
WhiteWater: Distributed Processing of
Fast Streams

Ioana Stanoi, George A. Mihaila, Themis Palpanas, and Christian A. Lang, Member, IEEE

Abstract—Monitoring systems today often involve continuous queries over streaming data in a distributed collaborative fashion. The

distribution of query operators over a network of processors, as well as their processing sequence, form a query configuration with

inherent constraints on the throughput that it can support. In this paper, we discuss the implications of measuring and optimizing for

output throughput, as well as its limitations. We propose to use instead the more granular input throughput and a version of throughput

measure, the profiled input throughput, that is focused on matching the expected behavior of the input streams. We show how we can

evaluate a query configuration based on profiled input throughput and that the problem of finding the optimal configuration is NP-hard.

Furthermore, we describe how we can overcome the complexity limitation by adapting hill-climbing heuristics to reduce the search

space of configurations. We show experimentally that the approach used is not only efficient but also effective.

Index Terms—Query processing, optimization, database architectures, distributed applications.

Ç

1 INTRODUCTION

MONITORING is increasingly used in various applications
such as business performance analytics, RFID track-

ing, and analyzing signals from financial indicators and
strategies. A continuous monitoring query can be deployed
in various configurations, where some are better than others
with respect to optimization criteria such as latency, work,
and throughput. In many monitoring applications that we
worked with, events are emitted, stored, and processed by
different layers. In such a stratified processing topology, we
can identify at least two opportunities for optimization.
First, we can make use of the inherent distributed topology
to reorganize the processing operators in a manner that will
improve the overall throughput. Second, each of the
processing layers can, in turn, be distributed on to clusters
of physical nodes for scalability. In both cases, different
orderings of operators and different mappings of operators
to physical nodes lead to different upper bounds for the
supported throughput. Consider the following examples.

Example 1: Distributed Business Process Monitoring.
Oftentimes, a company describes its business actions at
various levels of granularity with the use of a workflow
concept called a business process. A process is composed
of subprocesses such as credit check and, to be more
granular, tasks (such as a task within the credit check).
Streams of events provide real-time information that is
processed, analyzed, and aggregated while crossing

different layers of abstraction: from the lower IT layer
to the highest business layer. Queries can span more than
one such layer, whereas the processing itself is enabled
by multiple components such as event bus, various
correlation engines, and dedicated monitors. With a high
number of concurrent instances of each process, each
instance emitting a large numbers of events, the
monitoring components can easily become bottlenecks
in the system. To relieve their processing load, some
filtering and aggregation should be executed at different
places in the network, depending on the resources
available. A challenge in this case is how we can find a
configuration that places operators in the network in
such a way that the system can handle the highest input
rate possible and avoid processing backlogs.

Example 2: Load Balancing on Clusters of Processors.

Granular state reporting of hundreds of instances of
business processes (for example, e-commerce orders) can
easily generate thousands of events per second. At such
high rates, event streams can be efficiently processed by
more than one processor, placed in a blade center.
Intrablade and interblades load balancing is a major
requirement in optimizing the processing of the input
flow. Again, this is the same in-network query optimiza-
tion problem as in the previous example, but in this case,
edge latency can vary if chips are on the same blade or
on different blades. As in the previous application
example, a critical requirement is that the system should
be able to support peak-high input rates.

Our work targets a distributed monitoring system of
continuous queries processed by a network of components,
each capable, to some extent, to execute stream operators
over incoming data. Capabilities and resources naturally
vary from one component to another. Processing compo-
nents may already be running other tasks, and, based on
local resource limitations and requirements, decide on a
resource capacity that they can offer for the processing of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007 1

. I. Stanoi is with IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120. E-mail: irs@us.ibm.com.

. G.A. Mihaila and C.A. Lang are with IBM T.J. Watson Research Center,
19 Skyline Drive, Hawthorne, NY 10532.
E-mail: {mihaila, langc}@us.ibm.com.

. T. Palpanas is with the Department of Information and Telecommunica-
tions, University of Trento, Via Sommarive 14, 38050 Povo, TN, Italy.
E-mail: themis@dit.unitn.it.

Manuscript received 3 Aug. 2006; revised 7 Feb. 2007; accepted 2 Apr. 2007;
published online 1 May 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0375-0806.
Digital Object Identifier no. 10.1109/TC.2007.1056.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

monitoring operators. Although the processing components
are fairly stable, data can arrive at the system at various
rates, and the system is required to support these rates. We
have to find an execution plan that spreads the query
operators across those layers and makes efficient use of all
the available resources. The query configuration should
ensure that we can handle the input data rates and avoid the
need for load shedding as much as possible. Finding the
optimal configuration is not trivial: Exhaustively enumerat-
ing and analyzing all the equivalent rewritings and operator
placement options for an example query of 15 operators (five
joins) and 11 physical nodes (each operator having only two
placement options) can take up to 16 hours on a 1.6-GHz
machine.

Each operator of a continuous query requires a certain
amount of execution time for every incoming data tuple,
which leads to an upper bound on the rate at which tuples
can be processed. If the input streams exhibit higher rates
than the query that the operators can process, then special
mechanisms need to be in place to handle them. When high
input rates represent only short bursts, buffers can be used
to temporarily store the overflow of incoming data. If
instead, the high rates have to be supported for a long
period of time, then data need to be purged from the input
to the operators. This approach cannot avoid the deteriora-
tion of the quality of query results. There has been a large
body of recent research that focused on which events to
shed in order to return a high-quality result. However,
some loss of quality is unavoidable when information is
discarded. For some applications, any event may contain
critical information, and the reduction in the quality of
results should be minimized.

In this paper, we focus on a problem complementary to
that of load shedding: finding a query configuration that,
given resource and quality constraints, can successfully
process the highest incoming stream rates. This translates
into finding an order of query operators and a placement of
the operators on physical nodes that maximize throughput.
The benefit is that even with load shedding, the number of
tuples that have to be filtered out of the system is reduced if
the query is optimized for the throughput. It therefore
ensures a more accurate query result. The problem that we
address is how we can find and evaluate the configuration
that maximizes the sustained throughput in the context of a
distributed collaborative system. By contrast with other
optimization goals such as work and latency, throughput is
affected by the logical ordering of a query’s operators, as
well as by the physical placement of the operators.

The measure of throughput quantifies the number of
tuples that can be processed by the system in a unit of time.
Referring back to our business performance monitoring
example, event streams that represent notifications of state
changes of manual tasks (for example, filling out forms)
typically have much lower rates than notifications sent from
automated tasks (for example, automated transactions). The
knowledge about the relative magnitude of the input rates
of streams should therefore be taken into account when
deciding the allocation of common computing resources. In
the WhiteWater project, we capture this knowledge into an
input profile (or, simply, a profile). Since our goal is to

maximize the input rate that can be processed without
bottlenecks, we express throughput as a vector that
quantifies the processing of each input stream. The goal of
maximizing throughput is oftentimes relevant only if it
satisfies the requirements of the input profile. Out of the
large space of possible query configurations, our goal is to
find the query plans that maximize throughput and adhere
to the input profile.

In this work, we make the following contributions:

. We define the notion of profiled throughput optimiza-
tion. We show how we can define a profile that
captures the requirements of input streams.

. We propose an algorithm for finding a query
configuration that maximizes the profiled through-
put. In our solution, we address two challenges:
searching through the space of all possible query
configurations and efficiently evaluating a config-
uration. We show that the throughput maximization
problem is NP-hard, and we propose to use hill-
climbing techniques to traverse the query configura-
tion space. Our model takes into account resource
and quality constraints such as CPU, memory,
communication bandwidth, and latency.

