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Using Datacube Aggregates for Approximate
Querying and Deviation Detection
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Abstract—Much research has been devoted to the efficient computation of relational aggregations and, specifically, the efficient
execution of the datacube operation. In this paper, we consider the inverse problem, that of deriving (approximately) the original data
from the aggregates. We motivate this problem in the context of two specific application areas, approximate query answering and data
analysis. We propose a framework based on the notion of information entropy that enables us to estimate the original values in a data set,
given only aggregated information about it. We then show how approximate queries on the data from which the aggregates were derived
can be performed using our framework. We also describe an alternate use of the proposed framework that enables us to identify values
that deviate from the underlying data distribution, suitable for data mining purposes. We present a detailed performance study of the
algorithms using both real and synthetic data, highlighting the benefits of our approach as well as the efficiency of the proposed solutions.
Finally, we evaluate our techniques with a case study on a real data set, which illustrates the applicability of our approach.

Index Terms—Data warehouse, datacube, approximate query answering, deviation detection.

1 INTRODUCTION

N recent years, there has been an increasing interest in

warehousing technology and OLAP applications which
view data as having multiple dimensions, with hierarchies
defined on each dimension. Users typically employ OLAP
applications for decision making. They inquire about the
values and analyze the behavior of measure attributes in
terms of their dimensions. Consider, for example, Fig. la
showing a simplified three-dimensional OLAP cube, with
three dimension attributes (location, jeans, and gender), and
hierarchies defined per dimension. This cube stores the total
volume of sales of different kinds of jeans for men and
women across different cities. Users, for analysis purposes,
commonly inquire about the values of aggregates, like the
total sales of jeans in the state of New York. Such aggregates
can be computed using the datacube operator [17], and
queries of this kind can be efficiently supported.

The volume of data stored in OLAP tables is typically
huge, on the order of many gigabytes, or even terabytes. In
some cases, users store on disk only a subset of the data they
own. They move the rest of the detailed data to tertiary
storage systems, or even take them offline, while keeping only
a small amount of aggregated data that are of interest. A
common example is historical sales data, where only the data
of the most recent years are stored online, and the rest are
archived. In other cases, even if the data remain online, they
are aggregated not only to support user queries faster, but
also to save space.

Given the summarized form of data, users are often
interested in inquiring about the data from which the
summarized form was generated. In such cases, generating
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good estimates for the original data in response to queriesis a
pressing concern. Returning to our example of Fig. 1a,
assume that for the women’s jeans and for the state of New
York (i.e., the upper front portion of the data cube), we only
store the aggregated sales for each city and for each kind of jean
as shown in Fig. 1b, and that we have deleted all the detailed
values. The users might want to inquire about the number of
redtab Levi’s jeans sold in Queens, New York (a point query),
or they might request the number of women’s jeans sold in
each city in the state of New York (a range query). In the latter
case, the answer consists of all the individual values marked as
“x” in Fig. 1b. We want to be able to answer these queries
approximately using only the stored aggregate values. In this
work, we present a technique that addresses this problem.
Similar issues arise in transaction recording systems [21] as
well as in statistical databases [4], [27].

Even if the original base data exist, the ability to
reconstruct the original data from the summaries is of great
value. In order to reconstruct the data, various assumptions
have to be made about the statistical properties of the
reduced data. Given the reconstructed and the original data
at hand, we can test how valid our assumptions about the
original data were, just by comparing the two. This is useful
in reasoning about the properties of the underlying data set
and could be helpful in data mining. It may be used to
detect correlations in the data and identify deviations, that
is, values that do not conform to the underlying model.
Such results are interesting to the analyst because they
indicate local or global abnormalities.

In this paper, we propose the use of an information
theoretic principle for the reconstruction of the original data
from the summarized forms. Our reconstruction technique is
based on the well recognized and widely applicable informa-
tion theoretic principle of maximum entropy [22]. We present
algorithms for the efficient reconstruction of data from the
aggregates. Moreover, using an information theoretic form-
alism, we identify and describe an alternate benefit of the
proposed reconstruction techniques, namely, the ability to
“rank” each reconstructed value by its potential “interest” to
the user, as a means of aiding data analysis.

Published by the IEEE Computer Society
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Fig. 1. Example of a three-dimensional data cube with sales data. (a)
The entire data set. (b) Aggregated values for the selected portion of the
data set (i.e., the sales of women’s jeans in New York).

(b)

The contributions we make in this paper are as follows:

e We propose a method for reconstructing multi-
dimensional values from aggregate data. In the
OLAP environment, our technique uses the already
computed aggregated values.

e We describe an extension to the above method in
which we are able to provide quality guarantees
(error bounds) for the reconstruction. Moreover, the
quality of the reconstructed information can be
controlled by the user, achieving any degree of
desired accuracy at the cost of using more space.

e  We present a method to identify and rank deviations
in multidimensional data sets, that is, values that do
not follow in general the underlying data distribu-
tion. These values are of particular interest to an
analyst since they indicate local or global abnorm-
alities. The power of the method we propose is that it
does not depend on any a priori or domain knowl-
edge for the problem at hand, and it also does not
require any parameter settings or calibrations.

e The properties and special characteristics of the
above methods are explored with an experimental
evaluation, using both synthetic and real data sets,
as well as with a case study.

The outline of the rest of this paper is as follows: In
Section 2, we present some background material necessary
for the rest of the paper and Section 3 describes the
reconstruction algorithm. In Section 4, we present experi-
mental results evaluating the performance and the utility of
the proposed algorithms. In Section 5, we demonstrate the
applicability of the techniques discussed in this paper in a
single case study. Section 6 reviews related work, and,
finally, we present our conclusions in Section 7.
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Fig. 2. Example dimension hierarchies on two-dimensional sales data.
(a) The entire data set. (b) Aggregated values for the upper half of the
data set.

