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ABSTRACT
Analyzing sentiments of demographic groups is becoming impor-
tant for the SocialWeb, where millions of users provide opinions on
a wide variety of content. While several approaches exist for min-
ing sentiments from product reviews or micro-blogs, little atten-
tion has been devoted to aggregating and comparing extracted sen-
timents for different demographic groups over time, such as ‘Stu-
dents in Italy’ or ‘Teenagers in Europe’. This problem demands ef-
ficient and scalable methods for sentiment aggregation and correla-
tion, which account for the evolution of sentiment values, sentiment
bias, and other factors associated with the special characteristics of
web data. We propose a scalable approach for sentiment indexing
and aggregation that works on multiple time granularities and uses
incrementally updateable data structures for online operation. Fur-
thermore, we describe efficient methods for computing meaningful
sentiment correlations, which exploit pruning based on demograph-
ics and use top-k correlations compression techniques. We present
an extensive experimental evaluation with both synthetic and real
datasets, demonstrating the effectiveness of our pruning techniques
and the efficiency of our solution.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining — correlations
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1. INTRODUCTION
Today, sentiment analysis has become a platform that provides

valuable information on people’s opinions regarding different top-
ics, and is widely used by businesses [5] and social study institu-
tions [17]. Sentiment extraction and aggregation has been applied
in various domains, frommovie reviews to product reputation man-
agement. While multiple efforts focused on developing machine
learning and statistical methods for characterizing sentiment within
large bodies of text or for brief opinions and tweets [11, 14], not
much attention has been devoted to aggregating sentiment along
users’ demographics [15]. Studies along this direction have tradi-
tionally focused on an off-line analysis and aggregation of polling
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data for pre-determined demographic groups. However, it is dif-
ficult to organize polling on a large scale and conduct it regularly
enough to analyze trends and correlations over time.
Nevertheless, the need to provide fine-grained analytics of social

data is growing. Readily available users’ demographics along with
opinion data constitute a gold mine for extracting insights on what
a particular user group thinks and how their opinion evolves over
time and compares to opinions of others.
Some recent studies have already made a step along this direc-

tion. For instance, “A Demographic Analysis of Online Sentiment
during Hurricane Irene” [6] revealed dynamic (temporal) sentiment
differences between Southern USA and New England, and at the
same time a constant (inherent) difference in the sentiments ex-
pressed by males and females, referred to as sentiment bias. Indeed,
different demographic groups may have different points of refer-
ence when they express their sentiments for different topics. For
example, while youngsters tend to prefer relatively cheap restau-
rants and are comfortable with a certain level of noise, pensioners
generally prefer quieter and moderately priced restaurants. In ad-
dition, sentiments of demographic groups may evolve differently
over time. For example, “French farmers” and “German farmers”
had initially positive sentiments for the topic “organic farming”,
but later disagreed when the French government introduced addi-
tional taxes for organic goods superseding laws set by the European
union and in disfavor of French farmers. In the above example, if
the two groups have equal average sentiments for a specific topic
during some time period, it will be hard to say if they really have
the same attitude towards the events in that period, or if their equal
sentiments are merely the result of an instantaneous convergence of
otherwise diverse sentiments.
Our examples suggest the need for sophisticated methods that

can compare and correlate sentiments of demographic groups over
time regardless of their inherent biases. One important aspect in the
design of appropriate methods is the definition of sentiment corre-
lation as a function of aggregated sentiment over a time period. We
explore Pearson’s correlation using several variations of the aver-
age sentiment. Second, it is important to use efficient correlation
methods, which allow online updates. Here again, we evaluate sev-
eral ways of constructing a time interval of sentiment correlations
and show that correlations remain meaningful and robust to noise
when time intervals are assembled from smaller ones, which allows
to apply efficient top-k and windowed correlation methods.
There are two computational challenges when implementing our

methods: 1) finding demographic groups requires the exploration
of all possible combinations of values for demographics attributes;
2) in order to find correlations between pairs of demographic groups,
one potentially needs to explore all sub-intervals of the input time
interval. We show that both challenges render traditional database
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approaches inefficient, and describe algorithms that exploit the lat-
tice structure induced by demographics attributes in order to prune
the search space. Our algorithms also make use of hierarchical time
aggregation to achieve efficient and scalable indexing and retrieval
of aggregated sentiments. The contributions of this work can be
summarized as follows:

• We formalize a novel large-scale sentiment analytics prob-
lem, focusing on the efficient aggregation of sentiment and
computation of high and significant sentiment correlations
between maximal demographic groups within dynamically
determined time intervals.

• Specific to demographics sentiments, we describe efficient
correlation pruning methods based on the demographics lat-
tice. Furthermore, we introduce two novel methods for corre-
lation compression, which allow for the efficient implemen-
tation of our algorithms.

• We conduct an extensive set of experiments to validate our
problem, and evaluate the performance of our solution. We
use synthetic datasets, which contain large-scale artificial cor-
relations with added noise, and the MovieLens real dataset,
which comes with rich user demographics. The experiments
demonstrate that correlated demographic groups can be iden-
tified very efficiently with the help of our specialized index-
ing storage and effective pruning. Finally, our evaluation
provides interesting insights on correlations among real de-
mographic groups in MovieLens.

This paper is organized as follows. Section 2 defines our frame-
work and the problem we tackle, while Section 3 develops the prop-
erties of correlation with respect to our problem. Section 4 de-
scribes our algorithms for correlated groups and correlation com-
pression. Our user study and performance experiments are reported
in Section 5. Section 6 provides a summary of the related work. We
conclude in Section 7.

2. FORMALISM
We are given a database X of records x = (u,t,s, p) where u ∈

U denotes a user expressing sentiment s ∈ [-1,1] on a topic t ∈ T
in a time period p characterized with a start and end timestamps.
In our definitions we assume that sentiments are extracted for

a given topic. For example, the record x1 = (u1,Politics,0.8, p1)
means that user u1 expressed a positive sentiment (i.e., +0.8) for
“Politics” during time period p1. Such information can be extracted
from the tweets of user u1 during that time period. The record x2 =
(u2,Drama, -0.5, p2) expresses a negative sentiment for “Drama”
movies by user u2 during time period p2. This information can be
computed from movie rating datasets such as MovieLens.

2.1 Definitions
We assume that each user u ∈ U is associated with a collection

of values for a set of demographics attributes {ai}. For example,
25 for attribute a1:age, Student for a2:occupation, and Italy for
a3:location. Each attribute ai is associated with a demographics
hierarchy Di whose nodes hierarchically partition the set of values
for that attribute. Correspondingly, each demographics hierarchy
node contains all users from U whose attribute values are covered
by that node. The top left part of Figure 1 shows an example de-
mographics hierarchy associated with attribute location. The top
node covers users from all available geographic locations (corre-
sponding toU ), and the descendant nodes partition those users into
non-intersecting subsets according to their geographic locations.

Figure 1: Two demographics hierarchies forming a lattice.

Definition 1. (Demographics Criteria) d= {a1= d1, · · · ,ak= dk}
is a set of predicates over demographics attributes ai, where each
predicate requires attribute’s values to be contained in a node from
a demographics hierarchy.

For example, d= {age :Young,location : Italy,occupation :
Student} refers to a combination of predicates on user attributes
age, location and occupation. To simplify our notation, we
will use d = {Young, Italy,Student} to refer to the same set of
predicates. Values in demographics criteria correspond to hierar-
chy nodes and are therefore a fixed set, which can be enumerated.
We note that user attributes with continuous values (for example,
age) can be transformed to categorical values in order to induce a
hierarchy.

