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Abstract

Clustering of high dimensional data streams is an impor-
tant problem in many application domains, a prominent
example being network monitoring. Several approaches
have been lately proposed for solving independently the
di�erent aspects of the problem. There exist methods
for clustering over full dimensional streams and meth-
ods for �nding clusters in subspaces of high dimensional
static data. Yet only a few approaches have been pro-
posed so far which tackle both the stream and the high
dimensionality aspects of the problem simultaneously.
In this work, we propose a new density-based projected
clustering algorithm, HDDStream, for high dimen-
sional data streams. Our algorithm summarizes both
the data points and the dimensions where these points
are grouped together and maintains these summaries
online, as new points arrive over time and old points ex-
pire due to ageing. Our experimental results illustrate
the e�ectiveness and the e�ciency of HDDStream and
also demonstrate that it could serve as a trigger for de-
tecting drastic changes in the underlying stream popu-
lation, like bursts of network attacks.

1 Introduction

High dimensional data are collected in many scien-
ti�c projects, humanity research, or business processes,
in order to better understand the phenomena the re-
searchers or managers are interested in. An abundance
of attributes is observed and recorded without knowing
whether these attributes are actually helpful in describ-
ing these phenomena. Among the features of a high
dimensional dataset, for any given object of interest,
many attributes can be expected to be irrelevant for
describing that object. Irrelevant attributes can easily
obscure clusters that are clearly visible when we con-
sider only the relevant `subspace' of the dataset. Fur-
thermore, the relevance of certain attributes may be lo-
cal, i.e., it may di�er for di�erent clusters of objects

within the same dataset. Thus, clusters may be mean-
ingfully de�ned by some of the available attributes only.
The irrelevant attributes will interfere with the e�orts
to �nd these clusters. This problem is aggravated in
streaming data, since we have to decide with one sin-
gle look at the data which attributes may be useful
for describing a potential cluster for the current ob-
ject. Moreover, streams are volatile and the discovered
clusters might also evolve over time either slightly (con-
cept drift) or rapidly (concept shift). The problem of
high dimensional data has been a topic for clustering
since years [17]. Clustering data streams has been a re-
search topic as well [1, 7, 8, 11, 13]. The combination of
both issues, i.e., clustering in subspaces of high dimen-
sional stream data, has however gained little attention
so far. The only example of such a combined method for
streaming data is HPStream [2], a partitioning method
for projected clustering. As a k-means-type approach
though, it assumes that the number of clusters remains
constant over the whole lifetime of the stream. Other
approaches to clustering high dimensional data streams
are either incremental (requiring access to raw data), or
are not able to detect clusters in subspaces, or both.

Here, we propose a new density-based projected
clustering algorithm for data streams, HDDStream.
Density-based clustering methods are more appropriate
for streams than e.g., partitioning methods since they
do not make any assumption on the number of clusters,
they can discover clusters of arbitrary shapes, and they
are invariant to outliers. A challenge though for density-
based clustering is that there is no clustering model
for the discovered clusters, which are usually described
as sets of objects. Such a description however is not
applicable to streams, where data objects cannot be
accessed in an unlimited fashion. A common way to
overcome this issue is to summarize the dataset by
some appropriate summary, e.g., micro clusters [1].
We propose a summary that models both objects and



dimensions, since in high dimensional feature spaces not
all dimensions might be important for summarizing a set
of data objects. We maintain the summaries in an online
fashion and we rely upon these summaries in order to
derive the �nal clusters and their relevant dimensions.

To summarize, our main contributions are:
(i) HDDStream is the �rst algorithm for density-

based projected clustering over high dimensional data
streams. Although there exist methods for density-
based clustering over full dimensional data streams,
e.g., [7, 8], and density-based clustering over high di-
mensional static data, e.g., [6,18], there is no algorithm
that simultaneously tackles both the high dimensional-
ity and the stream aspects of the data.

(ii) We propose a summary structure, projected
microclusters, for summarizing a set of objects in their
relevant dimensions. We propose di�erent types of
microclusters in order to allow for the gradual formation
of true projected microclusters and the safe removal of
outliers. This is important for streams, since in a stream
environment clusters may become outliers later on and
vice versa. This is in contrast to HPStream [2], where
a new point, if it is far away from all existing clusters,
will become the seed of a new cluster (even if it is an
outlier), and some old cluster is deleted in order to keep
the total number of clusters constant.

(iii) HDDStream adapts the number of microclus-
ters to the underlying evolving population thus allowing
the end user to monitor the evolution of the population
and to detect possible drastic changes in the population.
For example, a drastic increase in the variety of activ-
ities in a network monitoring application might be ac-
tionable as it could correspond to some burst of attacks.
Such a property is not possible with HPStream [2] since
it maintains a constant number of clusters over time.