2 BACKGROUND

Consider a relation schema R = (A;, A,, ..., A,,Y) and r an
instance of R. Ai,...,A, are dimension and hierarchy
attributes, and Y is a measure attribute. Attribute ¥ could
represent volume of sales, dollar amount, number of calls,
etc. Usually, each dimension of a datacube is associated
with a set of hierarchically-related attribute values. A
combination of attribute values from the leaves of the
hierarchy specify a single data value in the data set. Any
combination of attribute values in which at least one comes
from a nonleaf level of its hierarchy specifies a (hyperrec-
tangular) set of data values. For example, for the simplified
OLAP table depicted in Fig. 2a the schema is R(STATE,
CITY, BRAND, PRODUCT, SALES). Values of attribute
CITY are hierarchically grouped into values of STATE, and
values of attribute PRODUCT are hierarchically grouped
into values of BRAND.

With a schema of n attributes, assume that h attributes
define hierarchies on the remaining d =n — h attributes.
Following Jagadish et al. [20], we refer to the
d-dimensional vector (hi,...,hq) as a grid query. When a
grid query specifies a single data value in the data set,
we refer to it as a point query. For example, viewing the
table of Fig. 2a with its dimensions and hierarchies as a
two-dimensional grid, the grid query (NY, All) is a range
query referring to the entire upper half of the data set,
while the grid query (Queens, silvertab) is a point query
asking for the sales of silvertab Levi's in Queens. Grid
queries are the most common queries in warehouse
environments [20]. For the rest of this paper, we refer
to grid queries simply as queries and, as we demonstrate
later on, they can be easily represented using SQL.

A basic observation about any instance r of R is that it
can be viewed as a discrete n-dimensional probability
distribution, P.(A;,...A,). This can be accomplished by
normalizing the value Y on each row of r by the sum of all
Y values. The analogy between r and P, can be extended
further. We can derive from r all the distributions of P,
where we have eliminated any of the attributes participat-
ing in P, by summing over them. These distributions are
called marginal distributions or simply marginals. More
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formally, the marginal distribution of a set of random

variables is the distribution obtained by summing the joint

distribution over all values of the other variables.
Consider, for example, the following query:

SELECT A, As, ..., Ap_1,sum(Y)/W
FROM r

GROUPBY Aj, Ay, ..., A, 1,

where W is the sum of all Y values in the cube. The
outcome of this query is one of the n marginal distributions
of P. of order n — 1.

Reasoning similarly, one can draw an analogy between
all the group-bys on r and all the marginal distributions of
P,. Thus, we can view the problem of reconstructing r from
its aggregates as analogous to the problem of reconstructing
an n-dimensional probability distribution from a number of
its marginal distributions. Based on this analogy, in the rest
of this paper, we use the terms group-by on instance r and
marginal distribution of P, interchangeably.

2.1 Maximum Entropy Distributions

For the following discussion, we will need the notion of
entropy, which is defined with respect to a discrete random
variable Z as follows: If variable Z takes on the values
(21, 22,...,2,) with probabilities (pi,ps,...,pn), then the
entropy of variable Z, H(Z), is

H(Z) = H(p1,ps,---,pn) = Y_ pilogp;.
i=1

Let P(A;,...,A,) be an n-dimensional discrete probability
distribution, to be estimated from a number of its margin-
als. With n variables, there are 2" — 2 marginals (excluding
the grand total and the base data) of P in total. Moreover,
there are (}) marginals with k variables (equivalently of
order k). The problem of maximum entropy estimation of P is

defined as follows:

Problem 1: The Maximum Entropy Estimation Problem.
Given S, an arbitrary subset of the powerset of

X ={A4,.... A},

find P such that it maximizes the entropy H(P) of P, over all
probability distributions that satisfy the following conditions:

o  cvery element in P(X) has a nonnegative value,
e Y PX)=1,and
o Vi€S, ) sy P) = P(i),

where P(j) is a marginal distribution of P.

Note that j represents a set of attributes. Therefore, the
dimensionality of P(j) is equal to the cardinality of the set j.

The maximum entropy estimation of P is a model fitting
technique. It has a unique solution [22] and it finds the
model with the “least” information or fewest assumptions
given the specified constraints, which are the marginal
distributions in our case. The overriding principle in
maximum entropy is that when nothing is known the
distribution should be as uniform as possible, and the
participating attributes independent. The constraints speci-
fy the regions where the estimated distribution should be
minimally nonuniform, as well as the attribute correlations
that should exist in the estimated distribution.

In the definition of the maximum entropy estimation
problem (Problem 1), the only constraints that serve as

input to the problem are the given marginals, to which the
solution should conform. In the general case, these
constraints can take other forms as well. For example,
instead of using just the sums of the detailed values (i.e., the
marginals), we could also use any of the higher order
moments, such as variance and skew. In this work, we
restrict our attention to the use of marginals only because
these are readily available in a data cube.

The only exception to the above restriction is in order to
take into consideration the values of particular elements of
the sample space, for which the exact real values are known.
Then, there is no need to produce estimates for these
elements. We discuss cases where the above situation is
applicable in Section 3.2.

2.2 Properties of Maximum Entropy

Let P(X) be an n-dimensional probability distribution, and
M; be the set of all marginals of order i, 1 <i<n—1 of
P(X). We denote by ME;, 1<i<n-—1 the maximum
entropy approximation to P using only the marginals in M;
as constraints. Then, the following theorems hold.

Theorem 1 [25]. Let C be the set of all n-dimensional probability
distributions that have the same marginals as those in M; and
assume that all distributions in C are equally probable to be the
true distribution P. Then, the distribution p = ME; € C
minimizes the expected distance among p and P’ € C, where
the distance function is defined as:

D) = S p(X)log B 1)
X

The measure D is known in the literature as the relative
entropy [14] and measures the similarity of two probability
distributions. More precisely, D is a measure of the effort
required to describe distribution P’ based on the knowledge
of distribution p. It has been shown that by minimizing
D(p, P') we also minimize the x? test between p and P’ [25].

Theorem 2 [25]. Let ME;,1 <i<n-—1 be the maximum
entropy estimation of P using only marginals of order i. Then,
the following inequality holds:

D(ME,, P) > D(ME,, P)... > D(ME,_1,P). (2

Theorem 2 states that a better estimation of P can be
performed by using marginals of order ¢ + 1 than marginals
of order ¢, for 1 <¢<n-—1.