Definition 2. (Demographics Generality)Demographics criteria
d is more (less) general than d′ if: ∀ (di,d′i) : d′i ∈ di (di ∈ d′i ).
We denote these relationships as d ≺ d′ (d % d′).

All demographics criteria and their generality relationships form
a demographics lattice L, with a size equal to the product of the
hierarchies’ sizes. We show an example of such a lattice in the
right part of Figure 1, where a nine-element demographics lat-
tice is formed by all node combinations of two hierarchies, each
containing three nodes (shown left). The links that go from one
lattice node to another indicate generality relations. For exam-
ple, such criteria as {Italy,Student} and {France,Student} are less
general than {Europe,Student}, which is itself less general than
{Europe,Academic}.

Definition 3. (Demographic Group)U d, defined by demograph-
ics criteria d, is a set of users u ∈ U , who satisfy predicates in d.

An example of demographic group is European students defined
by the demographics criteria {Europe,Student}, shown in Figure 1,
right. In this paper, we only consider groups of users, that can be
defined using demographics criteria and use demographics criteria
to denote demographic groups in all our equations.

Definition 4. (Group Sentiment) Given a demographics criteria
d, a topic t and a time period p, we define the group sentiment of
U d as an aggregation of sentiments sx over records x= (ux,tx,sx, px)
where ux ∈ U d, tx = t, sx is the sentiment of ux for t, and px ∈ p:
s(d, p) = 1

|x| sx | {ux ∈ U d, px ∈ p}.

In the rest of the paper, we assume that sentiments are aggregated
and analyzed with respect to the same topic t, and therefore we omit
t where applicable.
The main scope of this paper is to analyze time-behavior of sen-

timent. Therefore, we need to consider a time series of sentiments,
aggregated using fixed intervals to allow meaningful comparisons
of individual points within, as well as across time series.
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Definition 5. (Sentiment Time Series) is a sequence of values si
computed by aggregating sentiments on a time interval p, using
fixed sub-intervals pi of the same length: si = s(d, pi).

Our further analysis of sentiment dynamics is centered on senti-
ment time series for a given group, topic and time period. Before
going into details about the right time granularity and a sentiment
correlation function (), we consider the relations between demo-
graphic groups, and discuss how they affect the formulation of our
problem.

Definition 6. (Maximal Demographic Group) Given a sentiment
time series similarity function (), a threshold and a time period
p, we call a demographic group U d maximal, if and only if: ! d′≺
d, s.t. (d,d′, p) > .

Intuitively, the above definition says that a demographic group is
maximal if there is no other, more general group, that for the time
period of interest shares the same sentiment behavior with the given
demographic group. We define maximal demographic groups with
respect to their sentiment time series similarity, by analogy to the
definition of maximal itemsets in frequent itemset mining.
Demographics relations may also be of a partial-overlap type,

e.g., between {Europe, Students} and {Italy, Academic} (where Eu-
rope is a superset of Italy). However, we can argue that while for
negative correlations all relationships between groups can be inter-
esting, for positive correlations, generality and partial-overlap re-
lations represent trivial cases of sentiment dependency. Sentiment
correlations in this case can be caused by aggregating the same
sentiments from the overlap for both groups. Therefore, we need to
consider a disjoint type of relation.

Definition 7. (Demographics Disjointness) between two demo-
graphic criteria d and d′ is strictly opposite to demographics gener-
ality: ∃(di,d′i ) : di∩d′i = /0. We denote these relationships as d!∩d′.

In other words, disjointness on any of the attributes makes the
entire criteria also disjoint. Based on the above observations, for
the rest of this paper we limit the scope of possible relations to those
between non-overlapping groups and fully-overlapping groups only.

2.2 Problem Definition
In this paper we are interested in finding strong and significant

positive and negative correlations among the sentiments time series
of demographic groups. For the sake of simplicity, we will only
work with positive thresholds, specifying the sign of the correlation
if needed.

Problem Statement. (Correlated Sentiment) Given a period of
time p and correlation min, find pairs of maximal disjoint demo-
graphic groups {d,d′} and the longest time interval p′ ∈ p where
their sentiments correlate: | (d,d′, p′)| > min.

Note that we can further restrict the answer set to only contain
demographic groups whose correlation is statistically significant.
That is, we require that | (d,d′, p′)| > min at a significance level
rmin. We discuss this issue in more detail in the following sections.
A proper solution to the above-formulated problem will allow

identifying sentiment behavior at a much finer level of detail than
currently possible, finding cases that are counter-intuitive and can
only be observed by processing huge amounts of data. We further
discuss some interesting examples of such findings in Section 5,
where we report the results of applying the proposed approach to
the analysis of movie opinions.

3. SENTIMENT CORRELATION
Similarity of sentiments between two demographic groups is mea-

sured using a correlation coefficient of their sentiment time series.

Definition 8. (Sentiment Correlation) Correlation of two time
series s and s′ of length n (with averages s and s′) is defined as the
normalized inner product (s◦s′)n1 of local deviations from averages:

=
(s◦ s′)n1
n s s′

=
n
i=1 (si− s) · (s′i− s′)√

n
i=1 (si− s)2 · n

i=1 (s′i− s′)2

Indices n1 in the inner product denote that it is computed using data
points from 1 to n. Correlation takes values in the interval [-1,1],
where a positive (resp., negative) sign indicates that sentiments are
changing in the same (resp., opposite) way and the absolute value
measures the strength of the correlation.
Sentiment average can be computed in different ways in order

to reflect different dependencies between time series. In addition,
the period of time during which correlation is computed may vary
depending on on whether the whole period is considered at once
or if it is processed into sub-intervals. In the next two sub-sections
we discuss different sentiment average computation and interval
processing. We use the examples in Figure 2.

Figure 2: Examples of different correlation types.

3.1 Sentiment Averages
Global Average: This correlation detects co-variation of sen-

timents regardless of their sentiment bias. In Figure 2, a strong
positive correlation between a and b is detected even though time
series b is entirely positive.
Zero Average: When an average is substituted with a zero value,

the correlation formula detects polarity correlation (e.g., between
a and c in Figure 2). Polarity correlation indicates a much stricter
dependency between sentiments: not only their local deviations,
but also their signs (polarity) should be synchronized. As an addi-
tional benefit, it is easier to compute, as it does not need to compute
average values of sentiments.
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Local Average: If we compute correlation with local average
(shown as dashed grey lines in time series a), we are able to de-
tect correlation between local deviations. For example, the time
series d has the same deviations of sentiment as the series a during
the first period, and inverse deviations during the second period.
These periods can be detected by computing correlation using slid-
ing windows with the running average.

3.2 Time Intervals
Global Interval: We compute a single correlation value for the

entire input time interval.
Fixed Interval: The input time interval is divided into fixed-

length sub-intervals within which correlations are computed.
Sliding Interval: The input time interval is divided into variable-

length sub-intervals in a way that maximizes correlations. This goal
can be achieved by optimizing sizes of correlation intervals, or by
using a greedy algorithm that identifies intervals on-the-fly.
We observe, that for very long time intervals, global average sen-

timent is likely to be close to zero, so global average and zero av-
erage effectively become the same. The same is true for local aver-
age, which becomes closer to the global one with increased interval
sizes. We will use the above variations of the sentiment correlation
in our algorithms, which we describe in the following sections.