The novelty of our approach lies in defining the problem
of profiled throughput optimization, adapting the known
hill-climbing heuristics, and studying their behavior as
applied to this specific objective function and constraints.

In the current model, we did not include stream
splitting/merging as query operators although they can
be very useful for scalability in a cluster environment. Split
streams can be processed at different rates on various paths
and, in this case, the merging operator would need to buffer
in order to synchronize them. Since in this paper, we do not
model unbounded queues, we cannot quantify the effects of
merging. This raises new challenges that we are currently
investigating.

We structured our presentation as follows: In Section 2,
we introduce the problem of maximizing the profiled
throughput and discuss how it differs from previous work.
In order to evaluate a query configuration, in Section 3, we
show how we can maximize throughput under a set of
constraints that are reviewed in Section 4. Our solution
includes an evaluation procedure and a method for
traversing the search space. Since finding an optimal
configuration is NP-hard, we propose to use hill-climbing
techniques, overviewed in Section 5.1. In Section 5.2, we
present in detail the search method. The experimental
analysis of our techniques is presented in Section 6. Section 7
presents the literature of solutions in different areas related
to our work. We conclude with some directions of future
work that we find interesting and useful in building a more
general system for distributed continuous queries.

2 PROBLEM DEFINITION

In order to avoid the loss of query result quality, our goal is
to create a query configuration that can process the highest
input rate possible. This naturally translates into finding an
order of query operators and a placement of the operators
on physical nodes that maximize throughput. However, we

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

show that we cannot use this measure of throughput as the
only indicator of how good a query configuration is. In this
section, we compare throughput with other optimization
goals and redefine throughput optimization to include
additional knowledge that we found to be essential. The
notation that we will use throughout the paper is
summarized in Table 1.

2.1 On Throughput, Work, and Latency

Throughput represents the number of input tuples that can be
processed by the system in a given unit of time. By contrast,
maximum latency measures the maximum time that it takes
for all operators on a path to process an input tuple. This
notion of latency is often used in practice because it is easily
measurable: It is the observed delay between the time that a
tuple enters the system and the time that the corresponding
result tuple is produced. Note that other definitions of
latency are possible (for example, average latency). Work
can be defined as the number of instructions needed to
process a given input rate per time unit. Work, latency, and
throughput are all optimization criteria that can be used to
ascertain the quality of a query configuration.

For our purpose, it is critical to maximize throughput,
which as we will show, does not coincide with any of the
other optimizations. We will illustrate our point with a
simple example, as shown in Fig. 1. Consider two SELECT

operators o1 and o2 with selectivities o1:s and o2:s,
respectively, and costs o1:c and o2:c in a number of
instructions necessary to process a tuple. We refer to the
placement where o1 is on node N1 and o2 is on node N2 as
configuration C1. Configuration C2 swaps the physical
placement of the operators in C1. For simplicity, in this
example, there are no network, memory, or latency
constraints and no queues.

The maximum latency of an operator is calculated as the
ratio of the number of instructions necessary to process a
tuple to the speed of these instructions. In the first
configuration C1, total latency is the sum of the latencies
of both operators o1:c=N1:I þ o2:c=N2:I. Calculations of
latencies of C2 are similar, and the results are summarized
in Table 2. It is important to note that the actual order of
operators on a path does not play a role in the total latency.

By contrast, the total work performed by the system only
takes into account the logical ordering of operators, whereas
the physical placement of the operators onto nodes does not
matter. For the first configuration C1, the work performed
by the first operator is measured in the number of
instructions/time unit as r� o1:c. The total work is the
work of the two operators r� o1:cþ r� o2:s� o2:c.

Unlike maximum latency and work, throughput is
affected by both the physical and the logical placement of
the operators.1 Moreover, instead of considering the input
rate r set, throughput is used to calculate the biggest r that
the system can cope with. The limit on r is due to at least
one of the operators becoming a bottleneck. For the query
plan in C1, operator o1 can only support an incoming tuple
rate bounded by the processing speed N1:I of the node N1,
that is, r� o1:c � N1:I. Considering only operator o1, the
input bottleneck occurs when r ¼ N1:I=o1:c. The second
operator is bounded according to r� o1:s� o2:c � N1:I,
where r� o1:s is the operator’s input rate when the input to
the query is r. The input limitation of o2 leads then to a rate
of N2:I=ðo1:s� o2:cÞ. Then, the query is only able to cope
with the minimum between the possible rates of the two
operators:

throughput ¼ min N1:I

o1:c
;

N2:I

o1:s� o2:c

� �
:

Table 2 shows the expression for the throughput of
configuration C2. Previous work in distributed query
optimization focused on reducing latency or work, whereas
the measurement of throughput was used as an indication
of how good a query configuration was. By contrast, our
goal is to find a way of optimizing specifically for
throughput, whereas latency, for example, can be treated
as a constraint.

2.2 Throughput as a Vector

Previous stream work addressed the issue of maximizing or
improving the throughput, often measured at the root of the
query tree and represented by one number. We refer to the
throughput measured by considering the output rate of a
query as output throughput. This is different from input

STANOI ET AL.: WHITEWATER: DISTRIBUTED PROCESSING OF FAST STREAMS 3

1. Note that this does not hold in general. For example, in the case of a
multijoin query, the latency is affected by the total height of the query plan
(for example, left deep versus bushy).

TABLE 1
Notation Used

Fig. 1. A query and two of its possible configurations.

throughput, which is the rate at which input tuples are
processed by the system. As the input throughput increases,
the output throughput usually increases as well. If we look
in more detail, then one can see that the output throughput
depends not only on the input throughput but also on the
selectivity of the operators. If selectivities vary, then the ratio
of the input to the output throughputs fluctuates as well.

Consider now only the input throughput. In measuring
the input throughput as a number, we lose information on
how the different input streams contribute to the process.
This information is critical if we want to optimize for a
system where there are differences in the behavior of the
streams. We therefore adopt a vector notation of the
throughput as < r1; r2; � � � ; ri; � � � rn > , where ri is the
number of tuples from input stream i processed in units
of time. For some applications, it makes sense to maximize
the output throughput because it gives an idea of how
much “work” a system is able to do in terms of the tuples
processed, and two configurations are easily comparable.
This is not the case in our model, since we want to
maximize the individual input rates that can be processed
by the system.

Using the vector notation for throughput, the comparison
between the input throughputs of two query configurations
is not straightforward. For example, let two configurations
support the input streams r1, r2, and r3 at the maximum rates
of < 10t=s; 40t=s; 20t=s > and < 40t=s; 10t=s; 20t=s > , re-
spectively. Which throughput should be considered “best?”
The sum of all the tuples processed is 70, which is the same
for both configurations. We argue that the best configuration
is the one that maximizes the throughput AND fits more
tightly with the behavior of the input streams. If the
observed input rates at one time are < 20; 5; 10 > , then the
first configuration clearly cannot support them, whereas the
second can. The key is to take into account the knowledge
about the behavior of input streams (or profile), and apply the
throughput maximization problem to this profile. Next, we
show how we can define a profile and how we can maximize
a profiled throughput.

3 MAXIMIZING A PROFILED THROUGHPUT

A query may receive input from multiple data streams with
different rate fluctuations. One stream may come from a
source that rarely emits events, whereas another stream
may be characterized by long bursts of data at very high
rates. If the query optimizer is given even coarse informa-
tion on the expected input behavior, then it can generate a
query plan that is appropriate under these assumptions.
Note that without this additional knowledge, the query
optimizer will have no way of distinguishing among many
feasible solutions and may decide that the best solution is
one that accepts a high input rate on the slower stream and
a low input rate on the fast stream. In this paper, the profile

used during optimization defines the values of the
maximum rates that the streams are expected to reach.
The profile of the input is then defined as an assignment of
values to the input rates that becomes a target for supported
throughput < rp1; r

p
2; � � � rpn > .