3 ALGORITHMIC SOLUTION

Problem 1 is a constraint optimization problem that is not
amenable to a general closed form solution. The standard
technique for solving this maximization problem is the
method of Lagrange Multipliers [6], which (in the multi-
dimensional case) requires the solution of a rather compled,
ad hoc (depending on the specified constraints) system of
equations. This is not very appealing for automation.

We propose the use of an algorithmic approach. The
technique is called Iterative Proportional Fitting (IPF) and was
introduced by Deming and Stephan [15]. It is an iterative
algorithm that converges to the maximum entropy solution.
We can prove that IPF has the following properties [7]:

1. It always converges monotonically to the required
unique maximum entropy estimation, given a
number of marginals.
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over all [y € [dy,,d1.], -
13 } while maxChange> §;

gl b
-sla € [da,, da.];

Fig. 3. The IPF algorithm.

2. A stopping rule may be used that ensures accuracy
to any desired degree in the solution (i.e., in the
asymptotic estimates).

3. The estimates depend only on the given set of
marginals.

4. Convergence and its speed are not directly affected
by the starting values.

5. In some cases, convergence is achieved after only a
single iterative cycle.!

6. It does not require the values of the marginals (or,
equivalently, of the data set) to be normalized in
order to form a probability distribution.

3.1 Description of IPF

Letr(A;, Ag, ..., A,,Y) be a relational instance. We specify a
multidimensional region of interest [d;,,d1,] X ... X [dg,,dq,],
defined by a d-dimensional grid query @ = (hi, ..., hq). Let S

be the set containing all the marginals we are going to use for
the reconstruction of @), and k be the cardinality of S. To
illustrate the above with an example, we use the data set of
Fig. 2a. The highlighted box in the figure defines a range
query; the two marginals based on which we will estimate
this query are the row and column aggregates shown
in Fig. 2b.

Let Pi(j), 1 <i <k, j € S, be one of the k marginals of P.
Note that by j we refer to a particular marginal. On each
P;(j), the aggregation has been computed on all attributes
not present in the marginal j.

We denote as Y4, 4, 4, the value of attribute YV for a
specific combination of the A; attributes (d of those are
specified by the grid query and the remaining n — d from
the hierarchy). We denote as Yfg )A the estimate of the
value of Y}y, 4,..4, during the tth iteration of the algorithm.
IPF starts the reconstruction by initializing a d-dimensional
grid, G, of size d;, — d;, + 1 per dimension ¢, identically to 1.
We refer to each element of the d-dimensional grid as a cell.
In addition, it computes the k marginals in S for the
initialized grid G. Let P )(j), denote the marginals
Computed from G in the fth iteration of the algorithm.
Denote P ( /), the marginals after the initialization.

At each iteration, IPF loops over the k marginals j € S,
and over all grid cells, iy € [di,,dy,],...,l, € [d4,,dq,], and
adjusts the values of the grid cells according to the formula

1. A complete discussion of this topic may be found elsewhere [7].
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Fig. 4. An example of applying the IPF algorithm.
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where 1 < < k.

This procedure is guaranteed to converge to the
maximum entropy estimation of P given the specified
collection of marginals. The estimates converge in a
monotonic fashion, which allows the application of a
stopping rule. Commonly, we choose to terminate the
iterations when the change in each individual estimate
becomes smaller than some user-specified § value. For all
the experiments presented in this chapter, we set 6 to
10 percent of the median of the values designated by Q). We
chose the median because it is not affected by any extreme
values, and it can be efficiently computed [29] and stored in
the DBMS. In addition, as our experiments show, the
algorithm is not very sensitive to the value of 6, making the
specific choice less important. A skeleton of the IPF
algorithm is given in Fig. 3.

Example 1. Assume that we have the data set depicted in
Fig. 4a, and we want to focus on the highlighted subset.
Fig. 4b shows the particular subset along with its margin-
als. The IPF algorithm starts by initializing the estimates
V) =1,1,=2,...,45l,=1,...,4 (Fig. 4c). Then, in the
subsequent steps, it fits the marginals one by one. First, it

5(0) Pi(A;)
Y;I,OP*A) Vi €

4] and we obtain the table of Fig. 4d.

fits Pi(A;) using the formula Y}SZ) =
[2,...,4],[2 S [1,...,
Then, it fits marginal P,(A;) using the formula
5(2) _ (1) Po(Ay)

Ylflz) = Zflg) PZU(A Vhoe[2,...,4],1, €[1,...,4]. Theresult
is depicted in Fig. 4e, and this is the final set of estimates.

Indeed, if we run one more iteration of the algorithm the
elementary cell estimates will not change. Therefore, the
condition at the end of the main loop of the algorithm will

be satisfied, and the procedure will terminate.
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3.1.1 On the Selection of Marginals

An important issue is which marginals to choose in order to
use them for the estimation process. Clearly, different sets
of marginals will yield different estimates. This will, in turn,
result in different estimation errors. Another, equally
important, factor is the space required to store the margin-
als. If the gain in the approximation accuracy is negligible
when using marginals of a high order, then we may as well
restrict ourselves to a cheaper alternative that has almost
the same benefit.

At this point, we know, based on Theorem 2, that when we
use marginals of the same order for the estimation procedure,
then the higher the order of the marginals is, the more
accurate the estimation becomes. Nevertheless, what we
would really need is a measure of the relative benefit of using
different sets of marginals. Note that we should be allowed to
choose marginals from different orders as well. This measure
would serve as a means of comparison among the available
choices of marginals, by taking into account both the space
required to store each alternative, and the estimation
accuracy that it achieves. Ideally, we would like to be able
to compute this measure based only on the marginals.

Unfortunately, no measure that can effectively quantify
the relative merit of using alternative sets of marginals is
known. In the absence of such a measure, for the rest of
this paper, we restrict our attention to marginals of the
same order.

