maximum value
actually corresponds to a block collection that exclusively
contains blocks of minimum size (i.e., two entities).

The BC-CC mapping of a block collection can be
efficiently computed in linear time (i.e., O(|B|)) through
a simple inspection of the size and the cardinality of its
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elements. It has been experimentally demonstrated that,
for redundancy-positive blocking methods, BC is highly
correlated with PC (i.e., higher BC values lead to higher ef-
fectiveness), while CC is directly related to RR (i.e., higher
CC values convey higher efficiency) [27]. In conjunction,
they can be used for a-priori comparing the performance of
blocking schemes: the closer a blocking method is mapped
to point (1,2) (gray dot in Figure 2), the better is its balance
between PC and RR [27]. Indeed, this represents the Ideal
Point that corresponds to the optimal blocking method, i.e.,
the method that builds a block of minimum size for each
pair of duplicates, thus involving neither redundant nor
superfluous comparisons. In this context, the goal of meta-
blocking is to restructure a block collection so as to move
its mapping closer to the Ideal Point (from B to B′ in
Figure 2). Section 3.3 explains how this is accomplished.

3 Meta-Blocking Approach
At the core of our approach to meta-blocking lies the
notion of blocking graph. Given a block collection B,
the corresponding blocking graph GB models the block
assignments in B: as shown in Figure 1(c), every entity
contained in B is mapped to a node in the blocking graph,
and every pair of co-occurring entities (i.e., entities that
are compared in at least one block) is connected with
an undirected edge. Formally, the blocking graph for a
unilateral block collection is defined as follows:

Definition 2 (Undirected Blocking Graph): Given a
unilateral block collection BE, the undirected blocking
graph derived from it is a graph GB = {VB, EB,WS },
where VB is the set of its nodes, EB is the set its undirected
edges, and WS is the weighting scheme that determines
the weight of every edge in the interval [0, 1]. VB contains
all entities of E that are placed in at least one block
of BE (i.e., ∀vi ∈ VB : ∃pi ∈ E ∧ b j ∈ B

E ∧ pi ∈ b j),
while EB contains undirected edges between all pairs of
co-occurring entities (i.e., ∀ei, j = 〈pi, p j〉 ∈ EE : pi ,
p j ∧ ∃bk ∈ B

E ∧ pi ∈ bk ∧ p j ∈ bk).
The blocking graph over a set of bilateral blocks BE1×E2

is defined analogously. The only difference is that it results
in a bipartite graph, since its set of nodes VB is sepa-
rated into two disjoint sets, V1

B
and V2

B
, which comprise

entities stemming from the entity collections E1 and E2,
respectively (i.e., V1

B
⊆ E1 and V2

B
⊆ E2). More formally,

∀vk
i ∈ Vk

B
: ∃pi ∈ Ek ∧ b1,2

j ∈ B
E1×E2 ∧ pi ∈ bk

j, where k ∈
{1, 2}. Thus, the set of edges EB contains only connections
between entities stemming from different entity collections:
∀ei, j = 〈pi, p j〉 ∈ EB : ∃b1,2

k ∈ B
E1×E2 ∧ pi ∈ b1

k ∧ p j ∈ b2
k .

Note that for reasons explained in Section 3.3, the edges
of a blocking graph can be directed, as well. An edge
pointing from entity pi to p j is represented by ¯ei, j to
distinguish it from the undirected edge ei, j that connects
the same entities. A blocking graph with directed edges is
called directed blocking graph and is symbolized as ḠB.

The purpose of the blocking graph is to facilitate effi-
ciency improvements over the input block collection. An
immediate contribution to this goal is the elimination of
redundant comparisons without any impact on effectiveness

(i.e., PC). Redundant comparisons are easily identified
during the creation of the blocking graph, as the corre-
sponding entities have already been connected with an edge.
In such cases, we simply skip connecting them with an
additional edge and, thus, each pair of comparable entities
is connected with at most one edge, regardless of the
total number of comparisons between them entailed in
B. Consequently, each pair of co-occurring (i.e., adjacent)
entities is examined only once. While improving efficiency,
effectiveness is not affected, since the set of comparable
entity pairs remains unchanged.

Additional efficiency enhancements can be achieved
through the pruning of the blocking graph: edges between
non-matching entities can be gradually removed from the
graph, discarding unnecessary comparisons without affect-
ing PC. This process is carried out according to a pruning
algorithm and theoretically can result in a graph that
exclusively contains edges between matching entities, as
in Figure 1(d). In practice, though, we can only approx-
imate this ideal case by exploiting the evidence that is
encapsulated in the given block collection: how entities
are assigned to blocks provides reliable indications for the
similarity of adjacent entities, which can be quantified by
assigning a weight to the corresponding edge. In the context
of redundancy-positive blocking methods, the more blocks
two entities share, the more similar they are and the higher
the weight of their adjacent edge should be. In this way,
the pruning of the blocking graph becomes the process of
removing edges with low weights on the grounds that they
(are likely to) link dissimilar entities.

In more detail, the weight ei, j.weight of an edge ei, j

expresses the utility of the comparison between the profiles
pi and p j; that is, it quantifies the trade-off between the cost
ci, j of comparing the adjacent entities and the gain gi, j of
executing this comparison (i.e., ei, j.weight = gi, j/ci, j). The
cost ci, j pertains to the number of comparisons required by
the corresponding edge and is always equal to 1 (since,
by definition, each edge in the blocking graph captures
one comparison). Thus, the edge weight is always equal
to the gain of the corresponding comparison, which is 0
if the compared entities are not matching and 1 if they
are duplicates (i.e., ei, j.weight = 0 ↔ pi . p j and
ei, j.weight = 1↔ pi ≡ p j).

However, it is not possible to estimate the real value
of gi, j, and correspondingly ei, j.weight, without actually
executing the comparison between pi and p j. For this
reason, we use a weighting scheme that a-priori approxi-
mates the weight of each edge by considering the features
of the blocking graph (e.g., the number of blocks shared
by an edge’s adjacent entities and the corresponding indi-
vidual cardinalities). In Section 3.2, we will present five
such weighting schemes for redundancy-positive blocking
methods (i.e., the more similar two entities are, the higher
the weight of the corresponding edge is). Edges with low
weights are discarded by a pruning criterion that bounds
either the number or the weight of the retained edges.

Overall, our approach to meta-blocking involves four
successive steps, which are illustrated in Figure 3:
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Fig. 3. The internal functionality of our meta-blocking approach.
(i) Graph Building receives a block collection B and

derives the blocking graph GB from its block assignments.
We elaborate on this process in Section 3.1.

(ii) Edge Weighting takes as input a blocking graph GB
and turns it into the weighted blocking graph (Gw

B
) by

determining the weights of its edges. We introduce several
weighting schemes for this procedure in Section 3.2.

(iii) Graph Pruning receives as input the weighted block-
ing graph and derives the pruned blocking graph (Gp

B
)

from it by removing some of its edges. We delve into the
pruning algorithms and the pruning criteria involved in this
procedure in Section 3.3.

(iv) Block Collecting is given as input the pruned block-
ing graph Gp

B
and extracts from it a new block collection

B′, which actually constitutes the final output of the entire
meta-blocking process. We analyze this step in Section 3.4.

Note that the weighting scheme, the pruning algorithm,
and the pruning criterion can entail a schema-dependent,
schema-agnostic, or hybrid functionality. In the following,
we focus on schema-agnostic techniques since they are
applicable to any blocking settings, i.e., any combination
of a blocking scheme and a (pair of) entity collection(s).
3.1 Building the Blocking Graph
The process of extracting the blocking graph from a bi-
lateral block collection B is outlined in Algorithm 1 (for
unilateral blocks, the corresponding algorithm is simpler,
and we omit it for brevity). Essentially, for each block in
B, we consider every distinct pair of entities it contains
(Lines 2-5); for bilateral blocks, this process requires that
the considered entities belong to different inner blocks
(i.e., pi ∈ b1

i and p j ∈ b2
j ). For each pair, we add the

corresponding nodes to the initially empty blocking graph
(Lines 4 and 6) and connect them with an edge (Line 7).
The edge weights are specified after the structure of the
blocking graph has been settled, because — as explained in
the next subsection — it is possible for a blocking scheme
to rely on it (Line 8). To restrict them to the interval [0, 1]
regardless of the input weighting scheme (cf. Definition 2),
we normalize them by dividing with the maximum one
(Line 9). The time complexity of this procedure is equal to
the aggregate cardinality of B (i.e., O(||B||)).