3.3 Correlation Significance
When computing the correlation value between two time series,

we also need a measure that expresses how confident we are that
this value accurately captures reality (e.g., we can be more confi-
dent that the correlation value between two particular time series
is true when these time series are long than when they are com-
prised of just a few data points). This measure is the correlation
significance. Given the correlation coefficient , computed from n
samples, we consider two Null Hypotheses about the correlation,
which have the following test statistics:
Hypothesis H1 ( = 0= 0= 0 ): the value z=

√
(n−2)/(1− 2) is

distributed as the t-distribution with (n−2) degrees of freedom.
Hypothesis H2 ( < minminmin): the value z= (Z( )−Z( min))

√
n−3

is distributed as the standard normal, where Z( ) = artanh( ).

Definition 9. (Correlation Significance) r is defined as the
probability at which the considered null hypothesis is supported.
For large n, the (one-tailed) significance of H1 and H2 is computed
using the cumulative distribution function of the standard normal:

r = 1− (z) = 1− 1√
2

∫ z

−
e−

x2
2 dx

While the first hypothesis is intended to verify if there exists any
correlation between the two time series, the second hypothesis tests
if they are correlated at least as high as min. For example, if =
0.9, min = 0.7 and n = 10, we have that rH1 ≈ 0.0002 and rH2 ≈
0.06. Relying on the significance threshold rmin = 0.05, H1 can be
rejected as improbable, meaning that the two time series are indeed
correlated. On the contrary, H2 cannot be rejected, signifying that
can be smaller than 0.7 and thus it is subject for pruning.

4. METHOD AND ALGORITHMS
In this section, we present our methods for storing sentiment time

series for demographic groups and efficiently extracting correla-
tions. We begin with the outline of our sentiment storage, followed
by a description of our algorithms. Finally, we present smart prun-
ing and compression techniques which take a full advantage of our
storage and allow efficient problem solving.

Figure 3: The DTree, a time-indexed sequential storage of
aggregated demographics sentiments over multiple topics.

4.1 Data Storage and Management
Our problem requires ad-hoc navigation of time series at differ-

ent aggregation granularities, and fast access to sentiments for de-
mographic groups. Therefore, it makes sense to organize the data
storage around a time-indexed and aggregating structure named
Demographics Tree (DTree), which at its nodes provides access
to aggregated sentiment values via the demographics lattice. We
demonstrate this structure in Figure 3 and describe below.
DTree is a hierarchically organized balanced tree, where each

level in the hierarchy stores information relevant to years, month,
weeks, and days. Each node in the tree corresponds to one of
these intervals, and is connected to the parent and children nodes
in the hierarchy, as well as to the adjacent nodes at the same level.
Each DTree node stores statistical aggregations of sentiments for
different topics for the specific time interval: (count, sum, sum of
squares)t , where topic t ∈ T . These aggregations allow us to re-
construct sentiment mean, variance, volume and their derivatives,
and they are also incrementally maintainable, allowing the easy up-
date of the DTree as new data come in. In addition, DTree nodes
store top-k correlations for the particular time interval and topic,
in order to facilitate query answering. We provide more details on
the construction of top-k correlations in Section 4.3. DTree nodes
maintain physical aggregations only for the top-level demographic
groups for each topic (e.g., only for group (1.1) in Figure 3). De-
tailed aggregations for all individual groups are accessible by fol-
lowing a pointer to a separate structure, the sequential file storage
for lattices. This pointer indicates an offset in the file that con-
tains the demographics lattice snapshot with the aggregations for
all demographic groups for the particular topic and time interval.
By traversing this sequential file storage structure, we can simulta-
neously reconstruct the sentiment time series for all demographic
groups for a particular topic and time aggregation level.
Thanks to this layout, a time index with high-level aggregates

and pointers remains compact and can be kept in main memory
(Figure 3, left), while sentiment time series can be organized as a
collection of individual files (Figure 3, right). The additional ben-
efit of this organization is that it ensures fast sequential access for
time series of sentiments, compared to relational databases [16].
We note that the number of sentiment values monotonically de-

creases as we navigate down the demographics lattice and down the
DTree levels, so many of the demographics leaf nodes will contain
zeroes at lower time granularities. This allows storing sentiment
values in a more compact way, by storing only non-zero values
(e.g., using run-length encoding methods [19]).
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4.2 Overview of Algorithms
Our algorithm for extracting significant correlations is based on

the DTree storage and is listed in Algorithm 1. Due to lack of space,
we present our algorithm for the sliding time interval and conven-
tional correlation formula (see Section 3). The other approaches,
using fixed or global intervals, can be reduced from it by consider-
ing subsequent time intervals of constant sizes (fixed), or the entire
time series (global).
The process of mining sentiment time series is performed in a

top-down fashion, going from higher to lower granularities in a
DTree and from root to leaf nodes in a demographics lattice. Our
approach achieves hierarchical correlation management and prun-
ing through remembering for every pair of groups which of the
identified time intervals to refine or exclude at the next gran-
ularity level. Lines 13 and 16 of the algorithm only show the in-
vocation of these functions, assuming that the corresponding time
interval pruning takes an immediate effect on the next iteration.
In the second loop, we sequentially access the time series, while

computing correlations between demographic groups in the third
loop, where candidates are evaluated going from higher order nodes
to their children. If a high correlation is detected for some candi-
date groups (line 12), then their positively correlated children are
excluded, meaning that the corresponding lattice branches are not
revisited in subsequent iterations of the loop. This pruning asserts
the maximality of identified correlations and also reduces the can-
didate set.
The described algorithm employs the sliding interval approach,

where correlation interval boundaries are determined in a greedy
fashion: by comparing correlation coefficients between a forward
(sliding) interval wnext of a fixed size, and an interval that runs from
the previous boundary wprev. We note, that while the sliding time
interval wnext is updated for all demographics pairs as we scan the
time series, the correlation time intervals wprev are computed and
maintained for each demographics pair individually, and their start-
ing boundaries do not necessarily coincide (however, all their end-
ing boundaries border with wnext while it slides). When global or
fixed time interval approaches are used, it is possible to prune can-
didate demographic groups on-the-fly according to their estimated
value of correlation, so that less and less computations are needed
as we advance along the time series.
Finally, for all detected pairs of groups and correlation intervals,

the algorithm can start the greedy generalization step, described in
Algorithm 2. It iteratively supersedes groups with their maximal
parents until they are disjoint and highly correlated.
Computing and storing correlation coefficients for all combina-

tions of demographics nodes is only possible for small lattices,
since it requires a quadratic space on the size of a lattice. But since
we are interested in finding only high and significant correlations, it
is possible to compute and store only such values, while still being
able to answer queries with a good precision. In the following sec-
tions, we describe how correlation pruning and compression enable
efficient implementation of our method.