3.1.2 Algorithmic Complexity

The IPF algorithm requires as input the marginals corre-
sponding to a specific query (), and then iterates over a grid
G, which is the same size as the result set of Q. We can
safely assume that the marginals fit in main memory, but
this may not be true for G. If the available memory is large
enough to hold the grid G then the algorithm only needs to
read from disk the marginals. Taking into consideration the
large sizes of memory that are commonplace nowadays, we
expect that the algorithm will be able to provide fast
answers to a significant number of queries by operating on
memory-resident data.

In the case where G does not fit in memory, the
algorithm has an increased I/O cost. During each iteration,
it makes k passes over G, where k is the number of
marginals that we use for the estimation. After having
computed the estimates based on a single marginal for all
the values in G, the algorithm has to make one more disk
pass over G in order to calculate the new estimated
marginals. Therefore, the total cost is [2kt] passes, where ¢
is the number of iterations. In our implementation, we
incorporate the update of the estimated marginals with the
computation of the base values, reducing the cost of the
algorithm to [kt] passes over G. The results that we report in
the experimental section illustrate the worst-case scenario,
where the data set does not fit in main memory.

3.2 Quality Guarantees for the Approximation

The reconstruction process is only dependent on the
marginals of the base data. This implies a significant
reduction in the available information from which the base
data will be estimated. For various applications, being able
to provide error bounds for the reconstruction of individual
values is imperative. For this procedure, we can safely
assume that, at the time of the computation of the
aggregates, the original data are still available.

Let W be the set of queries of interest. One approach to
provide error bounds for each query in W would be the

following: estimate the values of each query in W, while the
original data are still available, compute the largest
difference (between the actual and the estimated value)
for each query in W, and store them separately. This would
incur a storage overhead of O(|W]). More formally, let us
denote by Y; the original value of some cell ¢, and with Y; its
estimated value. We can use the absolute difference d; =
|Y; — Yi| in order to provide an upper bound for the error.
Assuming that a specific grid query encompasses N cells
from the base data, the upper bound can be calculated using
the formula® N - max;<;<y{d;}. Thus, the total error for the
query is not going to be greater than NN times the largest
individual cell error.

The above error bound provides an indication of the
accuracy of the reconstruction. Yet, some applications may
require tighter quality guarantees. In order to provide such
guarantees, we introduce the following approach: store a
number k (user-defined) of the largest estimation errors for
each query in V. Given a query in W that involves a number
of the cells whose estimation errors have been explicitly
stored, the reconstruction algorithm uses these values and,
thus, induces no error for the specific cells. Since we have
chosen to store the cells with the largest errors, the overall
error for the query will be dramatically reduced. If the error
bound per query should be specified by the user, we can
choose k (the number of values to store) such that the overall
error of reconstruction satisfies the error bound. As will
become evident from the experiments, only a minor
percentage of cells exhibit high errors and, thus, can be
efficiently stored, with only a small storage overhead.

3.3 Mining Interesting Patterns

When the base data are available, the proposed reconstruc-
tion technique has a different utility. Maximum entropy
reconstruction from a number of marginals is performed
based on the assumption that the marginals of interest are
pairwise independent. By reconstructing the data and
comparing them with the base data, the validity of the
pairwise independence assumption can be tested. Any data
value that violates the pairwise independence assumption,
will induce a larger reconstruction error than one that does
not. Such values can potentially be of great interest to the
analyst, and we term them deviations because they deviate
from the estimation model.

The basis for identifying a specific value as a deviant can
be a measure of the distance between the actual and the
estimated value, i.e., the estimation error, such as absolute
difference. However, this metric may not always produce
high quality results. An example of this case would be a
data set with values drawn from a uniform distribution.
Then, most of the values in this data set would qualify as
deviants, which is not correct. In order to remedy this
situation, we can use a formula which normalizes the
estimation error of a value with respect to the standard
deviation ¢ of all the estimation errors returned by the
algorithm for the underlying data set s = @, where with
Y, we denote the original value of cell ¢, and with Y, its
estimation. Then, we choose a cutting threshold for s, that
can effectively differentiate between the normal perturba-
tions in the data set and the large deviations. The above
technique splits the sorted set of deviations into two
regions: it assigns the statistically large deviations to the

2. We assume that the error metric is the Root Mean Square Error.
Similar arguments hold if we choose other error metrics as well.



TABLE 1
The Statistical Properties (Min, Max, Mean, Standard Deviation,
and Skew) for the Synthetic Data Sets Used in the Experiments

dataset min | maz mean | std.dev. | skew
uniform1000 0.0 | 1000.0 | 501.14 | 287.84 | 0.01
gauss_small 38.0 | 115.0 | 73.46 10.26 0.11
gauss_medium | 4.0 | 100.0 | 42.90 16.24 0.40
gauss_large 0.0 | 104.0 | 15.60 18.34 1.65
gauss_combined | 0.0 | 106.68 | 24.66 13.57 0.53

first region and the rest to the second one. We refer to the
boundary point between those two regions as the cutoff
point. A commonly used threshold is s =2, which will
prune 95 percent of the approximation errors as trivial,
leaving only the largest 5 percent for consideration (the
values follow from the properties of Normal distributions).
The system can subsequently sort those deviating values,
and pick the top-k among them. In the experimental section,
we present graphs that visualize the deviations determined
by the algorithm, for both synthetic and real data sets.

4 EXPERIMENTAL EVALUATION

In order to test the IPF algorithm, we used both synthetic
and real data sets. The synthetic data sets are produced by
sampling uniform and Gaussian data distributions.

Uniform. We produced data sets of dimensionalities 2, 3,
and 4. For each of the above data sets of different
dimensionality, the values for the measure attribute were
drawn uniformly from the range [0, 10] (uniform10), [0, 100]
(uniform100), and [0, 1000] (uniform1000). The size of the data
sets varied from 1,000 to 20,000 tuples. The statistical
properties of those data sets are reported in Table 1.

Gaussian. We produced data sets of dimensionalities 2, 3,
and 4. The values for the measure attribute were sampled
from independent Gaussian distributions. For ¢ we chose
three different values that altered the distribution of the
values in the data space. In the experiments, we refer to these
data sets as gauss_small, gauss_medium, and gauss_large. Once
more, the size of the data sets varied from 1,000 to 20,000
tuples. We also experimented with a Gaussian data set which
had additional random noise coming from a uniform
distribution. This data set, gauss_combined, was derived from
a mixture of two multidimensional Gaussian distributions.
The statistical properties of the data sets are reported in
Table 1.