Graph Materialization. The blocking graph constitutes
a conceptual model that aims at facilitating the interpreta-
tion and the development of our meta-blocking techniques.
In the context of large entity collections with millions of
entities (nodes) and billions of comparisons (edges), its ma-
terialization actually poses significant technical challenges.
For this reason, it can be indirectly implemented in two
ways: (i) through inverted indices, which associate each
entity with the list of the blocks containing it, and (ii)
with the help of bit arrays, which represent each entity
as a vector with a zero value in all places, but those
corresponding to the blocks containing it (these are valued
1). Both approaches scale well in the context of HHIS and
accommodate all the weighting schemes of Section 3.2.

Algorithm 1: Building the Blocking Graph.
Input: (i) B a block collection,

(ii) WS a weighting scheme
Output: GB the corresponding blocking graph
VB ← {}; EB ← {}; //initially empty graph1

foreach bi ∈ B do // check all blocks2
foreach pi ∈ b1

i do // check all comparisons3
VB ← VB ∪ {vi};4
foreach p j ∈ b2

i do5
VB ← VB ∪ {v j}; //add node for p j6
EB ← EB ∪ {ei, j}; //add edge <pi,p j>7

setEdgeWeights(WS , B, VB, EB);8
normalizeEdgeWeights(EB);9
return GB = {VB, EB,WS };10

Efficiency of Construction. Theoretically, the construc-
tion of the blocking graph has the same complexity as
the naı̈ve method that iterates over all pairs of comparable
entities. In practice, though, meta-blocking exhibits a lower
running time when implemented on the basis of inverted
indices or bit arrays, because it exclusively involves opera-
tions with integers. Thus, the computation of edge weights
is much faster than the comparison of entity profiles, which
invariably relies on string matching algorithms. The reason
is that the latter typically have a non-trivial complexity of
their own. As an example, consider edit distance, one of the
simplest string comparison techniques, whose complexity
even for an optimized implementation is O(n2/ log n), when
n is the length for both of the compared strings [20]. We
analytically examine the time requirements of our meta-
blocking approaches in Section 4.4.
3.2 Edge Weighting
We introduce five schema-agnostic weighting schemes that
rely exclusively on evidence drawn from the input block
collection. We use the following notations: Bi ⊆ B denotes
the set of blocks containing the entity pi, Bi, j ⊆ B is the
set of blocks shared by the entities pi and p j (i.e., Bi, j =

Bi∩B j), and |vi| symbolizes the degree of node vi (i.e., the
number of edges connected to it). Next, we describe our
weighting schemes and explain the rationale behind them.

(i) Aggregate Reciprocal Comparisons Scheme (ARCS ):
This scheme is based on the premise that the more entities a
block contains, the less likely they are to match. The reason
is that the information forming this block is not distinctive
enough to group highly similar entities. For instance, in the
case of attribute-agnostic blocking, common words would
cluster together a large part of the input entity collection.
In this context, the aggregate similarity of two co-occurring
entities, pi and p j, is defined as the sum of the reciprocal
individual cardinalities of their common blocks. Formally,
the weight of an edge ei, j is defined as follows:

ei, j.weight =
∑

bk∈Bi, j

1
||bk ||
.

(ii) Common Blocks Scheme (CBS ): A strong indication
of the similarity of two entities is provided by the number
of blocks they have in common; the more blocks they share,
the more likely they are to match. Therefore, the weight of
an edge connecting entities pi and p j is set equal to:
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ei, j.weight = |Bi, j|.

(iii) Enhanced Common Blocks Scheme (ECBS ): This
scheme improves on CBS by adding contextual information
to its weights. Instead of merely considering the number of
common blocks, it takes into account the total number of
blocks that are associated with each one of the co-occurring
entities. Inspired from the IDF metric of Information Re-
trieval, the fewer blocks an entity is placed in, the higher
should be the weights of the edges associated with it. More
formally, the weight of an edge is set equal to:

ei, j.weight = |Bi, j| · log
|B|

|Bi|
· log

|B|

|B j|
.

(iv) Jaccard Scheme (JS ): Similar to ECBS , this scheme
aims at enhancing CBS by considering the total number
of blocks associated with the co-occurring entities. To this
end, it sets the weight of the edge ei, j equal to the Jaccard
similarity of the lists of blocks associated with its adjacent
entities, pi and p j:

ei, j.weight =
|Bi, j|

|Bi| + |B j| − |Bi, j|
.

The resulting weights take values in the interval [0, 1],
with 0 indicating the absence of common blocks and 1
corresponding to identical block lists. In essence, these
weights reveal the percentage of common blocks shared
by the adjacent entities.

(v) Enhanced Jaccard Scheme (EJS ): This scheme im-
proves on JS by adding contextual information to the
Jaccard similarity of the associated blocks. Namely, it
considers the total number of edges (i.e., comparisons)
associated with each one of the adjacent nodes. Based on
IDF, the fewer edges connected with a node, the higher
should their individual weights be. Thus, we have:

ei, j.weight =
|Bi, j|

|Bi| + |B j| − |Bi, j|
· log

|EB|
|vi|
· log

|EB|
|v j|
.

Note that the above weighting schemes rely on the prin-
ciple of redundancy-positive blocking methods that the sim-
ilarity of block assignments provides a good representation
of matching probability. Thus, the more blocks two entities
share, the more similar their profiles are expected to be.
In Section 4, we experimentally analyze the effect of these
weighting schemes on the performance of meta-blocking.
3.3 Pruning the Blocking Graph
This process is based on two essential components: (i)
the pruning algorithm, which specifies the procedure that
will be followed in the processing of the blocking graph,
and (ii) the pruning criterion, which determines the edges
to be retained. The combination of a pruning algorithm
with a pruning criterion forms a pruning scheme. In this
work, we introduce a series of pruning schemes that rely
on schema-agnostic pruning algorithms and criteria, thus
being applicable to any blocking graph.

Pruning algorithms. In general, they can be categorized
in two classes:
• The edge-centric algorithms select the globally best

comparisons by iterating over the edges of a blocking
graph in order to filter out those that do not satisfy the
pruning criterion.

Node‐centric
functionality

i h di li

Edge‐centric
functionality

i h di li weight cardinality
s
c global  

weight cardinality
s
c global  

o
p
e

local  

o
p
e

local  
ee

(a) (b)

Fig. 4. All possible combinations of our pruning algorithms with
our pruning criteria.

• The node-centric algorithms iterate over the nodes of a
blocking graph with the aim of selecting the locally best
comparisons for each entity (i.e., the adjacent entities
with the largest edge weights).

We analytically examine the relative performance of
these two types of pruning algorithms in Section 4.2.

Pruning criteria. In general, they can be categorized in
a two-dimensional taxonomy formed by the orthogonal but
complementary dimensions of functionality and scope. The
functionality of pruning criteria distinguishes them into
weight thresholds, which specify the minimum weight for
the edges to be retained, and cardinality thresholds, which
determine the maximum number of retained edges. The
scope of pruning criteria distinguishes them into global
thresholds, which define conditions that are applicable to
the entire blocking graph (i.e., all the edges of the graph),
and local thresholds, which specify conditions that apply
to a subset of it (i.e., the adjacent edges of a specific node).

Cardinality thresholds should be preferred in applications
that have predefined temporal resources (i.e., available pro-
cessing time), because they allow for a-priori determining
the number of executed comparisons. In contrast, weight
thresholds are convenient for applications that put more
emphasis on controlling effectiveness, since the harshness
of their pruning is analogous to their value. Both classes,
though, are suitable for incremental ER (a.k.a., Pay-As-
You-Go ER) [29], where the goal is to execute most of
the matching comparisons in the first iterations, decreasing
their number gradually, as ER progresses. For weight
(cardinality) thresholds, this can be simply achieved by
decreasing (increasing) its value in every iteration.

