
CloudAlloc: A Monitoring and Reservation System
for Compute Clusters

Enrico Iori1 Alkis Simitsis2 Themis Palpanas1 Kevin Wilkinson2 Stavros Harizopoulos3

1University of Trento 2HP Labs 3Nou Data
enrico.iori.tv@gmail.com, alkis@hp.com, stavros@noudata.com

themis@disi.unitn.eu kevin.wilkinson@hp.com

ABSTRACT
Cloud computing has emerged as a promising environment
capable of providing flexibility, scalability, elasticity, fail-
over mechanisms, high availability, and other important fea-
tures to applications. Compute clusters are relatively easy
to create and use, but tools to effectively share cluster re-
sources are lacking. CloudAlloc addresses this problem and
schedules workloads to cluster resources using allocation al-
gorithms. It also monitors resource utilization and thus,
provides accountability for actual usage. CloudAlloc is a
lightweight, flexible, easy-to-use tool for cluster resource al-
location that has also proved useful as a research platform.
We demonstrate its features and also discuss its allocation
algorithms that minimize power usage. CloudAlloc was im-
plemented and is in use at HP Labs.

Categories and Subject Descriptors
H.2.m [Information Systems Applications]: Miscellaneous

Keywords
Cloud Computing, Reservation System, Monitoring System

1. INTRODUCTION
Open source toolkits and cloud service providers have

made it easy to create and use large compute clusters. How-
ever, efficient sharing of such clusters is an open problem for
both private clouds and public clouds. For private clouds,
sharing is often done by exclusive reservation of nodes which
results in low resource utilization and overprovisioning. For
public clouds, applications typically run on multiple virtual
machines that are assigned to nodes by an algorithm that
is not exposed to applications. This makes cloud-based ap-
plications dependent on the cloud provider for service level
guarantees, which eliminates an important control point for
an application provider to differentiate its services to users.
For example, the objectives of the cloud service provider,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

e.g., maximize utilization, may be at odds with the needs of
the application provider, e.g., maximize throughput.

In our work, we address the problem of cluster resource
sharing. Given a set of workloads over time, the task is to
assign the workloads to cluster nodes in a way that satisfies
an objective (see Figure 1). In our model, a workload request
comprises a set of resources (e.g., 20 cores at 30 percent
utilization, 2GB per core, 5 IO/sec per core), a duration
(e.g., 4 hours), and optionally, a start time. If the request is
satisfiable, the reservation is made. Some possible objectives
for the assignment include maximize utilization of each node,
minimize completion time, minimize power usage, and so on.
In a static environment, where the applications are fixed and
the workload is known, a single resource allocation algorithm
with fixed objectives may be highly tuned and work well.
However, in a dynamic environment such as an R&D lab or
a public, shared cluster, the ability to vary the allocation
algorithm and objectives is desirable. For example, during
the day, when energy costs are high, the objective may be
to minimize power usage while in the evening, the objective
may be altered to minimize execution time.

We present CloudAlloc, a lightweight tool for flexibly allo-
cating resources of a compute cluster to workloads. CloudAl-
loc is intended as a tool for use in R&D environments, but
it may also serve as a research vehicle for workload manage-
ment. Along those lines, we demonstrate the capabilities of
CloudAlloc through five scenarios. (i) In steady state oper-
ation, CloudAlloc monitors resource usage on each cluster
node. A dashboard provides a display of the past resource
usage and future reservations at different levels of granu-
larity. (ii) When a new workload is submitted to reserve
resources in the future, CloudAlloc passes that request, the
current cluster state, and future reservations to an alloca-
tion algorithm to determine an assignment. If the request
is satisfiable, the resources are reserved. (iii) CloudAlloc al-
lows system administrators to vary the resource allocation
algorithm. Our demonstration includes two resource allo-
cation algorithms that minimize cluster power usage, but
CloudAlloc has a plug-in architecture so additional algo-
rithms with other objectives can be added. (iv) When a
workload runs, CloudAlloc records the actual resource us-
age. In this way, users can refine their resource estimates
and administrators may correlate workload requests against
actual usage. (v) CloudAlloc handles cluster reconfiguration
so that when nodes are added or fail, the resource allocator is
reexecuted to reassign workloads for the new configuration.