Real. The first two real data sets, calls and calls3, are
derived from AT&T proprietary data. Their measure attri-
bute represents the number of telephone calls in certain
regions of North America over time. They are 2 and
three-dimensional, and their size is 10,000 tuples. The
dimension attributes are time, location of the call, and
customer type.

Finally, we used census, a 4-dimensional data set from
the US Census Bureau, containing information about the
age, education, command of English, and number of
children of individuals. The measure attribute records the
income of the individuals. From this data set, we extracted
instances of 10,000-50,000 tuples by uniform random
sampling.

Table 2 summarizes the statistical properties of the real
data sets we used in our experiments.
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TABLE 2
The Statistical Properties (Min, Max, Mean, Standard Deviation,
and Skew) for All the Real Data Sets

dataset min max mean std.dev. | skew
calls 1.0 729.00 18.01 37.79 5.37
calls3 0.0 729.00 9.01 9.32 22.77
census_10K | 1000.00 | 196623.00 | 24735.73 | 23449.87 | 3.67

The error metric that we report in the experiments is the
Root Mean Square Error (RMSE), defined as

N 512
RMSE — |2z Y Z V) (Z ¥) ,
where Y] represents the original values in the data set, Y, the
corresponding estimated values, and NV is the total number
of values in our data set. In the following experiments, we
estimate the values of each data set and measure the error of
the estimation for all N values of the data set.

4.1 Exploring the Properties of the Algorithm

4.1.1 Effect of Data Set Size and Dimensionality

Fig. 5a shows how the running time of the algorithm
changes when the data set size increases. As expected, there
exists a linear relationship between the size of the data set
and the running time of the algorithm. Moreover, when
dimensionality increases, the number of marginals that the
algorithm uses increases as well. This explains the steeper
slopes for the curves in Fig. 5a for the higher dimensions.
As Fig. 5b depicts, the number of iterations increases with
the dimensionality of the data set. For these experiments,
we used the marginals of the highest possible order in order
to exaggerate the differences. We also performed some
experiments to test the effect of data set size on the
convergence of the algorithm. These experiments indicate
that there is no correlation between the data set size and the
number of iterations that the algorithm needs to perform in
order to converge.

These results on the scalability of the algorithm demon-
strate that this approach can be effectively used by the
analyst in real time, and in an interactive fashion, even for
queries that do not fit in main memory.

The graph in Fig. 6aillustrates how the error changes when
the data set size increases, for the three Gaussian distributions
(the results for the uniform data sets are similar, and are
omitted for brevity). All the data sets have three dimensions.
The graph shows that the error of the reconstruction is related
to the variance of the underlying data set and it increases as
the variance increases, while data set size has a neglizible
effect. The next graph, Fig. 6b, depicts how the data set
dimensionality affects the accuracy of the estimations. It is
evident that the reconstruction error increases with dimen-
sionality; however, the increase seems correlated to the
variance of the underlying data set since the increase of the
error as the dimensionality increases is small.

4.1.2 Effect of Order of Marginals

Fig. 7 depicts the experimental verification of Theorem 2.
We used four-dimensional data sets, and measured the
error of the estimation when the algorithm operates with
marginals of orders 1 to 3. Fig. 7a is an illustration of the fact
that when we use higher order marginals for the recon-



PALPANAS ET AL.: USING DATACUBE AGGREGATES FOR APPROXIMATE QUERYING AND DEVIATION DETECTION 7

2000 T T T T
4 dimensions —o—
3 dimensions -+~
2 dimensions -8--

1500 B

1000 -

Time/lteration (msec)

@

S

S
T

L I I
10000 15000 20000

Dataset Size (tuples)

(a)

il .
0 5000

1000 tuples ~<—
7k 5000 tuples -+-- |
10000 tuples -8--
20000 tuples -

Iterations

3
Dataset Dimension

(b)

Fig. 5. The effect of data set size on the running time of the algorithm (time per iteration), and of data set dimensionality on the number of iterations.
For these experiments we used the uniform data sets. (a) Time versus data set size. (b) Iterations versus data set dimensionality.

10 T T T T
gauss_large o—
gauss_medium -+-
gauss_small -8--

Root Mean Square Error

L
15000 20000

|
0 5000 10000
Dataset Size (tuples)

(@)

8.5
sigma large <—
sigma medium -+-
8 sigma small -8-- 7
5§ 75 |
i
® L
g 7 i
z
»
c
3 6.5 [ 4
=
g
14 6 - e
55 |
5 L

3
Dataset Dimension

(b)

Fig. 6. The effect of data set size and dimensionality on error, for Gaussian data sets. Three Gaussian distributions with different sigma value are
represented in the graphs. (a) Error versus data set size, three-dimensional data sets and (b) error versus data set dimensionality, 10,000 tuples.

30 T

uniform dataset o—
aussian dataset -+

25

Root Mean Square Error

2
Marginals Order

(@)

2500 T

gaussian dataset o—
uniform dataset —+-

2000 B

1500

Time (msec)

1000

500 - B

0 L

2
Marginals Order

(o)

Fig. 7. The effect of the order of the marginals used on the error of reconstruction and the running time of the algorithm. The data sets used in these
experiments are uniform100 and gauss_small. (a) Error versus marginal order. (b) Time versus marginal order.

struction of same data set, the error is diminishing. The
large difference in the errors shown in the graph of Fig. 7a is
explained by the fact that the uniform data set has a much
larger variance than the Gaussian one (see Table 1). It is
interesting to note here that, for the data sets we used, the
relative benefit of employing marginals of higher order is
increasing. The reduction in error is larger in moving from
order 2 to order 3 marginals, than it is for moving from
order 1 to order 2 marginals. The greater accuracy that we
are gaining by using marginals of high order comes at the
expense of time (and, of course, space). The runtime of the
algorithm increases with the order of the marginals (Fig. 7b).