4.3 Computing Correlations
In this section we describe an efficient way for computing cor-

relations: first, by discarding insignificant results, and, second, by
discarding correlations of children groups according to the maxi-
mality principle given in Definition 6. Furthermore, we propose ef-
ficient methods of storing precomputed correlation values for fixed
time intervals. We note that the proposed hierarchical pruning and
correlation compression methods are applied on top of correlation
values, and can be used in combination with various correlation
algorithms. Some existing correlation methods [21, 7] can also be

Algorithm 1: Sliding algorithm for discovering sentiment cor-
relations. Employs pruning using correlation estimates based
on Lemma 1 and significance threshold based on Lemma 2.
Input : Time interval p, significance rmin, correlation min , lattice L,

sliding interval size m
Output: demographic groups and correlation intervals

1 for granularity =max . . .1 do
2 for pi = {p1 . . . pn} ∈ p do
3 wnext = wnext + pi− pi−m; //push next, pop last
4 //wprev are individual for each candidate
5 //candidates are ordered by height(d,d′) top-down
6 for (d,d′) ∈ L×L | d!∩d′ do
7 wprev = wprev + pi−m; //update previous interval
8 prev = correlation(d,d′,wprev);
9 next = correlation(d,d′,wnext);
10 if | prev− next | > min then
11 //correlation interval is detected
12 if r( prev < min) < rmin then
13 refine (d,d′,wprev,granularity - 1);
14 //exclude all correlated children groups
15 for (d1 ∈ d, d2 ∈ d′, > min) do
16 exclude (d1,d2,wprev,granularity);
17 end
18 wprev = /0;
19 end
20 //prune for the next granularity using Lemma 1
21 wBW = pi−2..i; BW (d,d′,wBW ) = Lemma1(n);
22 if r( BW > min) < rmin then
23 exclude (d,d′,wBW ,granularity - 1);
24 end
25 end
26 end
27 end

Algorithm 2: Group generalization algorithm
Input : Correlation , time interval p, demographic groups d,d′,

maximality threshold
Output: Maximal demographic groups

1 //start from initial demographic groups complying to criteria
2 while d!∩d′ & correlation(d,d′, p) ≥ do
3 d = argmax{correlation(d, parent(d), p) > };
4 d′ = argmax{correlation(d′, parent(d′), p) > };
5 end
6 return the last (d,d′) complying to criteria;

applied to our case, but are otherwise orthogonal to the pruning and
compression methods discussed in this paper.

4.3.1 Pruning Correlations
To find a pair of demographic groups with correlated sentiment,

we have to evaluate all pairs of nodes in demographics lattice. How-
ever, we observe that correlation holds certain regularity proper-
ties on a demographics lattice and on time granularities, which are
useful for pruning. We can apply pruning based on correlation
estimates from the higher-granularity data (vertical pruning), and
based on the observed part of the time series (horizontal pruning),
as described below.
Vertical Pruning:
Given the DTree, we would like to be able to estimate correla-

tions for a smaller time granularity based on the averages computed
for a higher time granularity. This is possible using the Spruill and
Gastwirth correlation estimation method [13], which relies on the
Bartlett and Wald regression estimator.
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LEMMA 1. The estimate BW of correlation and its asymptotic
standard deviation are computed using the following formula:

BW (d,d′, p) =
s′U3− s′L3
sU3− sL3

· (d, p)
(d′, p)

, ( BW ) = c
1− 2
√
N

In the above equations, sU3 (sL3) and s′U3 (s′L3) are the averages
of intermediate aggregates s(d, pi) and s(d′, pi) computed for i ≥
2n/3 (i≤ n/3), where n is the number of intermediate aggregates.
The factor c is linearly depending on and n and is estimated using
the tabulation data given in [13]. We note that all standard devia-
tions and intermediate aggregates used in this formula are directly
accessible in the DTree at every granularity level.
Horizontal pruning:
If both the correlation threshold min and the time interval p of

size n are known, then for every subinterval p1 . . . pk, k < n, with
the corresponding inner product (s◦s′)k1, we can compute the upper
bound of the correlation coefficient over p. We can then use this
estimate to prune small correlations as more and more points of p
are observed.

LEMMA 2. If s and s′ are the maximum sentiment deviations
and the inner product of sentiment deviations (s◦ s′)k1 at point k is
less than (n min s s′ − (n-k) s s′), then (s,s′) < min.

PROOF.

(s,s′) =
(s◦ s′)k1+(s◦ s′)nk+1

n s s′
<

(s◦ s′)k1+(n-k) s s′

n s s′
<
n min s s′

n s s′
= min

We note that estimating maximum deviations is only possible for
bounded time series. This is true in our case, where sentiments are
distributed between [-1,1]. Thus, we can set s = |s|+ 1, which
occurs when a sentiment is the most distant from the mean value
(deviating in the opposite direction).
As in the case of vertical pruning, the standard deviations and

mean values of time series, used in the above estimation, are stored
at a higher granularity level in the DTree and thus directly available.

4.3.2 Compressing Correlations
Although the pruning techniques help to efficiently compute top-

k correlations, the number of these correlations can sometimes grow
very large. There exists a tradeoff between the precision and recall
of storing top-k correlations, which is defined by size k. Improving
both characteristics is only possible for larger top-k sizes. In con-
trast, performance and scalability requirements demand top-k size
to be small. This problem can be addressed by compressing top-k
correlations, as described below.
We propose two algorithms of top-k compression: a greedy al-

gorithm of triangulation correlation compression, TCC, and clus-
tering correlation compression, CCC, based on density clustering.
Nevertheless, other existing methods of clustering and graph com-
pression can be adapted to compress top-k correlations.

Triangulation correlation compression TCC
Given correlation coefficients between two demographics nodes

and a third one, we can estimate upper and lower limits for the
correlation between them. Based on the correspondence between
correlation coefficients and angles of vectors, representing local de-
viations of time series to their mean, we can apply the triangular
inequality, which gives us the following lemma:

LEMMA 3. If (d,d′) = 1, (d,d′′) = 2 and (d′,d′′) =
then
1 2−

√
(1− 2

1 )(1− 2
2 ) ≤ ≤ 1 2+

√
(1− 2

1 )(1− 2
2 ).

The detailed proof can be found in [3]. From the above inequality
it follows that the transitivity of a positive and a negative corre-
lation holds only if 2

1 + 2
2 > 1. This property requires absolute

correlation values between two time series to be above 0.7 in or-
der for the inequality to have any valuable prediction power. We
note that this property is naturally achievable between nodes in a
demographics lattice thanks to regularity and monotonicity of ag-
gregated data. Therefore, Lemma 3 suits to our needs to compactly
store correlations and recover missing values.
The simple greedy compression algorithm is listed in Algorithm 3.

It removes elements from the top-k, which can be approximated us-
ing the triangulation principle. The compression process starts with
a sorted list of correlations, which size is larger than k. Correlations
are removed from the list one by one, being replaced with the next
candidate in the list (k+ 1) until the removal of any correlation
introduces an error, larger than the one gained by adding a candi-
date. TCC algorithm can be further optimized by removing several
correlations at once, until their approximations do not depend on
each other. Such an optimization leads to a considerable perfor-
mance benefit, since the approximation errors are not recomputed
at every modification of a top-k list. However, the algorithm may
become less optimal in this case. For the lack of space, we evaluate
only the basic version of TCC, leaving possible extensions of this
method for a future work.