Next, we discuss background work, present the system
architecture, and explain the scenarios of our demonstration.

Cores 2 8 8
Disks 1 2 2
Base Power 0.115 0.130 0.140

(kWxh)
Peak Power 0.100 0.120 0.160

(kWxh)

0 5 10

w2

w1

w3

Node 1 Node 2 Node 3

Node Cores Disks Base Power Peak Power
(kWxh) (kWxh)

Node 1 2 1 0.115 0.100
Node 2 8 1 0.115 0.100
Node 3 8 1 0.115 0.100

Node 1 Node 2 Node 3
Cores 2 8 8
Disks 1 2 2
Base Power 0.115 0.130 0.140

(kWxh)
Peak Power 0.100 0.120 0.160

(kWxh)

Node 1 Node 2 Node 3
2 8 8
1 2 2

0.115 0.130 0.140

0.100 0.120 0.160

Cores
Disks
Base Power

(kWxh)
Peak Power

(kWxh)

0 5 10

w2

w1

w3

Node 1 Node 2 Node 3

Node 1 Node 2 Node 3
2 8 8
1 2 2

0.115 0.130 0.140
0.100 0.120 0.160

Cores
Disks
Base Power (kWxh)
Peak Power (kWxh)

0 5 10 15

w2

w1

w3

Node 1 Node 2 Node 3

Cores
Disks
Base Power

(kWxh)
Peak Power

(kWxh)

0.115 0.130 0.140

0.100 0.120 0.160

2 8 8
1 2 2

0 5 10

w2

w1

w3

Node 1 Node 2 Node 3

Node 1 Node 2 Node 3
2 8 8
1 2 2

0.115 0.130 0.140
0.215 0.250 0.300

Cores
Disks
Base Power (kWxh)
Peak Power (kWxh)

Figure 1: Example workload assignment

2. BACKGROUND
State of the art. Several compute cluster frameworks

provide a scheduling component for assigning jobs to nodes
(e.g., Condor [7], Platform LSF [2], SLURM [6]). However,
jobs are scheduled as they arrive, rather than advance reser-
vations and the algorithms are fixed. Nimrod/G is a tool
focused on computational experiments [1]. Power consump-
tion and service provisioning in a cloud environment [3, 8, 9]
has gained popularity. CloudAlloc is different in more than
one way since other approaches (i) assume a fixed cost for
computing nodes, which does not accurately model the en-
ergy cost in our setting, (ii) focus on particular requirements
of data transfer and storage and thus lack our generality, (iii)
do not consider the start/end time requirements for work-
loads. For example, Kairos analyzes workloads and decides
the placement of tasks to physical machines in the cloud [4],
but is geared towards relational database workloads which
have some specific characteristics. A more detailed compar-
ison with the related work can be found in [5].

Theoretical underpinnings. CloudAlloc offers two al-
gorithms for solving the workload allocation problem where
low power usage is the objective. We assume a heteroge-
neous cluster, i.e., the nodes need not to be identical.

Optimal solution. We formulate the problem as a lin-
ear programming problem, where we minimize an objective
function subject to a number of constraints. Specifically, we
need to satisfy the resource requirements of the workloads
(e.g., CPU, disk usage, network bandwidth) such that the
produced solution is feasible and semantically correct (e.g.,
each node is not assigned more workloads than what it can
accommodate, each workload is serviced exactly once). Our
objective function is formed as the total power cost (both
base and peak power) for all the nodes in the cloud given
some workload. The objective function comprises two parts
related to the base (idle) power of each node and the per-
centage of peak power consumed by each workload on each
node. Given q nodes and s workloads, it is as follows:

q∑
j=1

s∑
i=1

(
ωb
j

uw
j

· vj +
ci · ωp

j

ctj
· (ei − si) · xij

)
(1)

ωb
j and ωp

j are the base and peak power of node nj , u
w
j is the

number of workloads executed in node nj , ci is the number
of cores needed by workload i, and ctj is the total number
of cores of nj . The vj variable expresses the duration re-
lated with all the workloads assigned to nj , xij is a binary
variable that is one if wi is assigned to nj and zero other-
wise, and (ei − si) is the duration (start and end times) of
workload wi. This problem is solved using linear program-
ming, producing the optimal solution. Note that c can be
a fraction; e.g, ci=0.5 means that either a single core will
be 50% utilized or 2 cores will be each 25% utilized. The
latest generation of CPUs come increasingly close to a linear
model for power consumption (vs. utilization) once a fixed
component is taken into account (idle power). Thus, we av-

erage the CPU utilization for the entire task duration. Also,
with c we assign different CPU utilization levels to different
workloads (and thus, different CPU intensity). However, we
do not attempt to model any system/platform-level interfer-
ence (e.g., CPU cache misses, context-switch overheads).