A solution C:S is an assignment of values to the input stream
rate variables of a given configuration C such that all the
constraints are satisfied. The quality QpðC:SÞ of a solution C:S
should then quantify how much the solution achieves
toward the goal of maximizing the throughput with respect
to the profile. Note that the goal can also be surpassed. For a
stream ri where the maximum rate is expected to reach rpi , a
solution with value rsi achieves rsi =r

p
i of the goal. The ratio

can be greater than 1 if the solution exceeds the goal. We
define the “goodness” of a solution as follows:

Definition 1. The qualityQpðC:SÞ of a solution C:S with respect

to an input profile vector p is defined as QpðC:SÞ ¼ min
1�i�n

rsi
rpi

� �
.

The intuition behind the above quality measure is that it
captures the highest sensitivity to overload from any input
stream because if any of the streams cannot be processed,
the system is overloaded, which can lead to backlogs or
incorrect results due to shedding. Note also that in the
presence of window joins, backlogs in any one stream will
require buffering on other streams (in order to guarantee
correctness of join results).

Note that a configuration has an infinite number of
solutions. Consider one solution C:S ¼< rs1; r

s
2; � � � rsn > .

Then, all possible C:S0 ¼< rs
0

1 ; r
s0

2 ; � � � rs
0

n > such that rs
0

i �
rsi are also solutions for this configuration. The configura-
tion is as good as its best solution.

Definition 2. The quality QpðCÞ of a configuration C with
respect to an input profile p is calculated as

QpðCÞ ¼ max
C:S
ðQpðC:SÞÞ ¼ max

C:S
min

1�i�n

rsi
rpi

� �� �
QpðC:SÞ:

Under these definitions, the throughput optimization
problem becomes the following nonlinear programming
problem: The objective function to maximize is QpðCÞ for all
configurations C under the constraints imposed in the
distributed system by the physical resources and service
quality guarantees. We will discuss these constraints in
detail in Section 4. For now, let any constraint be of the form
fðr1; � � � ; rnÞ � c with the following properties:

. fðÞ is a monotonically increasing function and

. c is a constant that measures the capacity of a
resource or a quality of service requirement.

To find a solution, the query optimizer needs to traverse
the search space of configurations and compare each visited
configuration with the configuration that was the best so

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

TABLE 2
Optimization Goals

far. Finding an optimal configuration is a hard problem (see

Section 5) and, in Section 5.4, we show that hill-climbing

techniques can reach very good results efficiently. The

challenge that we address next is the evaluation of a

configuration, which is equivalent to finding the best

solution of the configuration. Recall that each configuration

can have an infinite number of solutions that satisfy the

given constraints. We show next how we can make use of

the properties of the feasible space to quickly identify the

best solution for each configuration.

Proposition 1. Let a query configuration C be restricted by

constraints that are of the form fðr1; � � � ; rnÞ � c, where c is a

constant, and fðÞ is monotonically increasing. For a profile

p ¼< rp1; r
p
2; � � � rpn > , a solution with the greatest QpðC:SÞ

lies on the surface bounding the region of feasible solutions and

on the line through the origin and p.

Proof. We will prove by contradiction that Proposition 1

is true. Let the solution that is found at the intersection

of the bounding curve with the line between the origin

and profile point p be S ¼< rs1; r
s
2; � � � rsn > . Then,

rs1=r
p
1 ¼ rs2=r

p
2 ¼ � � � ¼ rsn=rpn. Assume now that there is

another feasible solution S0 ¼< rs
0

1 ; r
s0

2 ; � � � rs
0

n > , S0 6¼ S,

such that QpðC:S0Þ > QpðC:SÞ. In other words,

min
1�i�n

rs
0

i =r
p
i > min

1�i�n
rsi =r

p
i :

Because rs1=r
p
1 ¼ rs2=r

p
2 ¼ � � � ¼ rsn=rpn, it must be the case

that all components of S0 are greater than their

corresponding components S : rs
0

i > rsi , 8rs
0

i , 1 � i � n.

Without loss of generality, let us rewrite S0 as

< rs1 þ �1; r
s
2 þ �2; � � � rsn þ �n > , with all �i > 0. Since S

lies on the bounding curve, it satisfies at the limit at

least one constraint such that fðr1; r2; � � � rnÞ ¼ c. For

solution S0, this constraint will be evaluated as

fðr1 þ �1; r2 þ �2; � � � rn þ �nÞ > c. It follows that at least

one constraint is not satisfied, and S0 is not a feasible

solution. The assumption that S0 is a feasible solution is

contradicted. tu
To illustrate this point in two dimensions, consider the

example in Fig. 2. For configuration C1, the intersection of

the constraint boundary with the line through the origin

and < 30; 45 > is at the solution C1:S. Any solution with

the same or better quality according to the QpðC:SÞmeasure

increases r1, r2, or both. This solution lies in the darker

region, where C1:S is the lower left corner. One can see that

due to the shape of the feasible space imposed by the

properties of the constraints, no point in the feasible space

can also be in the hashed region.

Note that Proposition 1 allows us to compare two
configurations (such as C1 and C2 in Fig. 3) by comparing
the intersection points of the feasible space boundaries with
the line from the origin to the profile point. In this case, the
better configuration is C2 because its intersection point is
closer to the profile p.

4 SPECIFYING CONSTRAINTS

We now describe the details of the constraints and show
that they have the property that we used to efficiently find
the best solution of a configuration.

4.1 Limitation on Processing Resources

For a processing node Nj with resources Nj:I available for
query execution, the combined load of the operators on Nj

is limited by Nj:I. Typically, the cost o:c of an operator o is
characterized by the number of instructions necessary to
process one input tuple. Since we are calculating input rates,
we can define the corresponding cost rate o:cr as a product
between input rate and cost, in instructions per second.
Note that the resource of a node N:C is also measured in
instructions per second. When operators o1; o2; � � � ; on are
placed on Nj, the constraints can be expressed as the sum of
the cost rates of all operators:

Xn
i¼1

ðoi:crÞ � Nj:I ðNj:CÞ:

For each physical node, there is one such inequality that
expresses the constraint on the physical resources of that
node. Thus, to obtain the constraint expressions, how do we
calculate the cost rates? Let a connected directed graph of
operators represent the flow of tuples/processing through
operators in the node. Note that there can be multiple such
directed graphs. Since the input rate of one operator is the
output rate of another, the left-hand side of Nj:C is a
nonlinear expression in terms of the input rates into the leaf
node of the graph and the cost per tuple of the different
operators. Table 3 enumerates the rules for computing the
cost rate of operators for SELECT, PROJECT, and JOIN. We

STANOI ET AL.: WHITEWATER: DISTRIBUTED PROCESSING OF FAST STREAMS 5

Fig. 2. Example of the best solution for a configuration C1.

Fig. 3. Boundary of feasible region contains only dominant points.

TABLE 3
Rules for Computing o:cr

assume double hash JOIN and a time-based JOIN window,
where the output rate o:rout is therefore the rate on the first
stream r1 multiplied by the number of tuples in the window
of the second stream ðo:w� r2Þ plus the rate of the second
stream multiplied by the number of tuples of the first
stream in the JOIN window. Note that the JOIN cost formula
does not take into account the cost of purging the expired
tuples from their respective windows. More fine-grained
cost functions can be considered (for example, as discussed
in [17]).

We consider constant input rates because the goal is to
analyze how the system behaves at a maximum rate. This is
different than modeling the fluctuating behavior of the
system at runtime input rates, as in [27].