4.2 Reconstruction with Quality Guarantees

In the following experiments, we assess the benefit of
providing error bounds. In the first set of experiments, we
explore the distribution of the size of the estimation errors
(i.e., the absolute error between the real and the estimated
value for an individual cell). The graph in Fig. 8a depicts the
distributions for the data sets calls and calls3 after sorting into
decreasing size. Both curves indicate that the error sizes
follow a skewed distribution. This fact indicates that the
choice to store the largest estimation errors as extra informa-
tion is likely to pay off during reconstruction. Fig. 8b shows
the same graph for different sizes of the census data set.
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(b) census data set.

The next experiments evaluate the relative benefit of
storing a number of deviating values per query in order to
guarantee a specified reconstruction error bound. Fig. 9
shows the error of the reconstruction as the number of
deviations that are stored increases from 0 to the size of the
data set. In every case, storing only a very small number of
deviations is enough to dramatically decrease the error. For
both real data sets we used, storing only the few largest
deviations decreased the error by two orders of magnitude.

Note the role that the cutoff point (see Section 3.3) can
play in this situation. In the graphs, the cutoff point is
marked with a vertical line and it can be used to determine
the point (and, subsequently, the number of values to
materialize) at which the relative benefit of storing addi-
tional deviating values becomes negligible. It is clear that
the cutoff point separates the initial region of dramatic
decrease of the error from the plateau that follows.

In addition to the actual reconstruction error, we plot a
theoretical upper-bound for the error, following the discus-
sion in Section 3.2. Even though this bound is not tight, it
may still be useful for certain kinds of applications.

In the following experiments, we evaluate the trade off
between the accuracy of the estimation and the space
needed to achieve this accuracy. Fig. 10 shows the reduction
in the estimation error when we use marginals of succes-
sively higher order, and the increase in the space needed by
these marginals. When we use marginals of higher order,
the accuracy of the estimation increases. However, this
increase in the accuracy comes at the expense of space since
the space needed by the marginals of higher order increases
as well. If we compare the graphs illustrated in Figs. 10a
and 10b, we observe that in order to improve the estimation

accuracy by a small amount, we have to use disproportion-
ally more space. That is, there is small added benefit for the
extra space needed by the marginals of higher order.

In the above experiments, we reduced the estimation error
by employing marginals of higher order. Another way of
reducing the estimation error is to explicitly store a number
of the largest deviating values. For the following experi-
ments, we measure the reduction in the estimation error
when we use the marginals of some order i and a number of
deviations. We ensure that the total space required by both
the marginals of order i and the stored deviations, equals the
space required by the marginals of order i + 1. In this way,
we can compare the benefit of explicitly storing some
deviating values, against using marginals of higher order,
for some fixed space. Fig. 10c depicts the outcome of these
experiments. We observe that in this case, the reduction of
the estimation error is considerable, and the reconstruction of
the real values of the data sets is almost perfect.

Evidently, for the same amount of space, it is much more
beneficial to store the marginals of some order i along with a
number of the largest deviations, than to store the marginals
of order i 4 1. Nevertheless, it is not always the case that we
can explicitly store the deviating values. For example,
consider the scenario of an online system, where only the
marginals of some measures of interest are materialized, and
the detailed values are not stored. Then, we will have to use
just the marginals for the estimation process.

4.3 Mining Interesting Patterns

We evaluate the ability of the IPF algorithm to mine the
underlying general structure of the data and report any
deviations with the following experiments with synthetic
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and real data sets. Note that the graphs we present involve
data sets in two dimensions only, for illustration purposes.

4.3.1 Synthetic Data Set

The synthetic data set (gauss_combined) we tested is a
combination of two multidimensional Gaussian distribu-
tions with different mean and sigma values, and some
uniform noise added on top. It is depicted in Fig. 11a. The
algorithm correctly singled out the most significant deviat-
ing values. Note that the algorithm does not merely identify
global phenomena, e.g., reporting the maximum value along a
dimension. Instead, it takes into account the local neighbor-
hood in which a particular value appears, and reports any
incongruities therein. For example, consider the deviation
number 4 reported by the algorithm, in Fig. 11a. This value
is not the maximum value of the data set (its rank in the
data set is 116th). Nevertheless, it is identified by the
algorithm as a deviant, because it differs significantly from
all the other values in its neighborhood.

4.3.2 Real Data Sets

In the following experiments, we used the algorithm to find
the most deviating values in two of the real data sets, the
calls, and the census_10K data set.

Fig. 11b depicts the calls data set along with the top-4
deviating values. All the marked values are instances of
unusually high volume of calls. This information is
important to the analyst since it indicates exceptional
behavior which can either be fraudulent, or signify special
cases in the data set.

The outcome of the second experiment, with census_10K,
cannot be graphically depicted because the data set is
four-dimensional. However, it is interesting to report some
of the findings of the algorithm. The dimensional attributes
of the data set are age, command of English, number of
children, and level of education, while income is the
measure attribute. As expected, the above attributes are
not independent. For example, the income tends to increase
with age and with the level of education. Nevertheless,
there exist values that do not follow these patterns. Among
the top deviations are a middle-aged person with high level
of education who earns less than 20K, a person with a
PhD degree who earns merely 3K, and a 24-year old who
earns 200K. These are certainly results that deviate from the
norm, and therefore are interesting.

Note that the algorithm is able to identify all the above
results as interesting even though it has no domain
knowledge, and it gets no user input.

5 CASE STuDY

In this section, we demonstrate how the techniques
presented in this work can be applied in a single case
study over a real data set. Namely, we start by considering a
workload of queries. These queries specify the regions of
the entire data set that need to be estimated with the
maximum accuracy. To this end, we materialize the highest
order marginals that correspond to each one of these
regions, according to the discussion in Section 3. Then, in
order to be able to answer any other query that asks for
values in the data set that fall outside the selected regions,
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we will also materialize the lowest order marginals (i.e.,
marginals of order one) for the entire data set. Evidently,
since we are targeting the set of selected regions in the data
set, we expect to achieve better accuracy in estimating any
query that asks for values inside those regions. Never-
theless, by storing the marginals of order one for the entire
data set as well, we are able to answer approximately any
query, regardless of which values in the data set it involves.