Algorithm 3: Triangulation correlation compression TCC. Re-
moves correlations which can be approximated using Lemma 3.
Input : demographics lattice L, number k
Output: Top-k correlations

1 for (d,d′) ∈ L×L do
2 add (d,d′) to topk;
3 end
4 sort topk descending by ;
5 while find (d,d′,d′′) ∈ topk s.t.
6 err = min| (d,d′) - Lemma3(d,d′,d′′)| do
7 if err < |topk[k+1]| then
8 remove (d,d′) from topk;
9 add topk[k+1] to topk;
10 keep (d,d′′) and (d′,d′′) in the topk;
11 else trim topk to the size k; break ;
12 end

Clustering correlation compression CCC
Correlation coefficient between time series of sentiment can be

transformed to Euclidean Distance [21]. Relying on this distance
metric, we can identify groups of time series, which are highly-
correlated on the same fixed time interval. We propose to ap-
ply unsupervised clustering to find such groups and to compactly
store only their average and pairwise correlations. Since the space
needed to allocate pairwise correlations is quadratic on the number
of lattice nodes, replacing the correlations of individual nodes with
those of their clusters can yield a significant compression ratio.
Because of the transitivity property of high correlations (accord-

ing to Lemma 3), any set of highly correlated nodes is going to be
densely packed in the Euclidean space, with a good cluster sepa-
ration. Therefore, we find density-based algorithms of clustering
more suitable, as their complexity in our case becomes asymptoti-
cally proportional to the number of elements in a cluster. Our clus-
tering method uses the density-based algorithm DBSCAN [4], al-
though any other distance-based algorithm can be used as well.
The compression process, described in Algorithm 4, starts with

grouping lattice nodes into clusters based on their pairwise cor-
relations. Clustering is performed using the absolute correlation
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Figure 4: DBSCAN parameters space and optimization.

values, and the sign of each node’s correlation with respect to its
cluster is stored and later recovered. Unlike in euclidean spaces,
where a cluster has a mean value or a centroid, in the correlation
space there are only distances between nodes available. Therefore,
we replace individual correlations between nodes with average cor-
relations between their clusters: for different clusters the average is
computed from pairwise correlations between their nodes, and for
nodes in the same cluster the average is computed across all pair-
wise correlations within that cluster. Finally, correlations between
outlier nodes and clusters or between outlier nodes are added to the
output list which is trimmed to fit the top-k size.

Algorithm 4: Clustering correlation compression CCC.
Replaces correlations with cluster averages.
Input : demographics lattice L, number k
Output: Top-k correlations

1 clusters = DBSCAN(L×L);
2 for i = 0; i< |clusters|; i++ do
3 for j = i; j < |clusters|; j++ do
4 (i, j) = 0; //add cluster-cluster correlations
5 for (d,d′) ∈ clusters[i]× clusters[ j] do
6 (i, j) += (d,d′);
7 end
8 (i, j) = (i, j)/|clusters[i]× clusters[ j]|;
9 add (i, j) to topk;
10 end
11 for d /∈ clusters do
12 (i,d) = 0; //add outlier-cluster correlations
13 for d′ ∈ clusters[i] do
14 (i,d) += (d,d′);
15 end
16 (i,d) = (i,d)/|clusters[i]|;
17 add (i,d) to topk;
18 end
19 end
20 for (d,d′) ∈ L×L, d,d′ /∈ clusters do
21 add (d,d′) to topk; //add outlier-outlier correlations
22 end
23 while |topk| > k do
24 remove the lowest;
25 end

To achieve a good clustering, the density parameter should be set
to a correct value, which is not known a-priori. As a minimum den-
sity parameter, DBSCAN uses a combination of neighbors range
(which we substitute for minimal correlation) and their minimum
number. We note that a lower minimum correlation corresponds
to a broader neighbors range, unlike in original DBSCAN imple-
mentation. Figure 4 demonstrates an example of our parameters
space and their corresponding compression errors for a fixed top-k

size. We observe that for a broader range (Figure 4, left valley),
DBSCAN tends to aggregate all nodes into one cluster. The error
in this case remains constant, since we approximate all correlations
with a single value. When we increase the density parameter, the
clustering error tends to grow due to outliers and since there are
still not many clusters. Finally, for the optimum parameters, all the
highly correlated nodes are clustered together and all the smaller
correlations are represented by cluster distances, significantly re-
ducing the compression error (Figure 4, right valley). Since it is
not known which of the valleys contains the global optimum, we
propose to broadly scan the space of possible DBSCAN parame-
ters and then refine the optimum value using the gradient descent
method. Nevertheless, DBSCAN is a one-pass method that relies
on a precomputed distances index, and multiple clusterings used for
optimization do not result in a significant performance degradation.
We note that top-k list can hold correlations not only between

nodes, but also between clusters and between nodes and clusters.
Depending on their presence in the top-k list and attribution to clus-
ters, we retrieve correlation values in the way, described in Algo-
rithm 5. It is also possible to apply a triangulation compression for
clustering distances, creating a hybrid method that takes advantage
of both TCC and CCC.

Algorithm 5: Top-k correlation retrieving method
Input: demographics pair (d,d′) ∈ L×L

1 //Determine a cluster id for each node (if clustered).
2 if clustered then d = cluster(d); d′ = cluster(d′);
3 //If the value for a pair of ids is present, return it.
4 if topk(d,d′) /= null then return topk(d,d′);
5 //If the value is not present, estimate using Lemma 3.
6 low = −1; high = +1;
7 for all (d,d′,d′′) do
8 ( ′

low, ′
high) = Lemma3(d,d

′,d′′);
9 if low < ′

low then low = ′
low;

10 if high > ′
high then high = ′

high;
11 end
12 return ( low+ high)/2;

5. EXPERIMENTS
We ran experiments using both synthetic and real data. We first

experiment with the synthetic data to evaluate the efficiency and
performance of our algorithms, following it with the qualitative
evaluation of correlations detected on a real dataset.
We implemented our algorithms in Java, and ran the experiments

using Java JRE 1.7.0 on a machine with dual core 2.53 GHz CPU
and 1.5 Gb of main memory.

5.1 Datasets
Synthetic Dataset
In order to accurately measure the precision of our system in

identifying sentiment correlations, we conduct a series of experi-
ments on synthetic data, containing time series of sentiments with
artificially added positive and negative correlations, level biases
and sentiment noise as demonstrated in Figure 5. We describe the
layout of our dataset below.
Hierarchies. As a preliminary step, we generated a set of demo-

graphics hierarchies, for such attributes as age, gender, occupation,
and location, containing 8, 3, 4 and 65 nodes respectively. Each
node in every hierarchy was randomly assigned with a weight and
a bias probability. Weights of nodes are distributed according to a
Zipf’s distribution, and normalized to add up to 1 at every level of a
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Figure 5: Generating biased sentiment time series.

hierarchy. Nodes from different hierarchies, when combined, form
a lattice of 6240 demographic groups as shown in Figure 1. The
sentiment volume of each demographic group was taken as a mul-
tiplication of weights of attribute nodes, and its bias as a weighted
sum of their individual biases. That way, we achieve natural reg-
ularity in the demographics lattice, providing a natural distribution
of sentiments, which is necessary for a proper evaluation of extract-
ing maximal groups and pruning.
Topic Sentiment. The dataset itself contains time series of sen-

timents generated independently for multiple topics over a time
span of 8 years. Each topic is represented by a unique topic time
series, produced using a random walk method, which aggregates
uniformly distributed sentiments, whose timestamps follow Pois-
son distribution. We vary the parameter of rate for timestamps to
produce faster or slower changing time series for each topic. Since
sentiments for the topic time series are sampled uniformly, its mean
value is close to zero in a long run, meaning that it crosses the zero
line a few times (for example, at points t1 and t2 in Figure 5). The
original topic time series is stored for a randomly chosen demo-
graphic node, and we generate time series for other lattice nodes
using individual bias templates for each of them. Bias templates
contain sentiment bias levels and intervals of correlation with the
topic time series (positive, negative or zero, randomly changed at
“zero sentiment” points). The goal of our evaluation is then to cor-
rectly extract these correlation intervals between topic and biased
time series, generated as described below.
Biased Sentiment. We produce a biased time series in a corre-

spondence with the template, by copying (inverting) the topic time
series in the case of positive (negative) correlation, or outputting
randomized data otherwise (as seen in Figure 5, bottom). Follow-
ing that, we add a certain positive or negative bias to the whole
time series (shifting all the values) and the uniformly-distributed
noise (for each value). Finally, we scale the time series to make
sure that sentiments lay within the boundaries of [-1,1]. After gen-
erating a biased time series for the node, we insert raw sentiment
data into the index in a proportion corresponding to node’s volume.
Then, we proportionally distribute these sentiments for all node’s
children (Figure 1), ensuring the maximality of that node.