In the remainder, we discuss related work in Sec-
tion 2, and introduce basic concepts in Section 3. The
HDDStream algorithm is presented in Section 4. Sec-
tion 5 presents the evaluation analysis. Section 6 con-
cludes the paper.

2 Related work

2.1 Density-based clustering Density-based clus-
tering [15] can be seen as a non-parametric approach,
where clusters are modeled as areas of high density (re-
lying on some unknown density-distribution). In con-
trast to parametric approaches that try to approximate
the unknown density-distribution generating the data
by mixtures of k densities (e.g., Gaussian distributions),
density-based clustering methods do not require the
number of clusters as input and do not make any spe-
ci�c assumptions concerning the nature of the density-
distribution. As a result, however, density-based meth-

ods do not readily provide models, or otherwise com-
pressed descriptions for the discovered clusters. A com-
putationally e�cient method for density-based cluster-
ing on static data sets is, e.g., DBSCAN [10]. Incre-
mental variants have been proposed to capture changes
of the database over time, e.g., incDBSCAN [9]. Incre-
mental algorithms require access to the raw data for the
reorganization of the clustering, which is a requirement
that cannot be met in a data streaming context, where
access to the entire history of the data is not feasible.

2.2 Clustering high dimensional data Clustering
high dimensional data has found a lot of attention,
though mostly focused on static data so far. The pri-
mary idea is that clusters can no longer be found in
the entire feature space because many features are ir-
relevant for the clustering. Often, in such high dimen-
sional data, we observe the phenomenon of local feature
relevance or local feature correlation (i.e., di�erent sub-
sets of features are relevant/correlated for di�erent clus-
ters). Thus, clusters can only be detected in subspaces
rather than in the entire feature space. The recent ap-
proaches can be classi�ed [17] into methods that search
for clusters in arbitrarily oriented subspaces grasping
the idea of local feature correlation (thus also called
correlation clustering algorithms) as well as methods
that search clusters only in axis-parallel subspaces ac-
counting for local feature relevance (called subspace or
projected clustering algorithms). Here, we focus on the
latter class restricting the search space to axis-parallel
subspaces. We can distinguish between methods that
search the relevant subspaces for each cluster bottom-
up starting with 1D subspaces (like the grid-based ap-
proach CLIQUE [4]) and approaches that search for the
relevant projections of each cluster top-down (like the k-
means like PROCLUS algorithm [3] or the density-based
PreDeCon [6]). While the bottom-up approaches usu-
ally compute all clusters in all subspaces, allowing mul-
tiple cluster memberships (often called subspace clus-
tering methods), the top-down approaches usually com-
pute a disjoint, non-overlapping partition of the data
points into clusters where each cluster may aggregate in
a di�erent projection (these are often called projected
clustering methods). Since subspace clustering algo-
rithms usually provide a lot of redundancy, here, we
focus on the problem of projected clustering aiming at
a partition into disjoint groups. In particular, we follow
the density-based clustering model that has been suc-
cessfully used for projected clustering in PreDeCon [6]
and several variations [19,20] for the static case, and we
extend these concepts to highly dynamic data streams.



2.3 Stream clustering in full dimensional space

Data streams impose new challenges for the cluster-
ing problem since �it is usually impossible to store
an entire data stream or to scan it multiple times
due to its tremendous volume� [12]. Several meth-
ods have been proposed that �rst summarize the data
by some summary structure and then apply cluster-
ing over these summaries instead of the original raw
data. STREAM [13] proposes a technique for clustering
stream data that works by segmenting the original data
stream in time-chunks. Then, a clustering is produced
for each chunk, which serves as its summary, and peri-
odically all these summaries are processed to produce an
overall clustering. The CluStreams [1] framework splits
the clustering process into an online and an o�ine part:
the online component incrementally maintains a sum-
mary of the data stream (the so called `micro-clusters')
and periodically stores them to disk, whereas the of-
�ine component applies a variation of k-means over
these micro-clusters for the formation of the actual clus-
ters (the so called `macro-clusters') over a user-de�ned
time horizon. The micro-clusters are based on the con-
cept of clustering features (CFs) originally introduced
in BIRCH [22] for summarizing the data through spher-
ical clusters. DenStream [7] follows the online-o�ine ra-
tionale of CluStream [1], but in contrast to CluStream
(that is specialized to spherical clusters), it can detect
clusters of arbitrary shapes, following the density-based
clustering paradigm. Data are summarized through mi-
cro clusters and the clusters with arbitrary shapes are
described by a set of micro clusters. The algorithm
distinguishes between outlier micro clusters and poten-
tial core micro clusters, thus allowing noise handling.
DStream [8] uses a grid structure to capture the data
distribution. The grid is updated online and clusters are
extracted as sets of connected dense units. To deal with
noise, they distinguish between dense, transitional, and
sparse units based on the unit density. DUCStream [11]
is based on CLIQUE [4]. It updates incrementally only
the full-dimensional grid structure, whereas the clusters
are discovered over the (now updated) grid. Also, Clus-
Tree [14], a micro clusters tree-structure that is updated
like an index with updates of the data has been proposed
for anytime stream clustering.