5.1 Description of Experiments

For all the experiments in the case study described in this
section, we used the census_50K data set, whose size is
50,000 tuples, and we use synthetically generated query
workloads in order to specify selected regions in the data
set. All the regions defined by the queries in the workload
are four-dimensional hyperrectangles. Note that in all cases,
the number of tuples of the data set that belong to more
than one selected region is negligible compared to the total
number of tuples in the selected regions. Therefore, we can
safely assume that this parameter of the problem does not
affect the outcome of our experiments significantly.

The error metric that we report in the experiments is the
Root Mean Square Error (RMSE). The error is computed as
follows: We wish to estimate all the values in the data set.
For each value, we check whether it is contained in any of
the selected regions, for which we have stored the margin-
als of the highest order. If it is contained, then we estimate
the value based on these marginals. Otherwise, we estimate
the value based on the marginals of the lowest order, which
we have stored for the entire data set. Note that we estimate
the values and measure the error of the estimation for all
N values of the data set. Each of the experiments was run
30 times and in the results, we report the mean values and
confidence intervals for these runs. For the error metric, we
also show in the graphs the corresponding confidence
intervals with level of 95 percent confidence.

5.2 Queries on Detailed Values

In Fig. 12a, we depict the reduction in the error of the
estimation for different sets of selected regions of increasing
cardinality. The basis for computing the reduction of the
error are the estimates provided by the marginals of order 1,
which correspond to the independence assumption. The
graph shows the observed error reduction as a percentage,
for both the error over the entire data set, and the error over
the values contained in the selected regions.

Evidently, the benefit of storing the marginals for the
selected regions is entirely absorbed by the values con-
tained in these selected regions. The rest of the values in the
data set do not benefit. Thus, when the reduction in the
estimation error of the values in the selected regions is
spread over the entire data set, as depicted by the light
colored bars in the graph of Fig. 12a, it becomes negligible.

We should note here, that the significantly higher error
reduction for the first set of selected regions (leftmost dark
bar in the graph) is caused by a small number of queries,
whose values are approximated exceptionally well. The
reduction of the error for the rest of the cases is slightly
more than 10 percent. The fact that this error reduction
remains steady across the different sets of selected regions,
even though the space dedicated to the marginals is
increasing, is not surprising. The additional marginals are
related to a new, different, set of values in the data set.
Therefore, we should not expect them to reduce any further
the estimation errors of the old set of values.
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Nevertheless, as we show in Fig. 12b, the overall error is
steadily diminishing when we materialize more marginals.
This graph illustrates the reduction of the error for the
entire data set as a function of the tuples covered by the
selected regions. This confirms the intuition that when we
use more space to store marginals in order for the selected
regions to cover more tuples of the data set, we should
expect a reduction of the overall estimation error.

In the following experiments, we compare the error
reduction in estimating the values contained in the selected
regions (Fig. 13a), and all the values in the data set (Fig. 13b),
when we employ the marginals of order 1 and order 3 of the
selected regions. The marginals of order 1 are the lowest
order marginals, and in the graphs are depicted with the
light colored bars, while the marginals of order 3 are the
highest order, and are depicted with the dark colored bars.
Fig. 13a shows that the reduction in the estimation error
when we use the marginals of order 3 is up to three times
larger than when using the marginals of order 1, for values
in the selected regions only. When we consider all the
values in the data set, then the benefit is not as pronounced
(see Fig. 13b). This is because only a small subset of the
values can benefit from the use of the higher order
marginals. Note also that in this case, the error reduction
is approximately twice as large when we use the marginals
of higher order. This improvement in the estimation
accuracy comes at the expense of space, since the marginals
of order 3 require about 50 times more space than those of
order 1. Clearly, we have to take into account this tradeoff
when deciding whether the added accuracy, that the
marginals of higher order offer, is needed.

5.3 Aggregate Queries

In our discussion so far, we have only considered the case
where we are interested in estimating all the detailed values
specified by a query. The error metric has been calculated
accordingly by measuring the difference between the
estimate and the real value for each one of the detailed
values individually.

In the next set of experiments, we consider another
important class of queries, namely, the aggregate queries.
For this class of queries, we are interested in a single value
only: the aggregate of all the values specified by the query.
Then, the error is calculated on the estimate of the aggregate
and the real aggregate value.

For the following experiments, we produced a query
workload of 5,000 queries, by employing the same method
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we used to produce the selected regions, as described
earlier. We used the same sets of selected regions as before,
and repeated each experiment 30 times. The results on the
errors we report are over the 5,000 aggregate queries, and
then averaged over the 30 repetitions of each experiment.
The error metric we use is once again the RMSE.

Fig. 14a depicts the reduction in the error when
estimating aggregate queries and when we use the margin-
als of order 3 for the selected regions. We measure the error
reduction for aggregate queries over the entire data set
(light colored bars), and over the selected regions only (dark
colored bars). In the latter case, we simply consider the
portion of each query that overlaps with some selected
region, and we compute the aggregate value of this portion.
(In each of the experiments we ran, there were approxi-
mately 1,000 queries overlapping with the selected regions.)
The graph shows that the estimates produced for the
aggregate queries over the selected regions is almost perfect
(the error reduction is slightly less than 100 percent). The
reason why the estimates are so accurate is because in the
general case, when estimating the values of a data set, we
expect to have an almost equal number of underestimates
and overestimates, which will cancel each other out when
we compute the aggregate value.

Even when we consider aggregate queries over the entire
data set, we still get significantly more accurate estimates.
As Fig. 14b shows, the error reduction for aggregate queries
over the entire data set is approximately 2.5 percent to
5 percent for the selected regions we considered. This
reduction is 10-25 times larger than for queries on the
detailed values (see Fig. 12b).