Pruning Schemes. The composition of pruning schemes
is determined by the scope of pruning thresholds. In
Figure 4, we illustrate all possible combinations of prun-
ing algorithms with pruning criteria. Starting with the
edge-centric algorithms, we observe that they can only
be combined with global criteria — regardless of their
functionality. The reason is that it is impossible to employ
a local threshold, when trying to select the top weighted
edges across the entire blocking graph. The combination of
edge-centric algorithms with global weight thresholds (i.e.,
WEP) is analyzed in Section 3.3.1 and their coupling with
global cardinality thresholds (i.e., CEP) in Section 3.3.2.

By definition, the node-centric algorithms are compatible
with local thresholds — regardless of their functionality.
However, they can be combined with global thresholds, as
well. Their combination with a global weight threshold is
actually identical to WEP, as they both retain the edges
that are weighted higher than the given threshold. Their
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Algorithm 2: Weight Edge Pruning.
Input: (i) Gin

B
the blocking graph, and

(ii) wmin the global weight pruning criterion.
Output: Gout

B
the undirected pruned blocking graph

foreach ei, j ∈ EB do1
if ei, j.weight < wmin then // discard every edge with2

EB ← EB - { ei, j }; // weight lower than wmin3

return Gout
B

= {VB, EB,WS };4

coupling with a global cardinality threshold retains the
same number of adjacent edges among all nodes (e.g.,
the 2 top-weighted edges per node). In contrast, their
combination with a local cardinality threshold derives the
number of retained edges for each node from its degree
(e.g., |vi|/10 of the top weighted edges for every node vi);
this approach is substantially different from CEP, which
keeps the top weighted edges across the entire blocking
graph. The pruning schemes that combine node-centric
algorithms with local weight thresholds (i.e., WNP) are
examined in Section 3.3.3, while those coupling them with
cardinality thresholds — of any scope — (i.e., CNP) are
examined in Section 3.3.4.

Before elaborating on the functionality of the pruning
schemes, it should be stressed that the node-centric algo-
rithms yield a directed, pruned blocking graph, unlike the
edge-centric algorithms that produce an undirected one.

3.3.1 Weight Edge Pruning (WEP)
This scheme consists of the edge-centric algorithm coupled
with a global weight threshold: the minimum edge weight.
Its functionality is outlined in Algorithm 2. It iterates over
all edges (Line 1) and discards (Line 3) those having
a weight lower that the input threshold (Line 2). The
remaining edges form the pruned blocking graph of the
output. The time complexity of this algorithm is equal to
the aggregate cardinality of the original block collection
(i.e., O(||B||)).

The most critical part of this algorithm is the selection of
the minimum edge weight wmin. Its precise value depends
on the underlying weighting scheme and the resulting
distribution of edge weights, in particular. In general,
though, the matching entities are expected to be connected
with edges of higher weights than the non-matching ones.
Thus, the goal is to identify the break-even point that
distinguishes the former type of edges from the latter.
Experimental evidence with real-world datasets suggests
that the average edge weight provides an efficient (i.e.,
requires just one iteration over all edges) as well as reliable
(i.e., low impact on effectiveness) estimation of this break-
even point, regardless of the underlying weighting scheme
(see Section 4.2 for details).

3.3.2 Cardinality Edge Pruning (CEP) or Top-K Edges
This scheme combines the edge-centric pruning algorithm
with a global cardinality threshold K that specifies the total
number of edges retained in the pruned graph. The goal is to
retain the K edges with the maximum weight. As illustrated
in the outline of Algorithm 3, this technique employs a

Algorithm 3: Cardinality Edge Pruning.
Input: (i) Gin

B
the blocking graph, and

(ii) K the global cardinality pruning criterion.
Output: Gout

B
the undirected pruned blocking graph

S ortedS tack ← {}; // sorts edges in descending weight1

foreach ei, j ∈ EB do // add every edge2
S ortedS tack.push(ei, j); // in the sorted stack3

if K < S ortedS tack.size() then // remove the edge with4
S ortedS tack.pop(); // the (K+1)th top weight5

foreach ei, j ∈ EB do // discard all edges6
if ei, j < S ortedS tack then // that are not among the7

EB ← EB - { ei, j }; // the top-K weighted ones8

return Gout
B

= {VB, EB,WS };9

sorted stack in order to store the edges in descending order
of weights, thus efficiently removing (i.e., pop) the edge
with the lowest weight. The algorithm iterates over all
edges of the input blocking graph twice: the first iteration
(Lines 2-5) identifies the top-K edges and stores them in
the sorted stack; the second iteration (Line 6-8) removes
from the graph those edges that are not contained in the
sorted stack. Similar to WEP, the time complexity of this
algorithm is equal to the aggregate cardinality of original
block collection (i.e., O(||B||)).

To specify the optimal value for K, we employ a tech-
nique that relies on the BC-CC mapping of the initial
blocking graph and its pruned version. The goal is to
map the latter closer to the Ideal Point (1,2) than the
former. Given that the pruned graph results in a bilateral
block collection with K blocks of size 2 (cf. Section 3.4),
its CC takes the maximum value (i.e., CCout=2)2, while
its BC is equal to BCout=

2K
|E|

, where E is the size of
the input entity collection. Thus, CCout is greater than or
equal to CCin of the input blocking graph in all cases
and, for an improved BC-CC mapping, it suffices to have:
BCout≤BCin⇔

2K
|E|
≤BCin⇔K≤b BCin·|E|

2 c, where BCin stands
for the BC value of the input blocking graph. Therefore, the
maximum meaningful value for K is specified with respect
to the level of redundancy of the input block collection. In
cases where CCin�CCout, we can set K=b

BCin·|E|

2 c in order
to ensure higher redundancy and, thus, higher PC. Although
this approach maintains the same levels of redundancy (i.e.,
the same number of block assignments), efficiency is signif-
icantly improved; unlike the input block collection, which
contains blocks of various sizes, the output exclusively
comprises blocks of minimum size (i.e., two entities per
block). This means that CEP minimizes the number of
pairwise comparisons for a specific level of redundancy.
3.3.3 Weight Node Pruning (WNP)
This scheme combines the node-centric pruning algorithm
with a local weight threshold. In essence, it applies the
WEP to the neighborhood of each node vi, i.e., the sub-
graph Gvi that comprises the nodes of GB connected with vi

2. CC expresses the ratio of block assignments over comparisons (i.e.,
CC=

∑
bi∈B |bi |/

∑
bi∈B ||bi ||. Given that the output of CEP involves only

blocks of size 2, there are two block assignments for every comparison,
thus leading to CCout=CCmax=2.
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Algorithm 4: Weight Node Pruning.
Input: (i) Gin

B
the blocking graph, and

(ii) wt function for defining local weight pruning criteria.
Output: Gout

B
the directed pruned blocking graph

Eout
B
← {}; // the set of retained directed edges1

foreach vi ∈ VB do // for every node get2
Gvi ← getNeighborhood(vi, GB); //its neighborhood and3
tvi ← wt(Gvi ); // its local weight threshold

foreach ei, j ∈ Evi do // retain every adjacent4
if tvi ≤ ei, j.weight then // edge with weight5

Eout
B
← Eout

B
∪ { ¯ei, j }; // higher than tvi6

return Gout
B

= {VB, Eout
B
,WS };7

— denoted by Vvi — along with the edges connecting them
— denoted by Evi . Its functionality, though, differs from
WEP in two aspects: (i) it employs a different threshold
for each neighborhood, and (ii) it replaces the retained,
undirected edges with directed ones that point from vi to
a neighboring node. Algorithm 4 presents the pseudo-code
for this procedure: it iterates over all nodes of the input
blocking graph (Line 2) and extracts the corresponding
neighborhood Gvi (Line 3). Based on this, it specifies the
minimum edge weight of the neighborhood according to
the input local threshold criterion (Line 4). Then, it iterates
over all edges of Evi (Line 5) and adds one directed edge
to the pruned graph for every undirected edge that exceeds
the specified local threshold (Lines 6-7). In the worst case,
the input blocking graph is a complete one, thus accounting
for a time complexity of O(|VB|·|EB|); in practice, though,
it is significantly lower, as the underlying blocking scheme
ensures that not all nodes are connected with each other.