Though a lot of research has been carried out on
clustering stream data, all these clustering approaches
tackle clustering in the full-dimensional space only and
thus might miss clusters in high dimensional data, where
clusters are likely to be present in subspaces only.

2.4 Projected clustering over high dimensional

stream data The ideas of CluStream [1] have been
extended to high dimensional data streams in HP-

Stream [2], a method for projected clustering over data
streams. A summary structure, the `fading cluster
structure', comprises a condensed representation of the
statistics of the points inside a cluster and can be up-
dated e�ciently as the data stream proceeds. Each sum-
mary is associated with a projected subspace, consist-
ing of the dimensions that are the most relevant for the
cluster. The algorithm requires as input the number
of clusters k and the average cluster dimensionality l.
When a new point arrives, it is assigned to its closest
cluster or it starts a new cluster. In the latter case,
though, the oldest of the existing clusters is deleted in
order to keep the total number of clusters constant. Re-
cently, there have been also some approaches to adapt
projected clustering for handling dynamic data leading
to incremental clustering [16, 21]. These approaches al-
low for updates or changes of the data but, as opposed
to stream clustering, require access to the raw data for
updating the clusters accordingly.

2.5 Summary Although a plethora of work tackled
subspace or projected clustering in high dimensional
static data and several methods have been proposed for
clustering over data streams, only HPStream [2] actu-
ally deals with the problem of clustering in subspaces
of high dimensional stream data. However, HPstream
relies on the k-means clustering model and, thus, the
number of clusters is required as input and is assumed
to remain constant over the complete stream. Note that
in a streaming context we do not have the opportunity
to try out di�erent values of k or even di�erent runs with
the same k in order to get the best result. Since this is
usually required for k-means-type approaches in order
to select the most convincing solution afterwards, this
is a signi�cant limitation. Contrary to this, the pro-
posed HDDStream algorithm is based on a density-
based notion of clusters. The number of clusters is vari-
ably adjusted over time, depending on the evolution of
the underlying dataset. The clusters can be of arbitrary
shape, naturally following the data characteristics.

3 Basic concepts

A data stream is de�ned as an in�nite sequence of
points {p1, p2, . . . pi, . . .} arriving over time at di�erent
time points t1, t2, . . . ti, . . ., respectively. Each point is
described as a vector pi = 〈pi1 , pi2 , . . . pid〉 in the d-
dimensional feature space.

An important concept in data streams is data
ageing. In order to give a greater level of importance
to more recent data, a weight is assigned to every
point via an ageing function. In this paper, we adopt
the exponential fading function that is widely used in
temporal applications. According to this function, the



weight of a point decreases exponentially with time t via
f(t) = 2−λ·t, where λ > 0. The decay rate λ determines
the importance of historical data; the higher the value
of λ, the lower the importance of old data.

An important characteristic of data streams is the
inability to store all data points. However, in density-
based clustering, clusters of arbitrary shapes are de-
scribed in terms of all their member-points. Such a
requirement though is prohibitive for data streams. A
usual way to overcome this problem is by summariz-
ing the data through an appropriate summary structure
e.g., [1,2,7,8]. A popular technique employed by several
clustering algorithms, e.g., [1, 2, 7], are micro clusters
that summarize a set of points in the full dimensional
space. When ageing is considered, as in our case, the
temporal extension of micro clusters [2, 7] is employed.

We �rst de�ne the microclusters for summarizing a
set of points in the full dimensional feature space. We
then introduce the notion of dimension preferences to
consider the fact that in high dimensional feature spaces
not all dimensions are relevant for a microcluster. Based
on dimension preferences we introduce the projected
microclusters which summarize a set of points in a
subspace of the original feature space.