In the last experiments, we evaluate what the added
benefit of using marginals of order 3 for the selected regions
is, as compared to marginals of order 1. Fig. 15a compares
the reduction in the error of aggregate queries over the
selected regions, when using marginals of order 1 (light
colored bars) and order 3 (dark colored bars). The marginals
of order 1 are able to reduce the estimation error by
75 percent, while the use of the marginals of order 3
contribute to the error reduction with an extra 25 percent,
virtually eliminating the error in the estimation. Never-
theless, this added accuracy comes at the expense of space,
since the marginals of order 3 require between one and two
orders of magnitude more space than the marginals of
order 1. The same error reduction is not observed when we
consider aggregate queries over the entire data set. As
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Fig. 15b shows, the benefit of using marginals of higher
order is in this case negligible.

5.4 Discussion

In this section, we presented a case study, where we
applied the techniques described in this paper on a real
data set. The outcome of the experiments show that the
marginals can help in the estimation of the values toward
which they are targeted. Nevertheless, the benefit in the
overall estimation error is minimal. The above two
distinct cases correspond to the following two extreme
scenarios. The first is when the future query workload
will consist of exactly the same queries as the selected
regions. In this case, we will observe the error reduction
bars depicted in dark color in Fig. 12. In the second
scenario, the future query workload will consist of
queries spread uniformly over the entire data set. This
corresponds to the outcome of the experiments repre-
sented by the light color bars.

Obviously, the performance that we should expect from
such a system lies somewhere in between those two
extremes, according to how well we can predict the future
query workload. The state-of-the-art commercial database
management systems offer tools that, based on some query
workload, can automatically generate the list of marginals
that are most useful in answering the specified queries [38],
[2], [26]. Then, these marginals are candidates for materi-
alization. The assumption during this process is that the
past workload is indicative of the future queries that will be
posed on the system. Furthermore, queries that are similar
to each other can be indentified [12], and the proposed
solution can be generalized to suit classes of queries, rather
than the specific queries present in the input workload.

Finally, we should note the case of aggregate queries, for
which our techniques can provide estimates extremely close
to the real values. In a real-life scenario, we expect that the
query workload will be a mixture of queries asking for the
detailed values, and aggregate queries that target subsets of
the regions specified by the materialized marginals (i.e., the
answer to these aggregate queries is not readily available).
Then, the benefit of using our framework will be even
greater than what is suggested in Section 5.2.
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6 RELATED WORK

The principle of maximum entropy [14] has been success-
fully applied in different domains, including linguistics [13]
[9] and databases [16]. Faloutsos et al. apply maximum
entropy, in addition to other techniques, for one-dimen-
sional data reconstruction [16]. Our work generalizes the
work of Faloutsos et al. to multiple dimensions.

There exists a sizeable bibliography in approximate
query answering techniques [18], [30], [19], [37], [3], [35],
[10], [11]. Our approach is fundamentally different. Pre-
vious work focused on the problem of data reconstruction
by constructing specialized summarized representations
(typically histograms) of the data. We argue, that since there
exist data that are already stored in an aggregated form in
the warehouse, it is imperative to examine the quality of
reconstruction one can attain from the aggregates.

The problem of identifying interesting values in a data
set is related to deviation detection. Arning et al. [1] try to
identify the subset of a database that is most dissimilar to
the rest of the data. Other approaches discuss algorithms
specialized to metric spaces that scale to large data sets [23],
[24], [32]. The drawback of these approaches is that the user
is required to come up with the right selection of functions
and parameters, which requires a great deal of effort. Our
algorithm does not require such input, making the whole
procedure less cumbersome and more robust. A method
that can identify outliers based on the density of data points
is presented by Breunig et al. [8].

Our work is closer to the framework proposed by
Sarawagi et al. [33]. They describe an algorithm that mines
the data in a data cube for exceptions. We should note that
in certain cases, the exceptions identified by this algorithm
are the same as the deviations reported using our technique.
This is because the log-linear models used in the above
work produce the same model as the one derived using the
maximum entropy principle, when the input is the same set
of marginals [7]. However, their method is computationally
expensive, and is tightly coupled with the computation of
the entire data cube. Our solution does not have this
requirement, which makes it more flexible than the above
approach. In a subsequent study [34], Sarawagi describes a
framework that automatically adapts the exploration of a
datacube to the user’s prior knowledge of the data. This
framework is related to our work, employing maximum
entropy and the aggregated information across different
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dimensions in order to select the dimension that holds the
most unexpected values.

The maximum entropy principle has also been used for
the problem of query selectivity estimation for binary data
sets [29], [31]. The aim is to estimate a function of the joint
probability distribution, given some of its marginals.
However, it is not clear how the techniques developed in
the above studies can be extended to nonbinary data sets.
The work we present in this study is a detailed analysis of
the benefits of using the maximum entropy principle and
IPF for approximate querying answering and deviation
detection, in the context of data warehouses.

7 CONCLUSIONS

In this work, we examine the problem of using only the
information contained in the aggregates in order to extract
estimates of the detailed values from which the aggregates
were derived. Since this is an underspecified problem, we
employ the information theoretic principle of maximum
entropy. This principle allows us to produce estimates for
the detailed values based only on the aggregated, without
the need to make any additional assumptions about the
detailed data distribution.

Based on this framework, we describe a technique for
identifying deviations in multidimensional data sets.
Deviations are those values that do not follow the general
trends of the data set. Therefore, they may be interesting to
the user analyst. The advantage of this technique is that it
does not require any human intervention or domain specific
knowledge. We also present a method that, based on the
aggregates of a multidimensional data set, provides
approximate answers to queries asking about the individual
values of the data set. In this context, we show how we can
extend the framework to offer quality guarantees for the
reconstruction process.

An interesting application of the techniques presented in
this study is in the area of selectivity estimation in the
context of a Database Management System (DBMS). The
nice property of these techniques is that they are bound to
yield more accurate estimates than the ones used by the
state-of-the-art databases, whose estimates are based on
one-dimensional histograms. Moreover, the algorithms we
describe in this paper can effectively use any information
about the distributions they are trying to approximate that
is available to the system. Hints, or even exact values for
parts of the unknown distributions, may be available by
examining the execution of the query workload [36], [5]. In
such cases, we can use this information to improve the
accuracy of the estimation of the unknown distribution.
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