To specify the optimal threshold for each neighborhood,
we rely on the same rationale as WEP: weighting schemes
assign high values to edges connecting matching entities
and low values to edges connecting non-matching nodes.
Regardless of the selected scheme, the corresponding break-
even point can be approximated by the mean weight of the
edges in each neighborhood Gvi .
3.3.4 Cardinality Node Pruning (CNP)
or k-Nearest Entities
At the core of this scheme lies the node-centric pruning
algorithm in conjunction with a local cardinality threshold.
Its goal is to select for each node vi, the k neighboring
nodes that are connected with the top edge weights (i.e., k-
nearest entities). To this end, it applies the CEP algorithm
to the neighborhood Gvi of vi, as depicted in Algorithm 5. In
more detail, it iterates over all entities of the input blocking
graph (Line 2), extracting their neighborhood (Line 4) and
setting the maximum number of retained entities (Line
5). Subsequently, it iterates over the edges of the current
neighborhood and places them into the sorted stack (Line
6-9). For each of the selected undirected edges, a new,
directed one is added to the pruned blocking graph of the
output (Lines 10-12). The time complexity of this algorithm
is the same as that of WNP: O(|VB|·|EB|).

In general, the cardinality threshold for each neighbor-
hood depends on its size (e.g., ki=d0.1·|Evi |e). For simplicity,

Algorithm 5: Cardinality Node Pruning.
Input: (i) Gin

B
the blocking graph, and

(ii) ct function for defining local cardinality pruning criteria.
Output: Gout

B
the directed pruned blocking graph

Eout
B
← {}; // the set of retained directed edges1

foreach vi ∈ VB do2
S ortedS tackvi ← {}; //for every node get3
Gvi ← getNeighborhood(vi, GB); //its neighborhood and4
k ← ct(Gvi ); // its local cardinality threshold5

foreach ei, j ∈ Evi do // add every adjacent6
S ortedS tackvi .push(ei, j); // edge in sorted stack7
if k < S ortedS tackvi .size() then // remove the8

S ortedS tackvi .pop(); // (k+1)th edge9

foreach ei, j ∈ Evi do // retain every adjacent10
if ei, j ∈ S ortedS tack then // edge contained in11

Eout
B
← Eout

B
∪ { ¯ei, j }; // the SortedStack12

return Gout
B

= {VB, Eout
B
,WS };13

though, we assume in the following that k takes the same
value for each neighborhood. To identify its optimal value,
we rely on the BC-CC mapping of the input and the output
blocking graph. Again, the goal is to ensure that the latter
is closer to (1,2) than the former. Given that the block
collection contains bilateral blocks with inner block sizes
of 1 and k (cf. Section 3.4), the CC of the pruned graph is
equal to CCout = k+1

k , while its BC is equal to BCout=k + 1.
Thus, k is specified with respect to the CC and the BC
of the input block collection: 1

1−CCor
≤k≤BCin-1. In cases

where CCin�1, we can safely set k=bBCin-1c, ensuring
significantly higher efficiency (CCout>1) at equal levels of
redundancy and PC.

3.4 Collecting the new blocks
The procedure for transforming a pruned blocking graph
into a new block collection depends on the type of the
graph. For the undirected pruned blocking graphs, which
are produced by the edge-centric pruning algorithms, block
collecting is straightforward: every retained edge lays the
basis for creating a bilateral block of minimum size that
contains the adjacent entities. As a result, the new block
collection is redundancy-free (i.e., non-overlapping blocks).
For example, the pruned blocking graph of Figure 1(d)
is transformed in the blocks b1 = {{p1}, {p3}} and b2 =

{{p2}, {p4}}.
For the directed pruned blocking graphs, which are

derived from the node-centric pruning algorithms, block
collecting creates a bilateral block for every node vi. Its
inner blocks have the following property: one of them
contains the entity that is mapped to vi, while the other
contains the entities connected with vi through the re-
tained, outgoing edges. For instance, the pruned block-
ing graph of Figure 1(e)3 is transformed into the blocks
b1 = {{p1}, {p3, p4}} and b2 = {{p2}, {p3, p4}}. In this way,
the new block collection involves redundant comparisons,
since it is possible for two retained edges with different
direction to connect the same entities. This means that its

3. For clarity we have excluded the outgoing edges of nodes p3 and p4.
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efficiency can be further enhanced with block processing
techniques.
4 Evaluation
The goal of our experimental study is manifold: (i) to
demonstrate the benefits of meta-blocking over existing
blocking methods, (ii) to compare the edge-centric prun-
ing schemes with the node-centric ones, (iii) to compare
the weight pruning criteria with the cardinality ones, (iv)
to compare the weighting schemes for building blocking
graphs, (v) to compare meta-blocking with the state-of-
the-art approach of Iterative Blocking, (vi) to examine the
robustness of our pruning schemes, and (vii) to investigate
the time requirements of meta-blocking over large blocking
graphs with millions of nodes and billions of edges. Sec-
tion 4.1 elaborates on the set-up of our experiments, and
Section 4.2 examines the objectives (i) to (v), analyzing
the performance of all meta-blocking settings with respect
to RR, PC and PQ. Section 4.3 focuses on goal (vi) and
Section 4.4 on goal (vii). Note that we had to place all
figures and tables detailing our experimental results in the
appendix, due to lack of space.
4.1 Setup
Our approaches were implemented in Java 1.6 and are
publicly available through SourceForge.net4. Our experi-
ments were performed on a server with Intel Xeon X5670
2.93GHz and 16GB of RAM, running Scientific Linux 5.8.

Datasets. In our evaluation, we used the same datasets
as in our previous works [25], [26], [27], namely Dmovies,
Din f oboxes and DBTC09. In this way, we allow for a direct
comparison with their outcomes. Note that we have publicly
released all datasets, so that they can be used as a bench-
mark by other researchers5. Their technical characteristics
are summarized in Table 1.

Dmovies is a collection of 50,000 entities shared among
the individually clean collections of IMDB and DBPedia
movies. The ground-truth for this Clean-Clean ER dataset
stems from the “imdbid” attribute in the profiles of the
DBPedia movies.

Our second Clean-Clean ER dataset, Din f oboxes, consists
of two different versions of the DBPedia Infobox dataset6.
They contain all name-value pairs of the infoboxes in
the articles of Wikipedia’s English version, extracted at
specific points in time. The older collection, DBPedia1,
is a snapshot from October 2007, whereas DBPedia2 dates
from October 2009. The large time period that intervenes
between the two collections renders their resolution chal-
lenging, since only 25% of all name-value pairs is shared
among them [25]. As matching entities, we consider those
with the same entity URL.

Finally, DBTC09 is the Dirty ER dataset of our study,
comprising more than 250,000 entities, a subset of those
contained in the Billion Triple Challenge 2009 (BTC09)
data collection7. Its ground-truth consists of 10,653 pairs of

4. http://sourceforge.net/projects/erframework
5. See http://sourceforge.net/projects/erframework/files

for instructions on how to download them.
6. http://wiki.dbpedia.org/Datasets
7. http://km.aifb.kit.edu/projects/btc-2009

matching entities that were identified through their identical
value for at least one inverse functional property.

Baseline method. To evaluate the performance of our
meta-blocking techniques, the baseline for the two Clean-
Clean ER datasets was specified as the attribute-agnostic
blocking method in conjunction with Block Purging [25].
For Dmovies, the resulting blocks exhibit nearly perfect
effectiveness (PC = 99.39%) combined with high efficiency
(RR = 95.83% with respect to the naı̈ve method of compar-
ing all DBPedia movies with the IMDB ones). The former
can be actually attributed to the high levels of redundancy,
as each entity is placed in 22 blocks, on average. The
corresponding blocking graph is medium-sized, entailing
50 thousand nodes and 22 million edges. Similarly, the
resulting block collection for Din f oboxes achieves an ex-
cellent balance between efficiency and effectiveness (i.e.,
RR = 98.46% and PC = 99.89%). It involves high
redundancy (BC≈15) and produces a large blocking graph
with 3.3 million nodes and 34 billion edges.