Definition 1. (MicroCluster - mc)
A microcluster at time t for a set of d-dimensional
points C = {p1, p2, . . . , pn} arriving at di�er-
ent time points is de�ned as a tuple mc(C, t) =
(CF1(t), CF2(t),W (t)) where:

• CF1(t) is a d-dimensional vector of the weighted
linear sum of the points in each dimension:
CF1(t) = 〈CF11(t), CF12(t), . . . , CF1d(t)〉. En-
try CF1j(t) refers to dimension j and is given by:
CF1j(t) =

∑n
i=1 f(t − ti) · (pij ), where pij is the

value of point pi in dimension j, ti is the arrival
time of pi and f(t− ti) is the weight of pi at t.

• CF2(t) is a d-dimensional vector of the weighted
square sum of the points in each dimension:
CF2(t) = 〈CF21(t), CF22(t), . . . , CF2d(t)〉. En-
try CF2j(t) corresponds to the jth dimension and
is given by: CF2j(t) =

∑n
i=1 f(t− ti) · (pij )2.

• W (t) is the sum of the weights of the data points:
W (t) =

∑n
i=1 f(t− ti).

A microcluster summarizes a set of points in the full d-
dimensional space. Di�erent dimensions though might
be of di�erent importance for the microcluster. We
evaluate the preference for a dimension on the basis of
the variance along this dimension in the microcluster.

Definition 2. (Preferred dimension)
Let mc(C, t) = (CF1(t), CF2(t),W (t)) be a microclus-

ter, shortly denoted by mc. The microcluster mc prefers
the jth dimension i�:

Varj(mc) ≤ δ

where Varj(mc) is the variance along dimension j:

Varj(mc) =

√
CF2j(t)

W (t)
−
(
CF1j(t)

W (t)

)2

and δ is the variance threshold.

Intuitively, a microcluster prefers a dimension, if the
members of the microcluster are densely packed along
this dimension. The variance threshold parameter δ
controls whether a dimension should be considered as
a preferred or as a non-preferred dimension.

Based on the preference of a microcluster for a single
dimension, we de�ne the dimension preference vector
of a microcluster to distinguish between preferred and
non-preferred dimensions.

Definition 3. (Dimension preference vector)
Let mc be a microcluster. The dimension preference
vector of mc is de�ned as:

Φ(mc) = 〈φ1, φ2, ...φd〉

where φj, j = 1 : d is given by:

φj =

{
κ, if Varj(mc) ≤ δ
1, otherwise

κ� 1 is a constant.

The number of dimensions that a microcluster
prefers, comprises the projected dimensionality of the
microcluster. For a microcluster mc, its projected di-
mensionality, denoted by PDim(mc), can be easily com-
puted through its dimension preference vector Φ(mc) by
counting the κ-valued entries.

A microcluster accompanied with a dimension pref-
erence vector is called a projected microcluster, where
the term `projected' stands for the fact that the mi-
crocluster is de�ned over a projected subspace of the
feature space instead of the whole feature space.

We introduce now the notion of core projected mi-
croclusters which is important for density-based cluster-
ing. A core projected microcluster is a microcluster that
`compresses' more than µ points within a limited radius
ε in a projected subspace of maximal dimensionality π.
More formally:

Definition 4. (Core�pMC)
Let mc be a microcluster and let Φ be its dimension
preference vector. The microcluster mc is a core pro-
jected microcluster i�:



i) radiusΦ(mc) ≤ ε,
ii) W (t) ≥ µ and,
iii) PDim(mc) ≤ π.

Note that in the above de�nition, the radius is de�ned
w.r.t. the dimension preference vector Φ of the micro-
cluster. This is the projected radius that takes into
account the dimension preferences of the microcluster:

Definition 5. (Projected radius)
Let mc be a microcluster and let Φ be its dimension
preference vector. The projected radius of mc is given
by:

radiusΦ(mc) =

√√√√ d∑
j=1

1

Φj

(
CF2j(t)

W (t)
−
(
CF1j(t)

W (t)

)2
)

In evolving data streams, the role of outliers and clusters
often exchange and what is now considered to be an
outlier might turn later into a cluster or vice versa. To
this end, we introduce the notions of pCore�pMC and
o�MC to distinguish between potential core projected
microclusters and outlier microclusters.

Definition 6. (pCore�pMC)
Let mc be a microcluster and let Φ be its dimension
preference vector. The microcluster mc is a potential
core projected microcluster i�:

i) radiusΦ(mc) ≤ ε,
ii) W (t) ≥ β · µ and,
iii) PDim(mc) ≤ π.

The only di�erence to Core�pMC lies in condition ii):
the density threshold for core projected microclusters is
relaxed thus allowing potential core projected micro-
clusters to compress a certain percentage β ∈ (0, 1) of
µ. The maximal projected dimensionality threshold π
is not relaxed though; the reason is that if so, the �nal
microclusters might not be projected.