Greedy solution. Our greedy approach is an approximate,
yet fast, solution to the workload allocation problem. The
algorithm starts by sorting the nodes according to the elec-
trical power consumption per core, [ωb

j +(ωp
j · c

t
j)]/c

t
j . Then,

it sorts the workloads according to their start time. The
list of workloads now is such that the first workload is the
one having a start time that is earlier or equal to any other
workload. Next, we cycle over all the workloads and, before
trying to assign them to some node, we check whether some
previously started workload has finished its execution. This
can be checked by comparing the start time of the current
workload against the end time of all the workloads that have
already started. Each workload that has finished its execu-
tion (if any) releases the occupied resources. This means
that these resources are available for reuse. Finally, we as-
sign the current workload to some nodes. Hence, we start
cycling over all the nodes and we assign the workload to the
first one that has enough resources to accommodate it.

Example. Consider three nodes n1, n2, n3 and two work-
loads, w1 and w2, both requiring 4 cores and 1 disk, as shown
in Figure 1. w1 starts at time 3 and finishes at 5, while w2

lasts from 1 to 4. The greedy sorts the nodes according to
the power consumption per core, resulting in n2 being first
(with power consumption 0.26625), n1 second (0.2725), and
n3 third (0.3175). In the list of workloads (sorted by starting
time), the first one is w2 and the second is w1. We start with
w2 and n2. Since n2 has the resources needed to execute w2,
we assign it to that node. Now, the available resources of
n2 are 4 cores and 1 disk. Next, we consider w1. There are
no previously started workloads that have finished their ex-
ecution, so we do not release any resources. Since n2 is able
to execute w1, we assign w1 to n2, and the algorithm termi-
nates since all workloads were assigned. If a third workload,
w3 arrives at 4 needing 2 cores, it would be assigned to n2.

Evaluation. Both algorithms have been tested for cor-
rectness over a wide range of problem sizes. The greedy
is always close to the optimal, especially, as the number
of workloads increases. (For a large number of workloads,
the greedy identifies more easily high-quality –i.e., low cost–
placements, while taking some sub-optimal decisions does
not affect much the final solution.) In terms of response
time, the optimal scales almost linearly with the number of
nodes, but scales less gracefully with the number of work-
loads. For example, for 30 nodes the optimal needs 1s, 15s,
60s for assigning 10, 30, 40 workloads; for assigning 15 work-
loads to 50, 75, 100 nodes, it needs 10s, 20s, 30s, respectively.
For the same tasks, the greedy needs less than 100msec. The
greedy, due to its fast performance and its near-optimal so-
lutions, is the default algorithm for CloudAlloc.

3. ARCHITECTURE
The architecture of CloudAlloc is depicted in Figure 2.

Logically, the architecture comprises n+1 nodes, the n clus-
ter nodes (a.k.a. worker nodes) that are reserved by users
plus a master node for reservation and monitoring tasks. In
practice, the master node could also serve as a worker node
if necessary. We assume that the nodes are shared-nothing
and run the same variant of Linux. But, they may be het-

CloudAlloc

Collector

current_status.xml

asynchronous
request

asynchronous
response

check/insert
request

AppServer

repos

current
booking
status

check request

confirm booking

user request

stats
.xml

Master Node

schedAssistant

schedule
job

Node 1
self-
monitoring

Node 2
self-
monitoring

Node N
self-
monitoring

dispatch
jobs

check for
workload

new
workload

Figure 2: CloudAlloc architecture

erogeneous. We model the network as a simple LAN with
uniform latency between all nodes. The architecture pro-
vides three primary functions and we describe these in turn.