The blocks of DBTC09 were extracted from those pro-
duced by Total Description [27] when applied to the entire
BTC09 data collection. To restrict the originally mas-
sive dataset to a moderate block collection that facilitates
our thorough experimental analysis, we first purged those
blocks that contained none of the ground-truth entities.
We then removed the singleton entities, which were as-
sociated with just one block after sampling, in order to
ensure a redundancy-positive block collection (BC>1) that
allows for applying meta-blocking. Finally, we discarded
the invalid blocks, which were left with just one entity, and
applied Block Purging [27] on the remaining set of blocks.
The resulting block collection combines a high RR(>99%)
with a high PC(≈97%) and yields a blocking graph with
250 thousand nodes and 77 million edges.

Note that in all datasets, we do not measure the effect
of meta-blocking on efficiency against a stand-alone block
building method. Instead, we estimate RR with respect to
Block Purging, which yields a significant reduction in the
aggregate cardinality of the original blocks. In addition,
we consider as a baseline the state-of-the-art approach of
Iterative Blocking [30]. In essence, this method propagates
every new pair of duplicates to all associated blocks (even
if they have already been examined) in order to identify
additional matches and to save unnecessary comparisons.

To assess the impact of meta-blocking on effectiveness,
we consider the relative reduction in PC (∆PC), which
is formally defined as ∆PC =

PC(B′)−PC(B)
PC(B) · 100%, where

PC(B) and PC(B′) denote the effectiveness of the original
and the restructured block collection, respectively.
4.2 Measuring the blocks of Meta-blocking
In this section, we examine the first five of our evaluation
objectives. To this end, we applied all pruning schemes
to all blocking graphs (i.e., weighting schemes) that can be
derived from Dmovies, Din f oboxes and DBTC09. We categorized
the results according to the corresponding pruning scheme
and analytically present them in Tables 4(a) to 4(d).

(i) Effect of meta-blocking on blocking. Table 4(a) depicts
the performance of WEP in conjunction with all weighting
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schemes across all datasets. For Dmovies and Din f oboxes,
we notice that all weighting schemes convey significant
enhancements in efficiency (RR>70%), while incurring
moderate reduction in PC (∆PC<10%). Similar patterns are
exhibited for DBTC09: in the worst case ∆PC≈10%, while
RR remains higher than 95% for all weighting schemes.
The performance of most of them is actually very close
over DBTC09. In contrast, for Dmovies and Din f oboxes, there is
a clear trade-off between RR and PC: the higher the former
gets, the lower the latter is and vice versa. Note, though,
that the evolution of PQ suggests that RR decreases faster
than PC increases.

These patterns can be explained by the weight distri-
bution lying at the core of each weighting scheme. As
an example, consider Figures 7(a) and (b), which depict
the distribution for every weighting scheme over Dmovies

(similar distributions are exhibited in the other two datasets,
as well, but we omit the corresponding diagrams, due to
lack of space). In all histograms, the bucket size is set equal
to half the average edge weight (w̄) of the corresponding
scheme across the entire blocking graph (i.e., including the
links between matching and non-matching nodes/entities).
Thus, the two leftmost bars correspond to the pruned edges
and the remaining eight bars to the retained ones. We
observe a clear polarization for all weighting schemes: the
vast majority of the matching edges is concentrated on the
two right-most intervals, with a negligible portion of them
lying in the left half (the opposite applies to non-matching
edges). In fact, the higher the PC of a weighting scheme
over Dmovies is, the lower is the corresponding number of
matching edges in the first two intervals. On the other
hand, the higher its RR is, the lower is the portion of non-
matching edges placed in the intervals [1.5·w̄,5·w̄].

Table 4(b) illustrates the performance of WNP for all
weighting schemes over all datasets. Similar to WEP, there
is a clear trade-off between effectiveness and efficiency for
Dmovies and Din f oboxes. It is interesting to note that ranking
the weighting schemes in descending order of RR (i.e.,
ascending order of PC) results in the same order as in Ta-
ble 4(a). For DBTC09, all weighting schemes achieve similar,
high performances with respect to all metrics. Compared to
WEP, though, the combination of every weighting scheme
with WNP yields significantly higher PC as well as lower
RR and PQ.

Table 4(c) presents the performance of CEP in combina-
tion with all weighting schemes across the three datasets.
By definition, they all achieve the same RR, which amounts
to 97.48%, 99.94% and 99.85% for Dmovies, Din f oboxes and
DBTC09, respectively. In absolute numbers, this corresponds
to 11, 15 and 3 comparisons per entity, respectively, thus
requiring 2 orders of magnitude fewer comparisons than
the input block collection. Apparently, this is at the cost
of lower effectiveness, since PC is reduced in all datasets
by more than 14%, regardless of the weighting scheme
(the only exception is ARCS for DBTC09). The worst
performance usually corresponds to CBS and JS , because
there are many pairs of entities that share exactly the
same number or portion of blocks, respectively. Again, this

behavior can be explained by the normalized histograms in
Figures 7(a) and (b), since CEP generally retains the edges
of the rightmost interval; the more matching edges and the
less non-matching ones it contains, the higher is the PC of
the corresponding weighting scheme.

Finally, Table 4(d) presents the performance of CNP
for all weighting schemes across all datasets. Similar to
its edge-centric counterpart, it exhibits excessively high
efficiency for both datasets (i.e., RR>95%). In absolute
numbers, this corresponds to 22, 28 and 7 comparisons per
entity for Dmovies, Din f oboxes and DBTC09, respectively. Its
impact on effectiveness is rather limited, reducing PC at
most by 5% for the Clean-Clean ER datasets and less than
14% for the Dirty ER one.

(ii) Edge-centric vs. node-centric pruning schemes. The
relative performance of these two types of pruning schemes
depends on the pruning criteria that lie at their core.
Thus, an equal basis comparison requires exactly the same
configuration. This is impossible, though, for the weight
criteria: WEP can only be combined with a global one,
while WNP makes sense only when coupled with a local
one (its conjunction with a global threshold renders it
identical to WEP).

The configuration of Section 3.3 approximates the ideally
equal settings, assuming similar criteria for both algorithms
(i.e., average edge weight). For this configuration, our ex-
periments suggest that the edge-centric algorithms perform
a deeper pruning that results in the lowest number of
comparisons and detected matches (i.e., lowest ∆PC). Nev-
ertheless, they are more accurate in discarding superfluous
comparisons, achieving higher PQ across all datasets and
weighting schemes. For example, consider the combination
of ARCS with WEP and WNP over Dmovies: PQ suggests
that for every 100 comparisons, the former identifies around
1.5 matches and the latter almost half of them.

On the other hand, the node-centric schemes are more
conservative in pruning edges, retaining even double as
much comparisons. Thus, they have a significantly smaller
impact on PC, which is also ensured by the more even
distribution of comparisons among entities; unlike the edge-
centric algorithms, which completely disregard the enti-
ties/nodes that are associated with none of the top weighted
edges, they ensure that every node remains connected with
the most similar of its co-occurring entities.

In the case of cardinality pruning criteria, it is possible
to apply the same global threshold to both CEP and CNP.
However, these settings merely allow for comparing the
relative effectiveness, since they involve the same number
of executed comparisons for both algorithms. We put these
settings into practice using as threshold for CEP the total
number of comparisons required by CNP. The outcomes
with respect to PC are presented in Table 2 and confirm that
the node-centric algorithms achieve a significantly higher
effectiveness than the edge-centric ones, across all datasets
and weighting schemes.

In summary, the most appropriate meta-blocking settings
for the application at hand depend on its performance
requirements and the available resources (assuming the
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configuration of Section 3.3). The node-centric pruning
schemes are suitable for applications emphasizing on ef-
fectiveness, provided that they can afford the high space
requirements (these pruning schemes store a threshold or a
certain number of comparisons per entity). They are also
particularly useful for tasks that are inherently expressed
in terms of entities (e.g., applications like social networks
that seek duplicates for a specific subset of the input
entities) and for entity collections that are expected to
contain a large portion of duplicate profiles (i.e., there is
a matching entity for most of the nodes). In contrast, the
edge-centric pruning schemes are suitable for applications
like incremental ER that focus on efficiency, especially
when the portion of matching entities is expected to be
rather low; in these settings, the top weighted edges are
more likely to correspond to the few duplicate profiles.