Example 1. Let a query of two operators be as illustrated in
Fig. 4a. Operator o1 is placed on a node N1 of capacity
N1:I, and operator o2 is on N2 of capacity N2:I. Then, the
configuration is subject to the following constraints:

o1:c� r1 � N1:I ðN1:CÞ

o2:c� o1:rout � N2:I , o2:c� ðr1 � o1:sÞ �N2:I

ðN2:CÞ:

Example 2. For a more complex example, consider the
query operators in Fig. 4b. The rate r1 is the rate of data
emitted by EMIT[D, E], r2 is the rate of tuples emitted by
EMIT[A, C, B], and tuples from EMIT[F, G] have a rate
r3. In this case, the constraints are

o1:c� ðr1 þ r2Þ � N1:I ðN1:CÞ

N2:I � o2:c� o1:rout þ o3:c� ðo2:rout þ r3Þ ¼
o2:c� 2� o1:w� o1:s� r1 � r2þ
þ o3:c� ðo2:s� 2� o1:w� o1:s� r1 � r2 þ r3Þ

ðN2:CÞ:

One can build the constraints by accumulating the
terms in a bottom-up traversal of the query graph.

4.2 Memory Limitation

We assume that operators are able to process tuples fast
enough that no additional buffers are necessary. In Table 4,
we show that the space required by a SELECT and PROJECT is

the size of a tuplemt, whereas the memory requirement for a
JOIN is that of storing tuples that fit in the window size
ðo:w� r1 þ ow � r2Þ and two hash tables (of allocated size h).

The memory constraints should reflect the fact that the
total memory used by all operators in one node should be
less than what the node allocates for the execution of the
corresponding operators. That is, for each Nj

Xn
i¼1

ðoi:mÞ � Nj:M:

Note that Table 4 refers specifically to the SELECT,
PROJECT, and JOIN operators. For more general stream
operators, the memory requirements will consist of a fixed
footprint (such as state for aggregators) and an input-rate-
dependent component (such as for a window operator). In
order to accommodate additional operators, one would
need to provide appropriate formulas for estimating the
memory requirements of each operator.

4.3 Bandwidth Requirements

Bottlenecks arise due to operators that process tuples
slower than they are received and also due to communica-
tion link delays. The constraint on a link Li;j:C from node Ni

to node Nj is that the bandwidth L0;1:B cannot be less than
(the rate coming out of node Ni) � (the size mt of tuples).
Consider again the example in Fig. 4a. The bandwidth
constraints are

L0;1:B � r1 �mt ðL0;1:CÞ
L1;2:B � o1:rout �mt ¼ o1:s� r1 �mt ðL1;2:CÞ:

4.4 Quality of Service Guarantees: Latency

The maximum latency of a query configuration is given by
the total time taken by all operators on the most time-
expensive path of the configuration. For an operator o on
physical node N , the processing time for one tuple is
calculated as o:c=N:I. Let P1; P2; � � �Pm in the set P be all the
paths from the leaves to the root of a query configuration
tree. Then, the requirement that the maximum latency
should not exceed a limit L can be written as

max
Pi2P

X
Nj2Pi

X
oi2Pi\Nj

oi:c

Nj:I

0
@

1
A � L:

Evaluating these constraints efficiently is not straightfor-

ward. Finding the values of variables r1; � � � rn that maximize

the quality is done through evaluating the set of nonlinear

constraints and the additional constraint due to the profile

(discussed in Section 2). In our implementation, we use the

relationship of the variables imposed by the profile to

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

Fig. 4. Example of operator assignments to physical nodes.

TABLE 4
Rules for Computing o:cr

rewrite the resource and latency constraints in terms of only

one variable. Then, to solve the nonlinear equations, we used

a binary search approach. Let us rewrite a constraint Nj:C asPk
i¼1ðaixiÞ � Nj:I. The initial value for the high limit is

minmj¼1½
Nj:I

ak
�1=k, and low ¼ 0. In the first iteration, we take the

medium mid and plug it in all constraints. If all are satisfied,

then the next iteration will continue after setting low ¼ med.

Otherwise, we set high ¼ mid. The algorithm stops when a

certain precision is achieved (in our experiments, we used

0.001 for precision).

5 SEARCHING FOR THE BEST CONFIGURATION

In the previous sections, we introduced the concept of
profiled throughput and proposed a way to efficiently
evaluate a given configuration by quickly finding its best
solution. A challenge that we have not addressed yet is how
we can search through the space of possible configurations.
Since the problem is NP-hard (as shown in Proposition 2.),
we propose to use hill-climbing techniques that are
appropriate for the configuration search space. It is essential
that the hill-climbing method used emphasize both intensi-
fication and diversification.

Proposition 2. Maximizing the profiled throughput of a
distributed continuous query under processing constraints is
an NP-hard problem.

Proof. In order to verify the NP-hardness of this optimiza-
tion problem, it suffices to prove that the corresponding
decision problem is NP-hard. The decision problem can
be formulated as follows: For a given continuous query
and a given throughput vector, is there a configuration
that can sustain the throughput? To prove the NP-
hardness of this decision problem, it is enough to consider
the special case of queries with only SELECT operators,
which was shown to be NP-hard in [26]. Since this special
case is NP-hard, the general decision problem is NP-hard
as well. Since the original optimization problem is at least
as hard as the decision problem, it follows that it is NP-
hard as well. tu

5.1 Background: Hill Climbing

Large search spaces are often traversed using a greedy local
improvement procedure. The procedure starts with an
initial configuration and refines it by selecting the best next
configuration from the neighborhood of the current config-
uration until no neighbor is better than the current
configuration. This is also called “hill climbing” because
the objective function is improved with each iteration
(assuming that the goal is maximization). The drawback
of a local improvement method is that although it finds the
top of a “hill,” it may be only a local optimum, dependent
on the position of the initial configuration. However, the
local optimum found may be different from the global
optimum. To increase the chances to find the global
optimum, a search method can include steps that escape
from the local optimum by jumping to a random position in
the search space. Educated decisions on when and where to

escape the local optima, as well as when and which inferior
intermediate configurations can be accepted, can be based
on the information gathered in previous iterations. The class
of these methods is metaheuristics. According to [12], a
metaheuristic is “a general kind of solution method that
orchestrates the interaction between local improvement
procedures and higher level strategies to create a process
that is capable of escaping from the local optima and
performing a robust search of a feasible region.” Next, we
outline the three metaheuristics that we experimented with:
Tabu Search, Reactive Tabu Search, and Simulated Anneal-
ing. In the experimental section, we show the trade-offs
between these different heuristics for the specific problem
of maximizing the throughput in stream networks. In
general, these methods differ in the focus that they place
on climbing hills toward the local optimum versus explor-
ing several hills to find the tallest ones. Note that in all the
algorithms presented next, we assume that the goal is
maximization of the objective function.

5.1.1 Greedy Algorithm

A basic greedy algorithm can start from an initial config-
uration C and then iterates to search for a better configura-
tion until a stopping condition becomes true. At each
iteration, the neighborhood of the current configuration is
explored, and the best neighbor is chosen to become the
current configuration. Note that since it only accepts local
improvements, it will find the top of the local hill, and it
will not explore other hills for a global optimum.

5.1.2 Tabu Search

The procedure of the Tabu Search [12] starts from an initial
configuration C, and from the neighborhood of C, it only
accepts improving configurations C0 (that is, such that
fðC0Þ > fðCÞ). Through a set of iterations, it finds a local
optimum. It then continues to explore the search space by
selecting the best nonimproving configuration found in the
neighborhood of the local optimum. To avoid cycles back to
an already visited local optimum, the procedure uses a
limited Tabu list of previous moves.