MovieLens Dataset
MovieLens dataset1 consists of 1 million ratings left by 6 thou-

sand users on 4 thousand movies. It also comes with rich demo-
graphics attributes: age, gender, occupation, and location, which

1http://www.grouplens.org/node/73

we directly imported to our application. These attributes result in
a lattice of over 30 thousand nodes, making almost half a billion
possible pairwise combinations. We extracted the geographical lo-
cation from postal codes, however the number of ratings for many
nodes in this hierarchy was exceedingly small. Since we aim at ex-
tracting only significant results, we disabled the use of the location
attribute in this experiment. We used five-star MovieLens ratings as
sentiments, by mapping them to [-1,1] continuous sentiment scale,
where one star corresponds to a highly negative (-1) sentiment, and
five stars correspond to a highly positive (+1) sentiment, and other
ratings are distributed evenly.
Since comments for movies usually appear during a period of

their showtime and then fade out, we propose using genres as top-
ics, thus providing a stream of sentiments with rather constant rate,
where new movies serve a role of events, leading to sentiment
changes. The dataset has 18 genres, and most of movies belong
to several genres at once, with their ratings contributing equally to
all of them. This results in a certain regularity of sentiments across
topics and demographic groups and challenges the detection of in-
teresting correlations.

5.2 Evaluation Methodology
Efficiency evaluation is conducted on a synthetic dataset con-

structed as described in Section 5.1. It contains 10 topics with
400 biased time series for each of the topics, excluding children
copies, while the much larger fraction of time series are generated
randomly. We vary the level of noise added to time series in this
dataset from 0.0 to 0.4 in absolute values, resulting in the same
signal-to-noise ratios as sentiments are distributed on [-1,1]. We
apply the scaling of time series after the noise was added.
We measure the average accuracy, precision and recall over all

topics and all bias templates by measuring the correctness of corre-
lation values over the extracted time intervals. For each of the time
series, the extracted correlations are mapped to the binary scale
[-1,0,1] according to a 0.5 threshold, and compared to binary val-
ues stored in the corresponding template.
We report additional measurements, such as precision and re-

call, to break down the observed performance for a more detailed
analysis. Precision is computed as the percentage of the length of
extracted high-correlation intervals, which are found in the tem-
plate as such (this is relevant for either +1 or -1 correlations). Re-
call is computed as the percentage of the length of high correlation
intervals from the template, which were extracted as high correla-
tions. Accuracy is computed as the precision of extracting all kinds
of intervals from the template, including zero-correlation intervals.
Finally, the root mean squared error (RMSE) is computed by mea-
suring the actual differences between extracted correlation values
and those stored in templates. It is computed as a square root of
the average of squared errors, where the average is computed by
weighting errors according to their time interval lengths.

5.3 Efficiency Evaluation
We conduct the evaluation of efficiency to demonstrate the prop-

erties of the proposed correlation extraction methods, and their
usefulness when applied on noisy data. We evaluate our meth-
ods against noise for time granularities of 1 day and 10 days to
demonstrate the effects that sentiment aggregation and time inter-
val coarseness have on the accuracy of correlation. The size of
fixed and sliding windows in both cases was equal to 10 samples.
The observed behavior is not specific to our implementation alone.
Rather, it marks the best possible performance for computing corre-
lations using various fixed or sliding interval methods at particular
levels of aggregation and noise.
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Figure 6: Accuracy of baseline correlations vs aggregation.
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Figure 7: Precision and recall of baseline correlations.

5.3.1 Baseline Correlation Methods
The results achieved by baseline correlation methods are de-

picted in Figures 6 and 7, respectively. We observe that the best
accuracy2 is achieved in the case of local average methods, albeit,
only at a proper aggregation granularity (in our case, ten days). Us-
ing same methods at granularities that are affected by noise results
in a substantial performance drop, as can be seen in Figure 6, right.
Very high levels of noise, usually present at low granularities, can
lower or even reverse the actual correlation between the time series,
affecting precision and recall. On the other hand, increased gran-
ularity may reduce precision because of the discretization errors
when identifying correlation interval boundaries. This can be ob-
served by comparing zero-noise accuracy values for one- and ten-
days aggregations: the latter shows slightly lower accuracy solely
by the coarseness of time intervals. Using global average (com-
puted for the whole period and same for all windows) has proven
to be more noise-resistant although it is not always as precise as
local average, and cannot be applied in ad-hoc scenario, requiring
pre-specified global time interval. From the discussion above it is
evident that correlations must be analyzed using sliding or fixed
windows and at varying aggregation granularities.

5.3.2 Top-K Correlation Method
We evaluate the individual performance of TCC and CCC, by

measuring their average compression error and its variance while
varying top-k sizes from 1 to 10 times of their initial length. To con-
struct the top-k list, we computed correlations over disjoint pairs of
demographic nodes for fixed time intervals (with local averages),
taken from 17 different topics in MovieLens. Then, we filtered

2The best achieved accuracy is not 100%, because some correlation
intervals are smaller than the minimal correlation window.
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Figure 9: Accuracy of top-k correlations, 10 days aggregation.

correlations according to the significance and minimum correlation
criteria, obtaining the lists of (approximately) 12K high ( > 0.50)
and 2K very high ( > 0.75) top-k correlations for an initial set of
140K disjoint pairs.
Compression error is computed as the root mean squared error

(RMSE) between actual correlations and those retrieved according
to Algorithm 5. We note that an optimal compression (with the
smallest error) for CCC clustering method was sometimes achieved
with a size, smaller than that required by the compression ratio
parameter. In such cases the remaining space was filled with the
highest non-clustered correlations.
In Figure 8 we present the results of our evaluation. We observe

that TCC triangulation compression shows better performance when
it is able to fit all the high correlations necessary for describing the
rest of correlations, what happens in the case of large initial top-
k list ( > 0.50). In the case when all correlations are high ( >
0.75) and there is a high compression ratio, there is a large portion
of correlations which do not fit into the compressed top-k list and
neither can be triangulated from the correlations present in the list.
The error in this case is the highest. On the other hand, CCC clus-
tering compression benefits from compressing higher correlations
as soon as there is enough space in top-k to store an optimal num-
ber of clusters. In this case most of the high correlations appear
within clusters and the amount of correlations which are not ap-
proximated by cluster-cluster distances becomes relatively small.
Nevertheless, CCC can become inefficient due to the clustering in-
formation overhead if there are many distanced small clusters of 3
items. Since TCC method is able to approximate the third correla-
tion using the remaining two, it can be a good companion in such
cases. We recommend to use hybrid CCC+TCC method for com-
pressing correlations as the most universally applicable, especially
in the case of moderate compression ratios.
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We now look at the efficiency of correlation extraction of our
top-k method using the same synthetic dataset, we used to evalu-
ate the baseline methods. We calculated lists of high correlations
( min = 0.5) for each of the fixed time intervals, containing 20-50K
top-k values out of 15M (disjoint) and 40M (total) group pairs, and
compressed them using the hybrid CCC+TCC method with clus-
tering parameters optimized individually for the specific top-k size.
We varied top-k sizes from 4 to 16 four-kilobyte disk pages (each
page can hold up to 800 correlations or cluster distances). Fig-
ure 9 demonstrates that with the sufficient list of top-k correlations,
computed for fixed-windows, it is possible to match the accuracy
of conventional methods. A more detailed inspection shows that
the drop in accuracy for smaller top-k sizes is caused mainly by
a decreasing recall, due to the inability of top-k to fit all the high
correlations, which our synthetic dataset is mainly composed of.