(iii) Weight vs. cardinality pruning criteria. There is a
clear pattern in the relative performance of weight and
cardinality pruning thresholds for the configuration of Sec-
tion 3.3: the former put more emphasis on effectiveness
and the latter on efficiency. In fact, the combination of
any weighting scheme with a cardinality threshold requires
at least half the comparisons than its combination with
the corresponding weight one, regardless of the selected
pruning algorithm. In most of the cases, this difference
amounts to a whole order of magnitude in the actual number
of comparisons. Note, though, that this radical increase
in efficiency is accompanied by a moderate difference in
effectiveness, due to the efficacy of cardinality thresholds
in distinguishing the matching comparisons from the super-
fluous ones. Comparing the PQ of CEP (CNP) with that of
WEP (WNP), we observe that the former is usually higher
than the latter by a whole order of magnitude. Still, weight
thresholds exhibit higher PC, reducing it — in the worst
case — half as much as the corresponding meta-blocking
settings with a cardinality criterion. Therefore, there is
no dilemma when choosing the appropriate criterion with
respect to the application requirements. Note, though, that
this decision also depends on the available resources, since
the cardinality criteria have higher memory requirements.

(iv) Comparison between weighting schemes. For
DBTC09, ARCS consistently achieves the highest perfor-
mance with respect to all block quality metrics, while the
rest of the weighting schemes exhibit similar, but lower
performance in most of the cases. For the Clean-Clean
ER dataset, the choice depends on the functionality of the
pruning criterion. In more detail, ECBS offers a balanced
choice for the weight pruning criteria, combining high effi-
ciency enhancements with negligible reductions in PC. For
the cardinality pruning criteria, where RR remains stable
across all weighting schemes, EJS consistently achieves
the (nearly) best efficiency-effectiveness balance, scoring
the highest PC values in most of the cases.

Of particular interest, though, is the comparison between
the plain weighting schemes and their enhanced versions;
that is, between CBS and ECBS as well as between
JS and EJS . The actual question is whether the more
information included in the enhanced schemes leads to a

better balance between RR and PC than the plain ones.
The weight pruning criteria does not offer a clear answer;
we can merely observe that the enhanced schemes offer
lower RR and lower PQ at the benefit of higher PC. In
contrast, the cardinality pruning criteria allow for a direct
comparison: RR is the same across all weighting schemes,
but the enhanced ones achieve higher PC in practically
all the cases. PQ also takes significantly higher values
for ECBS and EJS . We can conclude, therefore, that the
enhanced schemes convey significant enhancements in the
performance of CBS and JS .

(iv) Comparison with Iterative Blocking. Before exam-
ining the performance of Iterative Blocking, it is worth
clarifying that its functionality in the context of Clean-
Clean ER is reduced to discarding part of the superfluous
comparisons. In fact, it propagates all detected duplicates
to the subsequently processed blocks and merely saves
those comparisons that involve at least one entity that has
been matched to some other. This approach conveys signif-
icant efficiency enhancements when applied to redundancy-
positive block collections: its RR exceeds 60% for Dmovies

and 35% for Din f oboxes. All meta-blocking methods, though,
achieve higher efficiency gains, as they have a broader
scope, targeting all superfluous comparisons. This is also
verified by PQ, which indicates that Iterative Blocking
executes the highest portion of superfluous comparisons
across both datasets. Its only advantage is that it incurs no
impact on effectiveness. In practice, though, this is of minor
importance, given that most meta-blocking approaches have
limited cost in effectiveness in the context of Clean-Clean
ER.

The real strength of Iterative Blocking lies in Dirty ER,
especially in applications that involve equivalence classes of
high cardinality. In these settings, it puts more emphasis on
identifying additional matches, thus yielding the highest PC
among all methods. This is exactly the case with DBTC09:
although the original PC is already high, amounting to
97%, Iterative Blocking increases it by more than 1%.
The re-examination of large blocks, though, increases the
number of executed comparisons and prevents significant
enhancements in efficiency. Indeed, it merely saves around
1% of all comparisons in the case of DBTC09. Thus, its
efficiency is significantly lower than meta-blocking, which
again discards more superflous comparisons.

In summary, Iterative Blocking is only appropriate for
applications that place effectiveness in priority and are
satisfied with rather conservative savings in efficiency. For
the rest of them, meta-blocking offers a better balance
between effectiveness and efficiency.

Discussion. In summary, we can conclude that among the
weighting schemes, the Enhanced Common Blocks Scheme
consistently offers a good balance between effectiveness
and efficiency over Clean-Clean ER. For Dirty ER, though,
the Aggregate Reciprocal Comparisons Scheme offers the
best approach. We also observe that the node-centric ap-
proaches perform a shallow pruning that yields lower PQ
and RR values than edge-centric ones. This allows them
to retain almost intact the original effectiveness, especially
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when combined with weight thresholds. Therefore, applica-
tions that place more emphasis on effectiveness should opt
for node-centric pruning schemes, while those focusing on
efficiency should consider the edge-centric ones. Among
the two types of pruning criteria, the weight thresholds
are more robust with respect to effectiveness, while the
cardinality thresholds are appropriate for applications em-
phasizing on efficiency, such as incremental ER.

4.3 Sensitivity Analysis

As mentioned above, the performance of pruning algo-
rithms depends largely on the underlying pruning criterion
— regardless of its scope or functionality. To examine
how our pruning schemes behave as a function of their
thresholds, we performed sensitivity analyses of RR and
PC for all schemes over the three datasets of our study.
In Figures 8(a) to (d), we present the behavior of each
pruning algorithm in combination with a specific weighting
scheme over Dmovies (for each algorithm, the rest of the
weighting schemes demonstrated similar patterns and, thus,
are omitted for brevity. Nevertheless, we tried to cover all of
them, considering in each diagram a different one.). Every
diagram was derived by incrementing the pruning threshold
from 0.1·t to 1.9·t with a step of 0.1·t, where t denotes
the threshold derived from the configuration of Section 3.3
(e.g., the average edge weight in the case of WEP).

In every figure, we observe that there is a clear trade-off

between RR and PC. Higher thresholds increase RR and
reduce PC for the weight pruning criteria, and vice versa
for the cardinality ones. In fact, the evolution of PC is
practically linear for all pruning schemes. The same applies
to RR for the cardinality criteria, whereas for the weight
ones, the linear evolution is preceded by a steep rise for
the interval [0.1·t, 0.5·t]. The thresholds of Section 3.3 cor-
respond to the vertical dotted line intersecting the middle of
the x-axes. We observe that in every case, small variations
in the size of t lead to small variations in the resulting
performance. This suggests that the threshold we selected
for each pruning scheme achieves a good balance between
effectiveness and efficiency. Thus, it provides a good basis
for adjusting a meta-blocking method to the requirements
of the application at hand. For example, an application
employing CEP could double the threshold specified by
our approach in order to rise PC by 10% for double as
many comparisons.

In summary, the sensitivity analysis of Figures 8(a) to
(d) demonstrate that our meta-blocking methods are robust
with respect to the threshold configurations of Section 3.3.

4.4 Time Requirements of Meta-blocking

The real usefulness of meta-blocking depends on the rela-
tion between the time required for building and pruning the
blocking graph and the time consumed while performing
the (spared) pairwise comparisons. The goal of this section
is to examine whether the former is significantly lower than
the latter, thus justifying the use of our approaches. To this
end, we evaluate the time requirements of meta-blocking
using three measures:

• Materialization Time (MT ) refers to the time required
by the first two steps of metablocking, i.e., graph
building and edge weighting.

• Restructure Time (RT ) corresponds to the last two
steps of meta-blocking, i.e., graph pruning and block
collecting.

• Comparison Time (CT ) indicates the time required for
performing the (retained) pairwise comparisons.

As the baseline method, we consider the one that iterates
over the input blocks, executing all the comparisons they
entail, without any further processing (i.e., its processing
time exclusively corresponds to CT , while MT=RT=0). For
all methods, the similarity of entity profiles is defined as
the Jaccard coefficient of their tokenized attribute values;
any other entity comparison technique is also applicable,
but this choice is orthogonal to the proposed method, thus
not altering our experimental results.