5.1.3 Reactive Tabu Search

Improvements to the basic Tabu Search were proposed for
intensification and diversification [6]. Intensification is used
to explore more the parts of the search space that seem more
promising, whereas diversification enables the procedure to
consider configurations in parts of the search space that
were not explored previously. A method that employs both
intensification and diversification is the Reactive Tabu
Search. One enhancement is the fully automated way of
adjusting the size of the Tabu list that holds the set of
prohibited moves, based on the evolution of the search.
Another feature that enables better diversification is the
escape strategy. Following a threshold number of repeti-
tions of Tabu configurations (notice now that we store
configurations instead of moves), the escape movement is
enforced. Intuitively, the number of random moves that
comprise an escape depends on or is proportional to the
moving average of detected cycles because longer cycles
can be evidence of a larger basin, and it is likely that more
escape steps are required. The Tabu list size increases with

STANOI ET AL.: WHITEWATER: DISTRIBUTED PROCESSING OF FAST STREAMS 7

every repetition of a Tabu configuration, and it decreases

when a number of iterations greater than the moving

average passed from the last change of the Tabu list size. To

keep the size of the Tabu list within limits, it is reduced
when it is so large that all movements become Tabu. Due to

its learning-based intensification and diversification char-

acteristics, we were not surprised to find that in our

experiments, the Reactive Tabu Search method is the most

consistent in finding the global optimum.

5.1.4 Simulated Annealing

Simulated Annealing [12] is a metaheuristic that is

especially good at escaping the local minimum. Recall that

Tabu Search climbs hills of local maximum very fast and

climbs down slowly to search for other local optimum. By
contrast, Simulated Annealing focuses first on finding the

tall hills and then on climbing them. In the beginning, it has

the flexibility of taking steps in random directions, and it

increases in time the focus on climbing the hills by reducing

the probability to accept a downward move (that leads to an

inferior configuration). An interesting aspect of Simulated

Annealing is the probabilistic concept of selecting the next

trial configuration.

5.2 Solution Outline

For a given query and physical configuration of a system,

our goal is to find the configuration with the largest input

rates that match the profiled input behavior.
A naive exhaustive approach is to build all possible

query configurations by creating all the possible logical

query plans and mapping them onto the physical compo-

nents in all the possible ways. To build the search space, one
can start with a feasible solution and explore all possible

one-step moves to reach the neighborhood of that config-

uration. Then, the process continues, starting from each of

the neighbors of the initial solution, and so on until there

are no new configurations. We employ the concept of one-

step move to build the neighborhood of a configuration. In

our notation, the function that implements a one-step move

over a given configuration C and returns a neighboring

configuration is mðC;�Þ (see Table 5). In Section 5.3, we

explain the implementation of mðC;�Þ in more detail. Each
configuration created by running mðC;�Þ is evaluated

according to an objective (in our case, to maximize the

profiled throughput measured by QpðCÞ) and is assigned a

measure by using QpðCÞ. The general structure of a solution

is outlined as follows:

Solution Outline

1. Define algorithm A(), moves m(), evaluation

function QpðCÞ.
2. Initialize a configuration C.

3. Return C0 ¼ AðC;mðC;�Þ; QpðCÞÞ.
Starting from an initial feasible solutionC, an algorithmA

is employed to generate new configurations, evaluate them,
and find a final solution. In order to implement A, we make
use of hill-climbing methods, which, as we will show in the
experimental section, drastically reduce the number of
configurations examined and, in many cases, find the
optimum solution. Since hill climbing is a general class of
algorithms, they need to be provided with an initial solution,
methods for creating the search space, and methods for
evaluating a configuration. Therefore, we need to specify
how we pick an initial solution, a method for finding
neighboring solutions, and an evaluation function.

In this paper, we assume that we are given a logical
query plan of the continuous query. In the case of multiple
queries, common subexpressions may have been merged in
the initial query plan. If this is true, then we do not attempt
to separate those subexpressions. Since each operator can be
assigned to any node in a set of physical nodes, we
randomly select a mapping. This initial query configuration
needs to be correct but does not have to be a good solution.

5.3 Neighborhood of a Configuration

Starting from a configuration C, we apply a one-step
move to build a configuration neighbor to C. The
neighborhood of a configuration C is therefore defined
as NðCÞ ¼ fC0 : C0 ¼ mðC;�Þg.

We did not discuss yet the role of parameter � in method
mðC;�Þ. Recall that there are two types of one-step moves
that modify a configuration. A logical move is a swap of
two operators under the constraints of the operator’s
semantics. A physical move is a mapping of a query
operator to a different physical node. The balance between
the two types of moves is quantified by a parameter �.
Method mðC;�Þ selects a physical move with probability �
as follows:

mðC;�Þ ¼ mlogicalðCÞ ; if p � �;
mphysicalðCÞ; if p < �;

�

where p is a random variable uniformly distributed in [0, 1].
We experimented with different values of �, ranging

between 0.25 and 0.75, and in our examples, the most
consistent was � ¼ 0:5, which gives an equal probability for
a physical move and a logical move. Note that if the method
used requires the examination of the entire neighborhood,
then we build the neighborhood exhaustively rather than
probabilistically. Physical moves mphysicalðÞ are straightfor-
ward to implement, given knowledge about the topology
and resources of the processing components: The system
randomly selects an operator and maps it to a choice of a
physical node different than the current one. Due to limited
resources or limited query capabilities, an operator may be
hosted by only a subset of all the physical nodes.

A one-step logical move mlogicalðÞ is implemented as
the swap between an operator ðTopOpÞ and its child
ðBottomOpÞ. There are constraints that eliminate some of

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

TABLE 5
Additional Notation

the logical moves from consideration. In some cases, a

swap may never lead to a better solution, or depending

on the operator columns, it may lead to an infeasible

query plan. Table 6 summarizes the rules for swapping

operators, which we do not present in further detail due

to lack of space.
The list of logical moves presented here is not exhaus-

tive. There are other logical moves and logical operators

such as stream splitting/merging or operator cloning that

can be used. Potentially, they can enable a better solution

than the subset presented here. Our framework can

accommodate any logical operator and logical move,

provided that the formulas for deriving the output rates

and operator cost are specified. Note that the operators

discussed so far are commutative within the conditions

specified in Table 5. In order to include more general

operators, this table would need to be extended with

commutativity rules for all the new operators.

5.4 Traversing the Configuration Space

We choose the heuristics presented in Section 5.1 as the base

for the traversal of the configuration space. In general, they

all go through a finite number of iterations, climbing

toward a local optimum. They differ, however, in their

speed of climbing the hills to the local maximum and in

their diversification policies to look for a globally best

solution. In each iteration, they create one or more

configurations in the neighborhood of the current solution

and select the next temporary solution. The creation of the

candidate configurations is a result of implementing one-

step moves with mðC;�Þ, which are evaluated according to

our objective of maximizing the most constrained input.
We experimented with two alternatives: employing the

metaheuristic search in one and two phases. A one-phase

procedure enables any one of the metaheuristics presented

(Tabu Search, Reactive Tabu, or Simulated Annealing)

using our definition of one-step moves and evaluation

function. Note that in this case, each iteration creates new

configurations based on either a logical or a physical

move. By contrast, a two-phase procedure employs the

heuristics twice. First, it searches for a solution by using

only logical moves. Then, the solution found in the first

phase is used as an initial configuration for the second

phase, during which it searches for the best physical

placement of this query plan.