5.4 Scalability Evaluation
Performance of Indexing Sentiments
When new sentiments are being inserted into the DTree, they

go through a number of levels in the tree index. First, the updates
are aggregated in buckets, corresponding to the lowest time gran-
ularity. Second, the aggregated values are inserted in a single up-
date, populating nodes of the index from top to bottom. For the
DTree, updates are accumulated and inserted for each demographic
group individually. Nevertheless, this method still improves the
performance since disk pages are being accessed only once for each
batch. During every update and at every granularity level, senti-
ment values are inserted into corresponding demographics lattices,
for the specified group and all of its parents.
Demographic lattices can be stored on disk using different struc-

tures. The simplest of such structures is a fixed array, suitable for
constant demographics lattices. It allows fast indexed access to
the lattice values. The other is a binary tree of variable size and
structure, which has reasonably fast log |L| access time and allows
demographics lattices to be extended. However, this structure re-
quires more space for storage and extra processing time.
We evaluate update performance for both structures by measur-

ing index throughput versus main memory cache size. Smaller
cache sizes require disk pages to be flushed more often, while larger
cache sizes allow to have a smaller number of sequential updates.
With the cache size of one page, the system becomes persistent, i.e.
all changes are immediately stored on disk. Larger memory cache
sizes demonstrate higher throughput, which is ultimately bounded
by disk writing speed, as the processing time is sufficiently smaller
than the input-output time. Another advantage of a larger cache is
that in-memory updates are extremely fast if a cache has enough
space. Nevertheless, the update rate drops back to nominal once
the cache is full, and until it is flushed to disk, there is a risk of
loosing the data in the case of memory or system fault. The results
of our evaluation are presented in Figure 10. We observed that
disk writes occur every time the DTree is updated up until when
the cache size reaches the maximum number of parent nodes in the
tree. In our experiment, the updating rate stayed constant until 4
pages. After that, when the cache is further increased, we see a
linear improvement in performance, which is then asymptotically
reaches the maximum value, bounded by the disk write speed. Bi-
nary tree (dynamic) storage features smaller update rate compared
to the fixed array storage, since its disk pages occupy twice more
space and since a binary tree is dynamically constructed.

Performance of Extracting Correlations
In Figure 11 we compare the time needed to extract correlation

intervals using the same setup as in our accuracy evaluation.
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Figure 10: Performance of DTree versus memory cache size.

In the top chart, we report average times for the proposed meth-
ods using sliding and fixed time intervals (left), and the top-k tech-
nique (right). The time needed to compute correlations using slid-
ing time intervals is approximately one third larger than the time
taken by a fixed-interval method, since the prior needs to incre-
mentally compute and compare correlations for two intervals: one
is a fixed-length interval, sliding in front of the cursor, and another
one is a dynamically expanding interval behind the cursor. The
time of baseline methods remains fairly large since they compute
correlations for a set proportional to |L×L|.
In the bottom chart, we demonstrate the effect of hierarchical

pruning for fixed-interval correlations and compare it to the grid-
hashing correlation pruning used by StatStream [21]. We note that
StatStream cannot be applied for sliding-interval correlations when
sliding intervals among time series are of different lengths, as in our
method. Moreover, the kind of time series approximation used in
StatStream can not be used for bounded sentiments, where it results
in numerous false positives at shorter interval lengths.
Both methods lead to significantly improved execution times in

comparison to baseline methods, with hierarchical exhibiting bet-
ter relative performance. The advantage of our method on highly
correlated data is more pronounced with lower correlation thresh-
olds, when maximality constraints allow earlier pruning. On the
other hand, StatStream’s performance benefits from better selectiv-
ity of higher thresholds and when time series are sparsely corre-
lated, making it a good complementary approach.
Overall, we observe that the best performance is achieved by

top-k correlations, which we report in both charts (with and with-
out hierarchical pruning) for varying top-k sizes (16, 8 and 4 disk
pages). It is evident, that top-k method is much faster even in the
case of larger top-k sizes, where it matches the accuracy of direct
methods. Furthermore, the top-k method demonstrates sub-linear
scalability, sustaining almost the same performance even with ex-
ponentially increasing top-k sizes.

5.5 Usefulness Evaluation
To demonstrate the usefulness of our approach, we automatically

identified the highest (i.e., exceeding 0.9) maximal significant cor-
relations between disjoint demographic groups in the MovieLens
dataset. We note that a naive solution to this problem will require
computing and comparing almost half a billion of time series. In
Figures 12-13 we represent positive and negative correlations or-
ganized using a graph-like structure. Correlations are visualized
as edges between demographic groups, labeled according to top-
ics (genres). For brevity, we visualize only a small fraction (up to
10) of high correlations identified for each topic. We note that due
to this filtering, some of the correlation edges are not present in the
graph. This does not necessarily mean that such correlations are be-
low the specified threshold. Finally, we do not report correlations
between some highly-overlapping (but still disjoint) demographic
groups, such as between {Under 18} and {K-12 student} or {56+}
and {retired}.
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Figure 11: Comparison of correlation methods performance

We highlight nodes with the most unusual and interesting corre-
lations, which took our particular attention, and provide their ad-
ditional details in Table 1. For instance, in the top right corner of
Figure 12 we observe a cluster of correlations on topic animation
between the three very different groups: {F, 56+}, {M,customer
service} and {M,grad student}. A more careful examination of this
figure reveals that {F, retired} think of thrillers as {M, 18-24, pro-
grammer} - a short of a surprise, knowing that they have the same
attitude to romance as {M, K-12 student}. Finally, {academic} and
{writer} people have shown the most vibrant and unusual behavior
in MovieLens dataset, producing many of the anti-correlations we
observed in Figure 13.
Such results can be used to drive the work in a number of di-

rections: in sociology, researchers may investigate why these unex-
pected correlations exist, and examine more carefully and in greater
detail the interests of users; in marketing, knowledge of group sen-
timents, how they change over time and how they are related to
other groups could help expand existing markets, by influencing
similar target groups, gaining a better understanding of the fan base,
and monitoring the reaction of opposing groups; in collaborative
filtering, new systems may expand their range of recommendations
on particular topics with results from correlated groups, resulting
in an enhanced user experience.