The outcomes of our experiments are presented in Ta-
ble 3. We notice the following patterns for the vast majority
of meta-blocking approaches across all datasets: first, the
overall processing time of the weighting pruning criteria is
dominated by CT , with MT and RT merely accounting
for a fraction of it. Exception to this rule is ARCS in
conjunction with WEP and WNP, as the low discernibility
of its weights (�0.1 in most of the cases) results in a
time-consuming meta-blocking process. Second, there is
a balance between CT and MT + RT for the cardinality
pruning criteria, since they entail a very low number of
comparisons with respect to the size of the graph. Again,
ARCS corresponds to the least efficient meta-blocking
process.

We also notice that for every dataset, MT and RT take
almost identical values for all weighting schemes, with the
small variations corresponding to the different functionality
of each weighting scheme. Regarding CT , we observe that
it takes significantly lower values for the cardinality pruning
criteria than for the weight ones. This overhead is caused
not only by the lower number of comparisons retained by
the former, but also by the fact that the latter iterate over all
edges of the blocking graph during the comparisons phase.

In summary, we observe that all combinations of pruning
schemes with a weighting one require significantly less
time than the baseline method. For example, the most
efficient meta-blocking techniques for Dmovies (i.e., CEP
in conjunction with CBS or JS ) are 35 times faster than
the baseline. Even the most time-consuming meta-blocking
settings for each dataset run at least 2 times faster than
the baseline. As explained in Section 3.1, this should be
attributed to the efficient materialization of the blocking
graph, which involves lower complexity than the string-
based techniques for comparing entity profiles.

Note that optimization techniques can be integrated into
the implementation of the meta-blocking and the entity
comparison methods. For instance, during the pruning of
the blocking graph, edges with weights lower than the spec-
ified threshold can be identified more efficiently with the
help of prefix filtering. No such technique was considered,



14

though, in our experimental study, since it is orthogonal to
our evaluation.

5 Conclusions
In this paper, we introduced meta-blocking as a generic
task that can be applied on top of any blocking method to
increase its efficiency at a minor cost in effectiveness. We
described a family of techniques, at the core of which lies
the blocking graph; they prune its edges with the lowest
weight in order to derive a new set of blocks that sacrifices
a negligible amount of matches to save a large number of
comparisons. We thoroughly evaluated all combinations of
the proposed techniques over two large, real-world datasets.
The results demonstrate the high efficiency enhancements
conveyed by our meta-blocking techniques, with the Weight
Node Pruning involving two orders of magnitude less
comparisons at a minor cost in PC (less than 3% reduction).
In absolute values, meta-blocking helps process the original
set of blocks 10 to 50 times faster, reducing the required
comparisons by a whole order of magnitude.

In the future, we plan to enhance the efficiency of meta-
blocking through the incorporation of schema informa-
tion that depends on the underlying application. We also
acknowledge that meta-blocking depends on the level of
redundancy entailed by the underlying block collection,
which — for some block building methods — can be
configured by tuning the corresponding parameter(s). Thus,
we intend to investigate the effect of these parameters on the
performance of meta-blocking. Last but not least, we will
study the interplay of meta-blocking with blocking methods
that consider profile merges in the context of Dirty ER, such
as HARRA [17] and Iterative Blocking [30].
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Fig. 5. (a) The process of traditional blocking-based ER, and
(b) the blocking-based ER with meta-blocking. In both cases, the
input comprises the entity collections to be resolved (E1 and E2),
while the output consists of the detected duplicates Ddetected and
the computational cost c (i.e., number of executed comparisons).

Appendix

RelatedWork
There is a large amount of work on entity resolution ranging
from string similarity metrics [6] to methods relying on
transformations [28] and entity relationships [9]. Analytical
overviews can be found in these surveys [8], [11], [13],
tutorials [18], [24] and books [?], [?]. Due to their quadratic
complexity, ER methods typically scale to large data col-
lections through blocking. The blocking-based ER process
conceptually consists of two main steps: block building and
block processing (see Figure 5(a)).

Block building receives as input two entity collections
(E1 and E2 in Figure 5(a)) and creates a set of blocks
B. Methods of this type are categorized according to two
orthogonal criteria: their relation to redundancy and to
schema information. The former criterion was analyzed in
Section 1, while the latter distinguishes them into schema-
based and schema-agnostic blocking methods; that is, into
those techniques that integrate schema information in their
functionality and those that completely disregard such ev-
idence. The resulting two-dimensional taxonomy of block
building methods is illustrated in Figure 6.

On the one hand, schema-based blocking methods extract
from each entity a blocking key that summarizes the values
of selected attributes. Entity profiles are then placed in
blocks on the basis of equal or similar blocking keys.
Schema-based blocking methods include Sorted Neighbor-
hood [16], bi-grams [2] and q-grams [14] blocking, Suffix
Array [1], [7], HARRA [17], and Canopy Clustering [21].
A comparative analysis can be found in [5]. As this study
points out, one of their major drawbacks is the fine-
tuning of multiple parameters [7]. To ameliorate this issue,
automatic methods can be trained to select the optimal
parameter values [3], [22].

On the other hand, schema-agnostic blocking creates
blocks solely on the basis of attribute values, i.e., without
knowledge of the input schema(ta). Semantic Indexing [23]
creates blocks based exclusively on the relationships be-
tween entity profiles. Attribute-agnostic Blocking creates
a distinct block for each token shared by at least two
input entity profiles [25]. For RDF data, Total Description
exploits semantics in the entity URIs, links between entities
and tokens in the literal values of every profile [27]. Both
techniques do not require tuning (i.e., their functionality is
parameter-free) and exhibit high robustness and effective-
ness, due to the high levels of redundancy they involve.
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Fig. 6. Two-dimensional taxonomy of block building methods.

Block processing receives as input a set of blocks B and
produces as output the set of detected duplicates Ddetected

along with their computational cost c, in terms of the
number of executed comparisons (see Figure 5(a)). Its
goal is to process the input set of blocks in such a way
that minimizes c without any significant impact on the
cardinality of Ddetected. This can be achieved by eliminating
the redundant and the superfluous comparisons contained
in B. To this end, Block Purging [25] discards the largest
blocks, while Block Scheduling [25] sorts blocks according
to a probabilistic measure that estimates their likelihood to
contain duplicates. Thus, it forms the basis for applying
Block Pruning [25] and Duplicate Propagation [30]; the
former terminates the entire processing as early as possible,
while the latter maximizes the number of superfluous
comparisons that can be spared by the early detection of
duplicate profiles. On another line of research, Iterative
Blocking [30] propagates the latest match decisions to all
associated blocks: every time two entity profiles are found
duplicates, they are replaced by the merged profile in all
blocks containing either of them. These blocks are then
scheduled for processing, even if they have already been
examined. In this way, a block collection is processed
iteratively in order to increase the matching accuracy (and,
thus, the blocking effectiveness) and to spare repeated
comparisons.

The proposed meta-blocking procedure is fundamentally
different from both block building and block processing. It
is a specialized procedure applicable to redundancy-positive
block building methods. Its input comprises the set of
blocks B created by such a method and its output is a new
set of blocks B′ that involves fewer comparisons than B,
while placing (almost) the same number of matching entity
profiles in at least one block. Block Purging and Block
Pruning have a similar interface, but their functionality
is restricted in discarding some of the input blocks. In
contrast, meta-blocking techniques aim at restructuring the
given block collection B based on the block-to-entity asso-
ciations it entails. For this reason, it is performed between
block building and block processing, improving the output
of the former in order to facilitate the performance of the
latter, as shown in Figure 5(b). A similar idea was explored
in Comparison Pruning [26], which discards comparisons
between entity profiles that share a rather small portion of
blocks in the context of redundancy-positive methods. Thus,
it can be viewed as a specific instantiation of our meta-
blocking framework; in fact, it is equivalent to applying
WEP (see Section 3.3.1) on a blocking graph with Jaccard
similarities as weights (see Section 3.2).