PROCEDURE (One-Phase)

1. Initialize a configuration C.

2. C0 ¼ AðC;mðC;�Þ; QpðCÞÞ.
3. Return C0.

PROCEDURE (Two-Phase)

1. Initialize a configuration C.

2. C0 ¼ AðC;mðC; 0Þ; QpðCÞÞ.
3. C00 ¼ AðC0;mðC; 1Þ; QpðCÞÞ.
4. Return C0.

Note again that in our implementation of the one-phase
approach, we use � ¼ 0:5, but it is a parameter that can be
set differently if needed. The advantage of using the two-
phase approach is that during the same clock time, it can
analyze/evaluate more configurations than the one-phase
approach. The disadvantage is that once it finds a logical
query plan in the first phase, it cannot change this in the
second phase. This may prevent the two-phase algorithm
from exploring parts of the search space, which may
include the optimal configuration.

To illustrate this problem, consider a query with two
operators o1 and o2 with selectivities o1:s ¼ 1=2 and
o2:s ¼ 1=5. These operators have to be placed onto a
physical network of two machines N1 and N2. Let us
further assume that the memory requirements of the
operators and the memory capacity of the nodes are such
that they force the placement of o1 on N1 and of o2 on N2.
The exhaustive two-phase approach (first optimize the
logical plan and then the physical placement), as shown in
Fig. 5, leads to configuration C1 because on a single
machine, the optimal logical plan is the one where most
filtering is performed the earliest. By contrast, the exhaus-
tive one-phase integrated approach will find the configura-
tion C2, which allows for a higher maximum input rate than
C1 (500 tuples/sec compared to 100 tuples/sec).

6 PERFORMANCE EVALUATION

In this section, we present both a qualitative and a
quantitative study of the performance of hill-climbing
techniques in the context of maximizing a profiled
throughput. We start by examining the search space
characteristics and the runtime behavior of each method.
Next, we focus on the effectiveness and efficiency of each
method. There are two sets of experiments. First, we
compare the hill-climbing methods with the optimum
solution. In order to be able to compute the optimum
solution (by exhaustive search), we are limited to queries
for which the search space is relatively small. The results

STANOI ET AL.: WHITEWATER: DISTRIBUTED PROCESSING OF FAST STREAMS 9

TABLE 6
Rules for Swapping Operators

Fig. 5. Two-phase solution example.

show that the hill-climbing algorithms perform optimally

most of the time. Second, we compare the different methods

for efficiency and effectiveness. These are more extensive

experiments, with a large number of randomly generated

queries with greater search spaces. We show that Simulated

Annealing is, by far, the fastest and is consistently one of the

most accurate methods.
We implemented all the hill-climbing techniques de-

scribed in Section 5.1 (greedy, Tabu, Reactive Tabu, and

Simulated Annealing) in Java. We used the following

parameters:

. Operator costs: EMIT.c = 0, SELECT.c = 20 instr.,
PROJECT.c = 50 instr., and JOIN.c = 800 instr.,

. Settings: join window size = 5 sec and network
latency = 0.06 sec/link,

. Greedy: iterations = 1,000.

. Tabu: iterations = 1,000, and Tabu list size = 1,000,

. Reactive Tabu: iterations = 1,000, initial Tabu list size
= 1, maximum cycle size = 50, Tabu list increase
factor = 1.1, and Tabu list decrease factor = 0.9, and

. Simulated Annealing: num temperatures = 4, and
iterations within a temperature = 400.

We also implemented a two-phase search strategy

consisting of a “logical-moves-only” phase followed by a

“physical-moves-only” phase on the logical configuration

found by the first phase. This two-phase strategy can be

used in conjunction with any search algorithm. In our

experiments, we used a two-phase exhaustive search and a

two-phase reactive Tabu search.

6.1 Effectiveness with Respect to Optimum
Solution

In this experiment, we wanted to evaluate the absolute

effectiveness of each search technique, that is, how often

each technique finds an optimum solution. More generally,

we wanted to quantify the distribution of solution quality

for each technique. In order to do this, we needed to know

the optimum throughput; therefore, we focused on queries

that can be exhaustively optimized in a short time. This

constrained us to queries with one or two emitters and at

most five other logical operators with a selection of two

physical nodes each. In order to get a representative

measurement, we generated 100 random queries with these

characteristics, and we ran each algorithm on all of them.
The histogram shown in Fig. 6 summarizes the results.

For this particular batch of queries, we observed the
following. The Reactive Tabu algorithm found an optimal
solution 100 percent of the time, followed by Simulated
Annealing at 92 percent, Tabu at 88 percent, Greedy and
two-phase exhaustive, both at 66 percent of the time. The
rest of the time, Simulated Annealing found solutions that
were around 1.5 times worse (with only a couple of
exceptions), the Tabu algorithm found solutions at most
two times worse, whereas the Greedy algorithm found
26 solutions up to four times worse, and even two solutions,
which were 100 times worse. Interestingly enough, almost
all the other solutions found by the two-phase exhaustive
algorithm were at most two times worse than the optimum
(only one solution was three times worse). We included for
reference a random placement, which produces the most
suboptimal configurations and finds an optimal solution
only 4 percent of the time. According to these results, the
most effective algorithms for this class of queries are
Reactive Tabu and Simulated Annealing. This is not
surprising because both employ aggressive intensification
and diversification.

6.2 Relative Effectiveness

In order to study the relative performance of the search
algorithms, we generated 1,000 random queries, and we ran
all algorithms on each query. In order to get a better idea of
the effectiveness of the search algorithms for realistic
queries, this time, we generated larger queries with more
physical node options. The queries were generated as
follows: First, we randomly selected an upper bound on the
number of operators maxOps ¼ 40. Then, we generated
between 3 and maxOps=3 emitters. Subsequently, we built a
query plan bottom up by placing random operators on top
of the current plan up to maxOps. As a result, the
exhaustive search became prohibitive, and we were able
to only measure the relative effectiveness the algorithms.
Since Reactive Tabu performed best in the previous
experiments on smaller queries, we chose that as a
reference, and we plotted for each query the ratio of the
throughput found by other techniques over the throughput
found by Reactive Tabu (Fig. 7). We found that Reactive
Tabu is the most consistent. Rarely, Annealing is better
(6.2 percent), sometimes is worse (12.8 percent), but most of
the time performs the same (79 percent). Tabu is better only

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

Fig. 6. Distribution of found solutions.
Fig. 7. Distribution of rate ratios.

6 percent of the time, worse 12.9 percent of the time, and
most of the time the same (81.1 percent). Also, the Greedy
algorithm was worse than Reactive Tabu 62 percent of the
time and in many times as much as 10 times worse. Finally,
the two-phase Reactive Tabu algorithm was worse in
25.4 percent of the cases, rarely better (7.5 percent), and
mostly the same (67.1 percent) as the Reactive Tabu.

6.3 Efficiency

In order to study the relative efficiency of the search
algorithms, we measured the average runtime for Reactive
Tabu, Tabu, and Simulated Annealing on the 1,000 queries
from the previous experiment. The results are plotted in
Fig. 8. From this graph, we can observe that the Simulated
Annealing algorithm is about 23 times faster than the Tabu
variants, which have similar times. In fact, it averaged close
to 200 ms. The Greedy algorithm is, on the average, about
30 percent faster than the Tabu algorithm, and the two-
phase Reactive Tabu algorithm is about 5 percent slower
than the Reactive Tabu. The runtime of all these algorithms
is clearly dependent on the number of iterations performed,
so for a fair comparison, we calibrated the number of
iterations in such a way as to produce configurations of
similar quality.

In conclusion, for the search space characteristics of our
problem, the Simulated Annealing algorithm offers the best
trade-off between effectiveness and efficiency.