6. RELATED WORK
The problem of identifying sentiment behavior in demographic

groups has been traditionally addressed by polling. Polling requires
long-term monitoring of a large sample of the population in or-
der to allow for a meaningful comparison of sentiments among de-
mographic groups. However, this process is rather expensive and
error-prone [8, 6]. Therefore, many scientists look towards evalu-
ating online sentiments, especially considering their existing corre-
lation with actual opinions.
Online sentiments monitoring has been approached by scientists

using a variety of data mining algorithms, from trend monitoring
[18] to contradiction detection [11, 16], although these studies were
not specifically accounting for relationships between demographic
groups, their sentiment’s correlation and hierarchical organization.
Recently, the work of Das et al. [2] introduced complex mining

of sentiment data in the form of ratings, where the authors aimed
at extracting meaningful demographic patterns. Our work differs
in that we study the complementary problem of extracting groups
with correlated sentiments over time, that is, groups that react sim-
ilarly over time to external events. Then, this kind of analysis can

also help provide a more meaningful interpretation for the biases
observed in the sentiments expressed by the different groups.
Zhang et al. [20] introduced a sentiment aggregation and visu-

alization system, which interactively displays sentiments based on
the selected geographical location. The system represents a world
map featuring a time evolution of sentiments expressed in news ar-
ticles coming from different geographical regions. It automatically
retrieves and displays sentiments around some particular time pe-
riod for ad-hoc queries, aggregating them over different locations
as the user navigates the map, or zooms in and out. However, it only
targets small-scale data aggregation using a single demographics
hierarchy. A work of Mandel et al. [6] is a step up in this direc-
tion, featuring sentiment aggregation over time for demographic
groups formed by gender and location attributes. The authors ana-
lyzed Twitter messages for hurricane Irene and revealed sentiment
differences among demographic groups. Their study suggested a
necessity to account for classification errors (sentiment noise) and
sentiment biases, thus forestalling our analysis, which addresses
both of these problems.
Problems related to the identification of correlations among mul-

tiple time series have been studied by the data streams community,
using a variety of techniques. These techniques focused on the
efficient computation [21, 7], hidden variables [9], local correla-
tions [10], pruning of candidate pairs [1], and lagged correlations
[12]. Among them, StatStream [21] is the one that is closest to
our work. StatStream computes correlations using sliding time in-
tervals of specified sizes, composed of a number of sub-intervals
of fixed length. It employs the Discrete Fourier Transformation
(DFT) to compute correlations in an approximate and incremental
manner. Our solution is different from the above works in a num-
ber of ways: (a) it analyzes time series using multiple aggregation
granularities and detects correlations on ad-hoc time intervals; (b)
it applies effective top down pruning both on time and demograph-
ics hierarchies; and (c) it uses correlation compression techniques
to achieve efficiency and scalability.

7. CONCLUSIONS AND FUTUREWORK
In this work we approach the novel problems of characterizing

sentiment evolution in a demographic group and identifying corre-
lated groups, which address the large-scale sentiment aggregation.
We design efficient algorithms for sentiment aggregation based on
a careful indexing of time and demographics into hierarchies and
demonstrate that our problems can be solved effectively on a large
scale using clever pruning, top-k and compression methods.
Our approach allows observing sentiment behavior at a much

finer level of detail than currently possible, helping to identify cases
that are counter-intuitive and can only be observed by process-
ing large amounts of data. Moreover, it enables an unprecedented
scale-up of traditional social studies and raises new data analysis
opportunities, useful for sociology and marketing researchers.
We outline some interesting problems and extensions of this pa-

per, which we plan to work on. We consider only a disjoint type
of relation, although it is possible to expand the notion of relations
between groups to any arbitrary path in a demographics lattice, and
use it as a filtering argument to our problems. Also we are in-
vestigating the case where disjoint groups appear to be the same
sets of users due to a strict dependency among attributes. Filtering
high correlations between such groups is possible when their sets
of users are known and can be done as a preprocessing step. Alter-
natively, we can compare the volume of sentiments between these
groups, which becomes possible since our DTree storage preserves
this information.
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Figure 12: Positive sentiment correlations in MovieLens.
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Figure 13: Negative sentiment correlations in MovieLens.
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Topic Group 1 Group 2 Begin End Correlation Significance H1 Significance H2
Animation {M,college/grad student} {F,56+} 30.07.00 17.11.00 0.96 8.68E-07 9.02E-02
Animation {M,K-12 student} {M,25-34,executive/managerial} 07.11.00 07.03.01 0.94 2.67E-05 2.13E-01
Children’s {M,executive/managerial} {F,artist} 30.07.00 07.11.00 0.94 2.03E-05 2.41E-01
Children’s {25-34,writer} {45-49,executive/managerial} 08.10.00 15.02.01 -0.95 1.64E-05 1.28E-01
Children’s {25-34,self-employed} {56+,academic/educator} 21.04.00 29.08.00 -0.93 4.28E-05 2.78E-01
Comedy {F,25-34,sales/marketing} {M,50-55,programmer} 17.11.00 13.09.01 0.97 4.11E-08 6.36E-04
Comedy {customer service} {45-49,artist} 18.10.00 26.01.01 0.96 3.25E-06 1.05E-01
Comedy {F,35-44,self-employed} {F,35-44,college/grad student} 07.12.00 16.04.01 -0.95 1.33E-05 1.28E-01
Fantasy {M,technician/engineer} {F,executive/managerial} 18.10.00 05.02.01 0.92 6.50E-05 3.71E-01
Fantasy {F,18-24,college/grad student} {F,25-34,other} 08.09.00 17.11.02 -0.92 6.80E-05 1.53E-01
Romance {F,35-44,doctor/health care} {M,56+,academic/educator} 17.12.00 02.11.01 0.98 4.23E-04 4.40E-06
Romance {F,retired} {M,K-12 student} 07.11.00 15.02.01 0.96 3.27E-06 1.05E-01
Romance {M,artist} {56+,academic/educator} 08.09.00 27.12.00 0.96 5.40E-06 9.02E-02
Romance {F,35-44,technician/engineer} {Under 18,other} 27.11.02 07.03.03 -0.96 3.69E-06 1.05E-01
Drama {college/grad student} {academic/educator} 18.09.00 27.12.00 0.96 4.34E-06 1.05E-01
Crime {F,35-44,writer} {M,35-44,doctor/health care} 05.02.01 29.08.02 -0.92 4.17E-03 1.95E-01
Action {M,45-49,writer} {F,56+,academic/educator} 30.07.00 26.01.01 0.96 3.55E-06 3.33E-02
Action {F,programmer} {M,customer service} 07.12.00 17.03.01 0.96 4.80E-06 1.05E-01
Thriller {F,retired} {M,18-24,programmer} 28.10.00 25.02.01 0.96 8.00E-06 7.76E-02
Thriller {Under 18,K-12 student} {F,56+} 17.11.00 25.02.01 0.95 9.07E-06 1.71E-01
Thriller {M,25-34,technician/engineer} {M,35-44,academic/educator} 17.11.00 27.03.01 -0.95 1.02E-05 1.28E-01
Thriller {M,18-24,scientist} {M,45-49,executive/managerial} 27.11.00 05.07.01 -0.95 3.75E-06 5.85E-02
Horror {M,45-49,technician/engineer} {M,executive/managerial} 17.11.00 07.03.01 0.96 3.48E-06 9.02E-02
Horror {M,18-24,sales/marketing} {F,25-34,executive/managerial} 21.04.00 07.03.03 0.96 3.28E-04 8.59E-07
Sci-Fi {M,50-55,sales/marketing} {M,K-12 student} 05.02.01 21.04.02 0.96 5.79E-06 1.21E-03
Sci-Fi {M,45-49,programmer} {M,academic/educator} 21.04.00 07.03.03 -0.98 3.07E-04 2.24E-01
Sci-Fi {M,56+,programmer} {F,Under 18} 16.01.01 11.01.02 -0.97 1.84E-04 1.94E-02

Table 1: Positive and negative sentiment correlations identified in MovieLens dataset.
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