Monitor Function. CloudAlloc monitors the cluster at
a continuous pace leaving only a light footprint. On each
worker node we obtain system statistics using Hyperic’s Sys-
tem Information Gatherer (SIGAR), a cross-platform API
for collecting software inventory data1. Currently we moni-
tor system memory, cpu, disk, and network utilization, but
additional statistics may be monitored as needed. We gather
these statistics every second and send them as an xml file
(current status.xml in Figure 2) to the master node. For
this functionality a lightweight java jar file runs in the back-
ground on each node monitored leaving a negligible footprint
on memory and cpu utilization. On the master node, every
second, a daemon collects statistics from all nodes into one
XML file (stats.xml in Figure 2). Nodes may be added to or
dropped from the cluster at any time and CloudAlloc will in-
corporate the changes into the reservation system. CloudAl-
loc uses JSP technology to read the stats.xml file and update
the CloudAlloc dashboard with the appropriate cluster uti-
lization numbers. This data is also stored in the repository
(repos in Figure 2) and is used for various purposes.

Reservation Function. CloudAlloc orchestrates the work-
load reservations based on the desired objective function. It
is responsible for accommodating workload requests and re-
serving appropriate time slots on machines for executing all
outstanding workloads. It supports a generic API such that
new booking algorithms are plug-ins to the system. Cur-
rently, CloudAlloc supports the two algorithms discussed in
Section 2, namely the optimal and approximate solutions.
For the optimal solution we used Gurobi2 Optimizer v.4.0,
and for the approximate we used standard Java libraries.
All reservations are stored in a database repository. We
currently use MariaDB to host our repository. We store in-
formation for users (userID, role, etc.), bookings (userID,
purpose, etc.), usage (bookingID, machineID, time info, re-
quirements like cpu/memory/diskIO) and so on. It is worth
noting that a workload request may be flexible, in which
case its reservation may be moved so that CloudAlloc may
accommodate other urgent workload requests. The GUI for

1http://www.hyperic.com/products/sigar
2Gurobi (http://www.gurobi.com) is a solver for linear program-
ming, quadratic programming, and mixed-integer programming.

Figure 3: Cluster level monitoring

the monitor, the reservation module, and the administrative
features are deployed as web applications in Apache Tomcat
and have been implemented using Adobe Flex.

Execution Function. CloudAlloc provides a scheduling as-
sistant for executing workloads. Each workload (e.g., queries
to be run in a DBMS like Vertica, Hadoop jobs, custom
made Unix shell scripts) may have an associated script to
initiate execution and that is stored in our repository. The
script is parameterized by the number of nodes it needs for
execution. A daemon process, schedAssistant, probes the
repository for newly registered workloads every 1 minute
(a tunable parameter). For each such a script, schedAssis-
tant generates an appropriate command (e.g., composed by
script name/path, start time) for the OS scheduler (e.g.,
cron for Linux). An event is logged in the repository when
a workload script starts and ends. That allows us to retro-
spectively compare the projected and actual resource usage
and thus to evaluate the user requirements, the actual sys-
tem utilization, the accuracy of the process, and to improve
our reservation strategy having a better understanding of
how each node behaves under load. Clearly, there are sev-
eral things to be added to our scheduling model (e.g., error
handling) and we are working on these for future releases.

4. DEMONSTRATION
Our demonstration testbed will comprise a master node

connected to a cluster of worker nodes deployed as virtual
machines on Amazon EC2. In actual practice, we would use
a cluster of physical nodes. Our use of virtual nodes is just a
convenience for the demo, but it also allows us to point out
that objectives-based resource allocation of virtual machines
running on physical clusters is an open research area.

Our CloudAlloc demonstration will serve two purposes.
The first is to show the features of the system. We will work
through the five scenarios discussed in Section 1 and solicit
feedback on alternative design choices. The second purpose
is to present our resource allocation algorithms that mini-
mize power usage and to discuss other possible objectives
for resource allocation and alternative power metrics.