6.4 Runtime Behavior

Our framework uses the estimated maximal throughput in
order to compare the quality of candidate query configura-
tions. In order to validate that the configuration deemed
better according to our theoretical analysis indeed supports
a higher throughput in practice, we ran the following
experiment.

Consider the query

Q ¼ �D¼0�A¼0ðEmitAB fflB ðEmitBC fflC EmitCDÞÞ:

We initialized the Simulated Annealing algorithm with a
query configuration C1 consisting of the same logical plan
as shown in Q placed on a single node. After optimization,
the resulting configuration C2 has the logical plan
ð�A¼0EmitABÞ fflB ðEmitBC fflC ð�D¼0EmitCDÞÞ distributed
on two nodes (with the internode link being the link
between the two joins). We generated synthetic data on the
Emit operators such that the join on C is 100 times more
selective than the JOIN on B, and each of the two SELECT

operators have selectivity one in 100. Also, for this
experiment, we used a throughput profile in which all the
three input rates are equal.

The configuration C1 was able to process a maximum
input throughput of 8,517 tuples/sec/stream, whereas the
optimized configuration C2 processed 37,313 tuples/sec/
stream. Therefore, the configuration C2 performed indeed
better in practice, as predicted by the model.

7 RELATED WORK

Examples of data stream management systems are
STREAM [29], Aurora [3], TelegraphCQ [8], and Gigascope
[9]. The first two are designed to operate in a single physical
node and focus on minimizing the end-to-end data
processing latency. Subsequent work extends Aurora to
distributed systems [7], [1]. The extended framework
Borealis includes a load distribution algorithm that aims
at minimizing the average end-to-end latencies [30].
TelegraphCQ is based on the Eddy [4] and SteM [22]
mechanisms, enabling shared and adaptive processing of
multiple queries. The system can also operate in a cluster of
machines by using the Flux operator [24]. The main goal of
Flux is to equalize the utilization of all the participating
physical nodes. Gigascope employs a two-layer architecture
tailored for processing high-speed Internet Protocol (IP)
traffic data. A new architectural paradigm is presented by
Franklin et al. [10] for systems with high fan-in topology.
The main goals of the design are to reduce the overall
bandwidth consumption and share as much of the proces-
sing as possible.

An optimization framework specifically targeted to
streaming data management systems is proposed by Viglas
and Naughton [27]. The proposed optimization technique is
rate based, considering the rates at which the input data
streams are coming into the system. In the above case, the
focus is on the output rate, whereas in our case, we want to
maximize the rates of the input streams that the system can
support.

Pietzuch et al. [21] describe a method for query
optimization, specifically targeted toward distributed
stream-based applications. The proposed method focuses
on the problem of query operator placement in the network,
aiming at minimizing the end-to-end latency. However,
they do not consider operator reordering, which may
significantly affect the quality of the solution. The problem
of query execution in widely distributed environments is
studied by Ahmad and Çetintemel [2]. The study describes
algorithms that try to minimize the bandwidth use or meet
a certain quality of service requirements. In this case, the
query plan is considered to be fixed.

A recent study [26] describes algorithms for the efficient
in-network execution of queries on streaming data. The
focus of the study is on deciding how a set of filter
operators can be placed on a single path of physical nodes.
The main algorithm is then extended to handle multiple
paths and a special JOIN operator, but there is no
straightforward extension that can handle more general
query expressions. In addition, the proposed techniques do
not take into account the resource constraints of the

STANOI ET AL.: WHITEWATER: DISTRIBUTED PROCESSING OF FAST STREAMS 11

Fig. 8. Average runtimes.

physical nodes, thus allowing every node to host any
number of operators.

Jin and Strom [16] describe a method for modeling the
performance query operators in distributed stream proces-
sing. Their model takes the operator placement graph (that
maps query operators onto physical nodes) as input, as well
reasons about the time latencies to process each event in the
system and the throughput that the system can support.

Query optimization has been studied extensively in the
traditional database setting [15], as well as in distributed
and parallel systems [25], [28], [23], [11]. Nevertheless, in
these cases, the focus is on short-lived queries that do not
normally depend on each other, which is not the case for the
problem that we are studying. The use of randomized
algorithms for performing query optimization has been
proposed in the past [14], [13], [19]. These studies show that
this approach can be effective in finding good-quality
solutions for relational query optimization for both cen-
tralized and distributed relational database management
systems (RDBMSs and nonstream environment).

The problem of query optimization and operator place-
ment in a distributed environment has also been studied in
the context of sensor networks [20], [18], [5], where several
different optimization metrics have been proposed. In this
case, though, the algorithms are restricted by the limited
resources of the sensor nodes.

8 CONCLUSION

In this paper, we explore continuous query optimization,
which maximizes the system’s runtime capacity with
respect to input rates that have an observed profile. An
input profile represents the knowledge on input behavior,
which is useful in targeting solutions appropriate for the
specific runtime requirements of the system. We discuss the
profile as the target point of projected maximum values that
input rates can take. The notion of a profile can be
generalized further to include a set of target points
representing characteristics of input streams. Fitting the
solution to the line segments described this way by the
profile corresponds to finding a solution that can support
an evolving set of requirements.

According to our experimental evaluation, the method
that we propose for maximizing the profiled throughput is
both effective and efficient. The optimization is based on
various hill-climbing techniques that perform similarly in
our experiments, obtaining the optimal or near-optimal
solution in more than 90 percent of the time. Simulated
Annealing is orders-of-magnitude faster than the other
approaches and, therefore, it may be preferable, especially
for large query plans.

There are a few directions for future work that we are
planning to look into or currently pursuing. They include
optimizing throughput according to various types of
profiles, query reconfiguration, and improving parameters
through learning. In this work, we only considered one-
time configurations and have not yet addressed the
dynamic aspects of query reconfiguration. Reconfiguration
may be necessary if the user of the monitoring system
decides to monitor additional types of events for root-cause
analysis. A basic solution for implementing the query

modification is to remove the first query and add the new

changed query. The disadvantage is that there is an

overhead associated with the removal and activation of

operators. Instead, operators should be more resilient and

change only if they are not necessary for the new query or if

the penalty paid for not being part of an optimal

configuration is not too great. Another challenge that we

did not address in this paper is the maintenance of operator

and data statistics. An enhancement that we plan to add to

our system is learning about the data and query behavior by

using a feedback loop to make use of the more reliable

statistics.

REFERENCES

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M.
Cherniack, J.-H. Hwang, W. Lindner, A.S. Maskey, A. Rasin, E.
Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, “The Design of the
Borealis Stream Processing Engine,” Proc. Second Biennial Conf.
Innovative Data Systems Research (CIDR ’05), Jan. 2005.

[2] Y. Ahmad and U. Çetintemel, “Networked Query Processing for
Distributed Stream-Based Applications,” Proc. 30th Int’l Conf. Very
Large Data Bases (VLDB ’04), 2004.

[3] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A New
Model and Architecture for Data Stream Management,” The VLDB
J., vol. 12, no. 2, pp. 120-139, 2003.

[4] R. Avnur and J.M. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’00), W. Chen, J.F. Naughton, and P.A. Bernstein,
eds., 2000.

[5] D.J. Abadi, W. Lindner, S. Madden, and J. Schuler, “An
Integration Framework for Sensor Networks and Data Stream
Management Systems,” Proc. 30th Int’l Conf. Very Large Data Bases
(VLDB ’04), 2004.