16

Experimental Outcomes

Dmovies Dinfoboxes DBTC09DBPedia IMDB DBP1 DBP2

Entities 27,615 23,182 1,19·106 2,16·106 253,353
Name-Value Pairs 186,013 816,012 1.75·107 3.67·107 1,60·106

Blocks 40,430 1.21·106 106,462
BC 22.52 15.38 7.45
CC 4.27·10−2 1.29·10−3 1.44·10−2

Brute Force Comp. 6.40·108 2.58·1012 3.21·1010

Block Comp. 2.67·107 3.98·1010 1.31·108

Original RR 95.83% 98.46% 99.59%
Existing Matches 22,405 892,586 10,653
Original PC 99.39% 99.89% 96.94%
Original PQ 9.83·10−4 2.24·10−5 7.89·10−5

Edges 2.26·107 3.41·1010 7.77·107

Nodes 5.06·104 3.33·106 2.53·105

TABLE 1
Overview of the evaluation datasets.

Dmovies Dinfoboxes DBTC09
PCCEP PCCNP PCCEP PCCNP PCCEP PCCNP

ARCS 89.16% 94.13% 83.82% 96.87% 93.22% 95.60%
CBS 80.42% 95.20% 60.46% 96.34% 31.97% 88.70%
ECBS 87.17% 96.69% 67.85% 97.72% 65.78% 86.25%
JS 89.22% 94.93% 86.02% 96.86% 35.97% 83.79%
EJS 91.03% 95.98% 85.26% 97.18% 51.85% 84.50%

TABLE 2
Comparing effectiveness between CEP and CNP for the same

number of comparisons across all datasets.

Dmovies (minutes) Dinfoboxes (hours) DBTC09 (minutes)
MT RT CT

∑
MT RT CT

∑
MT RT CT

∑
Baseline .0 .0 14 14 .0 .0 128 128 0 0 111 111

ARCS .1 .6 1.0 1.6 3.2 24.4 25.7 53.3 .2 2.5 5.9 8.7
W CBS .1 .1 .9 1.1 3.3 7.0 21.2 31.6 .2 1.5 19.8 21.5
E ECBS .1 .2 1.2 1.4 3.1 6.7 30.8 40.6 .2 1.8 17.2 19.2
P JS .1 .1 2.1 2.3 3.2 6.0 51.2 60.4 .2 1.9 20.2 22.3

EJS .1 .2 2.3 2.5 3.2 6.7 52.0 62.0 .2 2.0 20.2 22.4

ARCS .1 .6 1.3 1.9 3.5 25.9 28.7 58.1 .2 2.7 21.5 24.5
W CBS .1 .1 1.0 1.2 3.2 6.2 24.4 33.9 .2 1.7 24.3 26.3
N ECBS .1 .2 2.1 2.4 3.6 7.5 33.4 44.6 .2 2.1 30.9 33.2
P JS .1 .1 3.0 3.2 3.5 7.0 55.4 65.9 .2 2.1 37.7 40.1

EJS .1 .2 3.6 3.8 3.6 8.0 58.5 70.1 .2 2.4 39.6 42.1

ARCS .1 .6 .2 .9 3.2 24.5 .1 27.9 .2 2.6 .8 3.6
C CBS .1 .1 .2 .4 4.2 7.4 .1 11.7 .2 1.5 .8 2.5
E ECBS .1 .2 .2 .4 4.4 8.0 .1 12.6 .2 1.9 .8 2.9
P JS .1 .2 .2 .4 4.2 7.5 .1 11.8 .2 1.9 .8 2.9

EJS .1 .2 .2 .4 3.2 7.1 .1 10.4 .2 2.2 .8 3.2

ARCS .1 .6 .3 1.0 3.2 24.7 .2 28.1 .2 2.7 1.5 4.4
C CBS .1 .1 .3 .5 3.8 6.7 .2 10.8 .2 1.6 1.5 3.3
N ECBS .1 .2 .3 .6 3.7 6.9 .2 10.9 .2 2.0 1.5 3.6
P JS .1 .2 .3 .6 3.2 6.3 .2 9.8 .2 1.9 1.5 3.6

EJS .1 .2 .3 .6 3.2 7.1 .2 10.6 .2 2.3 1.5 4.0

TABLE 3
Processing time for all meta-blocking methods over the three

datasets of our experimental study.
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(b) Matching edges.
Fig. 7. Normalized histograms of the weight distributions in all
blocking graphs of Dmovies, where w denotes the average edge
weight of the blocking graph for each weighting scheme.
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(d) CNP over CBS
Fig. 8. Sensitivity analysis of every pruning algorithm in con-
junction with a specific weighting scheme.
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Dmovies Dinfoboxes DBTC09
Comp. RR PC ∆PC PQ Comp. RR PC ∆PC PQ Comp. RR PC ∆PC PQ
(×106) (%) (%) (%) (×10−2) (×108) (%) (%) (%) (×10−4) (×107) (%) (%) (%) (×10−4)

Iterative Bl. 10.41 61.06 99.39 0 0.21 255.94 35.67 99.89 0 0.35 12.98 0.84 98.22 1.32 0.81
ARCS 1.38 94.82 90.89 -8.55 1.47 2.85 99.28 92.45 -7.45 29.00 0.41 99.35 94.77 -2.24 24.85
CBS 2.71 89.88 94.68 -4.74 0.78 33.97 91.46 95.47 -4.42 2.51 2.16 96.57 86.84 -10.42 4.29
ECBS 3.52 86.82 97.95 -1.45 0.62 57.71 85.50 99.66 -0.23 1.54 1.81 97.12 86.60 -10.67 5.08
JS 6.71 74.90 97.93 -1.46 0.33 112.21 71.80 99.73 -0.16 0.79 2.15 96.58 87.13 -10.12 4.31
EJS 7.34 72.54 98.32 -1.07 0.30 110.14 72.32 99.77 -0.11 0.81 2.13 96.61 89.01 -8.18 4.45

(a) WEP
ARCS 2.55 90.44 96.55 -2.86 0.85 14.84 96.27 99.41 -0.48 5.98 2.25 96.43 95.72 -1.26 4.54
CBS 2.86 89.31 97.19 -2.21 0.76 35.65 91.04 99.35 -0.54 2.49 2.69 95.72 91.46 -5.66 3.62
ECBS 6.92 74.10 98.64 -0.75 0.32 99.37 75.02 99.75 -0.14 0.90 3.42 94.56 91.13 -5.99 2.84
JS 10.00 62.59 98.68 -0.71 0.22 195.93 50.76 99.87 -0.02 0.46 4.22 93.29 91.43 -5.68 2.31
EJS 11.81 55.77 99.16 -0.23 0.19 199.96 49.74 99.88 -0.01 0.45 4.41 93.00 92.52 -4.56 2.24

(b) WNP
ARCS 0.57 97.87 82.75 -16.74 3.25 0.26 99.94 79.46 -20.46 276.83 0.09 99.85 92.17 -4.92 103.99
CBS 0.57 97.87 75.78 -23.75 2.98 0.26 99.94 51.71 -48.37 179.68 0.09 99.85 24.07 -75.17 27.16
ECBS 0.57 97.87 81.58 -17.92 3.20 0.26 99.94 62.14 -37.79 216.49 0.09 99.85 42.81 -56.05 48.07
JS 0.57 97.87 79.12 -20.40 3.11 0.26 99.94 82.09 -17.83 285.98 0.09 99.85 25.77 -99.55 29.07
EJS 0.57 97.87 84.87 -14.61 3.33 0.26 99.94 79.61 -20.30 277.37 0.09 99.85 45.85 -52.71 51.73

(c) CEP
ARCS 1.10 95.88 94.13 -5.39 1.91 0.50 99.88 96.87 -3.02 174.63 0.18 99.72 95.60 -1.38 58.22
CBS 1.10 95.88 95.20 -3.48 1.95 0.50 99.88 96.34 -3.56 173.68 0.18 99.72 88.70 -8.50 54.02
ECBS 1.10 95.88 96.69 -2.71 1.97 0.50 99.88 97.72 -2.17 176.17 0.18 99.72 84.34 -11.03 52.53
JS 1.10 95.88 94.93 -4.45 1.93 0.50 99.88 96.86 -3.03 174.62 0.18 99.72 83.79 -13.57 51.03
EJS 1.10 95.88 95.98 -3.43 1.95 0.50 99.88 97.18 -2.71 175.19 0.18 99.72 84.50 -12.83 51.46

(d) CNP

TABLE 4
Performance of all pruning schemes in combination with all weighting schemes over the three datasets of our study.