Scenario 1: CloudAlloc offers monitoring capability at
two levels: cluster level (Figure 3) and node level (Figure 4).
Cluster monitoring shows the actual utilization of all clus-
ter nodes at any given time. One may choose which nodes
to see and what statistics to monitor. Figure 3 shows a
fragment of the cluster level monitoring page (only cpu and
memory utilization are chosen here). Node level monitor-
ing provides detailed resource usage for a single node (e.g.,
lbi-02 in Figure 4). It is offered at the booking reservation
pages to assist users to make their choices. Similar cluster

Figure 4: Node level monitoring Figure 5: Manual reservation

Figure 6: Booking information Figure 7: Warning messages Figure 8: Automatic reservation

monitoring functionality is offered by other tools like Gan-
glia3. However, our purpose is to provide an easy-to-install
and easy-to-use tool to assist the reservation process. Users
of CloudAlloc have confirmed that it is indeed a very handy
choice for lightweight cluster monitoring.

Scenario 2: CloudAlloc offers two ways to submit a work-
load request, manual or automatic. Figure 5 shows our con-
sole for manual reservations. For a manual request, the user
requests resources at specific nodes. To assist in node selec-
tion, the user may choose either a daily or weekly view and
observe the system utilization per node. She can pick a time
slot for a set of machines and add the requirements. For each
time slot, one may see how a specific node has been reserved,
i.e., booking information and graphs for system utilization.
Figure 6 shows example bookings for a four hour period.
Manual requests are checked for satisfiability. If the request
can be satisfied, a corresponding entry for the booking is
stored in the repository. The user may also choose to be
notified by email for the booking. If the request cannot be
satisfied, a detailed report explains to the user what require-
ment cannot be satisfied and also, she gets a list of available
options that are close to her needs (see Figure 7). Alterna-
tively, the user may choose to use the automatic reservation
system. Then, she needs to specify the desired system re-
quirements and a time window. Figure 8 shows the input
form for automatic reservations (the console for automatic
reservations is similar to Figure 5).

Scenario 3: For our third scenario, we show how the re-
source allocation algorithm may be changed (see Figure 8).
In our demo, the greedy algorithm is the default, but CloudAl-
loc provides the option to select the optimal allocation al-
gorithm. Then, the future workload reservations are reallo-
cated and the differences, if any, may be observed.

Scenario 4: We show how a script can be associated
with a workload to initiate execution of the workload. In

3http://ganglia.sourceforge.net/

this case, the workload script is invoked when the workload
is scheduled for execution. A user may be notified by email
when its workload starts/finishes its execution.

Scenario 5: For the fifth scenario we add/delete (vir-
tual) nodes to/from our cluster and then, see how the mon-
itoring system effortlessly updates the dashboard. We also
reoptimize existing workloads under the new configuration
showing how the system adapts to cluster changes.

In all scenarios, the participants will have the opportunity
for a lively interaction. At the same time, we solicit feedback
and comments for the continuation of our work.

5. CONCLUSIONS
CloudAlloc has been implemented at HP Labs. During its

operation, we have gathered several fruitful comments and
feedback from our colleagues and due to them our system
has been improved a lot. A more complete description of
CloudAlloc is in [5], which is available upon request.

6. REFERENCES
[1] Nimrod/G. Url: messagelab.monash.edu.au/NimrodG.
[2] Platform LSF. http://www.platform.com/workload-manage-

ment/high-performance-computing, 2011.
[3] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya. A

taxonomy and survey of energy-efficient data centers and cloud
computing systems. CoRR, abs/1007.0066, 2010.

[4] C. Curino et al. Relational cloud: a database service for the
cloud. In CIDR, pages 235–240, 2011.

[5] E. Iori, A. Simitsis, T. Palpanas, S. Harizopoulos, and
K. Wilkinson. CloudAlloc: Objective-based resource sharing in
compute clusters. Technical Report, 2012.

[6] M. Jette and M. Grondona. SLURM: Simple linux utility for
resource management. In ClusterWorld, 2003.

[7] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: The condor experience. Concurrency and
Computation: Practice and Experience, 17(2-4):323–356, 2005.

[8] L. Wang et al. Scientific cloud computing: Early definition and
experience. In IEEE HPCC, pages 825–830, 2008.

[9] W. Zeng, Y. Zhao, and J. Zeng. Cloud service and service
selection algorithm research. In GEC, pages 1045–1048, 2009.