[6] R. Battiti and G. Tecchiolli, “The Reactive Tabu Search,” ORSA J.
Computing., pp. 126-140, 1994.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Cetintemel, Y. Xing, and S. Zdonik, “Scalable Distributed Stream
Processing,” Proc. First Biennial Conf. Innovative Data Systems
Research (CIDR ’03), 2003.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.
Reiss, and M.A. Shah, “Telegraphcq: Continuous Dataflow
Processing for an Uncertain World,” Proc. First Biennial Conf.
Innovative Data Systems Research (CIDR ’03), 2003.

[9] C.D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk,
“Gigascope: A Stream Database for Network Applications,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), 2003.

[10] M.J. Franklin, S.R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E.
Wu, O. Cooper, A. Edakkunni, and W. Hong, “Design Considera-
tions for High Fan-In Systems: The HIFI Approach,” Proc. Second
Biennial Conf. Innovative Data Systems Research (CIDR ’05), 2005.

[11] M.N. Garofalakis and Y.E. Ioannidis, “Multi-Dimensional Re-
source Scheduling for Parallel Queries,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’96), H.V. Jagadish and
I.S. Mumick, eds., 1996.

[12] F.S. Hillier and G.J. Lieberman, Introduction to Operations Research,
nineth ed. McGraw Hill, 2005.

[13] Y.E. Ioannidis and Y. Kang, “Randomized Algorithms for
Optimizing Large Join Queries,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’90), 1990.

[14] Y.E. Ioannidis and E. Wong, “Query Optimization by Simulated
Annealing,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’87), pp. 9-22, 1987.

[15] M. Jarke and J. Koch, “Query Optimization in Database Systems,”
ACM Computing Surveys, vol. 16, no. 2, pp. 111-152, 1984.

[16] Y. Jin and R. Strom, “Relational Subscription Middleware for
Internet-Scale Publish-Subscribe,” Proc. Second Int’l Workshop
Distributed Event-Based Systems (DEBS ’03), 2003.

[17] J. Kang, J.F. Naughton, and S. Viglas, “Evaluating Window Joins
over Unbounded Streams,” Proc. 19th IEEE Int’l Conf. Data Eng.
(ICDE ’03), 2003.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

[18] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul,
and U. Ramachandran, “Dfuse: A Framework for Distributed Data
Fusion,” Proc. First Int’l Conf. Embedded Networked Sensor Systems
(SenSys ’03), 2003.

[19] R.S.G. Lanzelotte, P. Valduriez, and M. Zaı̈t, “On the Effectiveness
of Optimization Search Strategies for Parallel Execution Spaces,”
Proc. 19th Int’l Conf. Very Large Data Bases (VLDB ’93), R. Agrawal,
S. Baker, and D.A. Bell, eds., pp. 493-504, 1993.

[20] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “Tag: A
Tiny Aggregation Service for Ad Hoc Sensor Networks,” SIGOPS
Operating Systems Rev., vol. 36, no. SI, pp. 131-146, 2002.

[21] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
and M. Seltzer, “Network-Aware Operator Placement for Stream-
Processing Systems,” Proc. 22nd IEEE Int’l Conf. Data Eng. (ICDE
’06), 2006.

[22] V. Raman, A. Deshpande, and J.M. Hellerstein, “Using State
Modules for Adaptive Query Processing,” Proc. 19th IEEE Int’l
Conf. Data Eng. (ICDE ’03), 2003.

[23] M. Stonebraker, P.M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu, “Mariposa: A Wide-Area Distributed
Database System,” The VLDB J., vol. 5, no. 1, pp. 048-063, 1996.

[24] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin,
“Flux: An Adaptive Partitioning Operator for Continuous Query
Systems,” Proc. Int’l Conf. Data Eng., 2002.

[25] N.G. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing
for Locally Distributed Systems,” Computer, vol. 25, no. 12, pp. 33-
44, 1992.

[26] U. Srivastava, K. Munagala, and J. Widom, “Operator Placement
for In-Network Stream Query Processing,” Proc. 24th ACM Symp.
Principles of Database Systems (PODS ’05), 2005.

[27] S. Viglas and J.F. Naughton, “Rate-Based Query Optimization for
Streaming Information Sources,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’02), 2002.

[28] M.H. Willebeek-LeMair and A.P. Reeves, “Strategies for Dynamic
Load Balancing on Highly Parallel Computers,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, no. 9, pp. 979-993, Sept.
1993.

[29] J. Widom and R. Motwani, “Query Processing, Resource Manage-
ment, and Approximation in a Data Stream Management System,”
Proc. First Biennial Conf. Innovative Data Systems Research, 2003.

[30] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic Load Distribution
in the Borealis Stream Processor,” Proc. 21st IEEE Int’l Conf. Data
Eng. (ICDE ’05), 2005.

Ioana Stanoi received the BS degree in
computer science, the BA degree in physics,
and the PhD degree from the University of
California at Santa Barbara. She is a research
staff member at IBM Almaden Research Center.
She has served as a program committee
member of the International Conference on Very
Large Data Bases (VLDB), the ACM SIGMOD
International Conference on Management of
Data (SIGMOD), the IEEE International Con-

ference on Data Engineering (ICDE), the International Conference on
Distributed Computing Systems (ICDCS), and numerous other confer-
ences and workshops. She also served on the review panels of the US
National Science Foundation (NSF) and of several journals including the
IEEE Transactions on Knowledge and Data Engineering, VLDB Journal,
the ACM Transactions on Database Systems, and Information Systems.
Her current research focuses on scalable, correct, and efficient event
processing techniques to support event-driven applications. In the past,
she worked on a variety of research topics, including data warehouse
maintenance, XML indexing, semantic matching, and mobile computing.

George A. Mihaila received the BS degree from
the University of Bucharest and the MSc and
PhD degrees from the University of Toronto, all
in computer science. He is a research staff
member at the IBM T.J. Watson Research
Center. He also holds an adjunct faculty
appointment at Columbia University. His re-
search interests include data integration, data
warehousing, data stream processing, and XML
storage and processing. His research was

published in high-quality journals and conferences, including the Journal
of Digital Libraries, the ACM Symposium on Principles of Database
Systems (PODS), the International Conference on Extending Database
Technology (EDBT), the IEEE International Conference on Data
Engineering (ICDE), and the W3C International World Wide Web
Conference.

Themis Palpanas received the BS degree from
the National Technical University of Athens,
Greece, and the MSc and PhD degrees from
the University of Toronto, Canada. He is a
faculty member in the Department of Information
and Communication Technology, University of
Trento. Before joining the University of Trento,
he worked at the IBM T.J. Watson Research
Center. He has also worked for the University of
California, Riverside, and visited Microsoft Re-

search and the IBM Almaden Research Center. His research interests
include data management, data analysis, streaming algorithms, and
business process management. He has applied his research solutions
to real-world industry problems and is the author of five US patents.

Christian A. Lang received the MS degree from
the Munich University of Technology and the
PhD degree from the University of California at
Santa Barbara, both in computer science. He is
a research staff member in the Database
Research Group at the Business Informatics
Department, IBM T.J. Watson Research Center.
He has served on the program committee of the
International Workshop on Database and Expert
Systems Applications (DEXA) and as a reviewer

of most major database conferences and journals. His research
interests are in the area of storage and retrieval of structured and
unstructured information. This includes query optimization, adaptive
database systems, database tuning tools, data analytics, federated
repositories, and real-time retrieval over streaming and/or high-dimen-
sional data (for example, multimedia or business intelligence (BI) data).
He is currently involved in several projects dealing with the scalability
aspects of database management and business process monitoring
systems. His findings were published in leading journals and database
conferences. He holds and has applied for several US patents related to
his work. He is a member of the ACM, the ACM SIGMOD, and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

STANOI ET AL.: WHITEWATER: DISTRIBUTED PROCESSING OF FAST STREAMS 13