However, there might be microclusters that do
not ful�ll the above constraints either because their
density is smaller than β · µ or because their projected
dimensionality exceeds π. We treat them as outliers.

Definition 7. (Outlier MC, o�MC)
Let mc be a microcluster and let Φ be its dimension
preference vector. The microcluster mc is an outlier
microcluster i�:

i) radiusΦ(mc) ≤ ε and, either
ii) W (t) < β · µ or
iii) PDim(mc) > π.

The microclusters can be maintained online as new
points arrive from the stream and old points expire
due to ageing. This is possible due to additivity and
temporal multiplicity properties of the microclusters.

Property 3.1. (Online maintenance)
Consider a microcluster mc at time t, mc =

(CF1(t), CF2(t),W (t)).

• Additivity: If a point p is merged to mc at time
t, mc can be updated as follows: mc = (CF1(t) +
p, CF2(t) + p2,W (t) + 1).

• Temporal multiplicity: If no points are added to
mc during the interval (t, t + δt), the components
of mc are downgraded by a factor 2−λ·δt and the
updated microcluster is given by: mc = (2−λ·δt ·
CF1(t), 2−λ·δt · CF2(t), 2−λ·δt ·W (t)).

The additive property allows for the easy integration
of new points into an existing microcluster. The
multiplicity property allows for the easy update of the
recency of microclusters over time.

Being able to maintain the microclusters online is
very important for streams since there is no access to
the original raw data. Note also that all the features
derived from the microclusters, e.g., radius, variance, or
dimension preference vector, can be computed online.

4 The HDDStream algorithm

The pseudocode of the HDDStream algorithm is pre-
sented in Figure 1. It consists of three main steps:
(i) Initialization: After the arrival of the �rst initPoints
points from the stream, the initial set of microclusters is
extracted (lines 6�9, Figure 1). The initialization step
is explained in Section 4.1.
(ii) Online microcluster maintenance: The microclus-
ters are maintained online as new points arrive over time
and old points expire due to ageing. A new point might
be assigned to an existing microcluster, or it might start
its own microcluster (lines 10�22, Figure 1). The online
step is explained in Section 4.2.
(iii) O�ine clustering: The �nal clusters are extracted
on demand based on the so far maintained microclus-
ters. The o�ine step is presented in Section 4.3.

4.1 Initialization We apply PreDeCon [6] on the
�rst initPoints points from the stream {D}, to ex-
tract the initial set of microclusters. In particular, for
each point p ∈ D, we compute its d-dimensional neigh-
borhood Nε(p) containing all points within distance ε
from p. Based on the variance along each dimension
in the neighborhood, we compute the dimension prefer-
ence vector of p, Φ(p) and the preferred neighborhood

of p, NΦ(p)
ε (p) containing all points within preference

weighted distance ε from p. If the projected dimen-
sionality of p does not exceed the maximal projected
dimensionality π and the density in its preferred neigh-
borhood is above βµ, we create a potential core projected



Algorithm HDDStream()

Input stream S = p1, p2 . . . , pt, . . .
1. while (stream has more instances) do

2. p: the next point from the stream at t

3. //initialize upon the arrival of the �rst initPoints

4. if (!initialized)

5. initBu�er.add(p);

6. if (|initBu�er| == initPoints) then

7. pCore�pMicroClusters=init(initBu�er);

8. initialized =true;

9. end if

10. else

11. //try adding p to a potential microcluster

12. Trial1 = add(p, pCore�pMicroClusters);

13. if (!Trial1) then

14. //try adding p to an outlier microcluster

15. Trial2 = add(p, o�microClusters);

16. end if;

17. if (!Trial1 & !Trial2) then

18. //start a new outlier microcluster

19. Create a new outlier microcluster omc by p;

20. o�microClusters.add(omc);

21. end if;

22. end if;

23. //Periodic check pCore�pMicroClusters for
downgrade

24. //Periodic check o�microClusters for removal

25. end while

Figure 1: Pseudo code of the HDDStream algorithm.

microcluster with p and all its preferred neighbors in D,

i.e., {p ∪NΦ(p)
ε (p)}.

Since these points are already covered by a micro-
cluster, we remove them from D and we repeat the same
procedure for the remaining points in D. The result of
this step is an initial set of potential core projected mi-
croclusters, pCore�pMicroClusters.

4.2 Online microcluster maintenance We main-
tain online two lists of microclusters: the potential core
projected microclusters pCore�pMicroClusters and
the outlier microclusters o�microClusters.

A new point p might be assigned to an existing
microcluster or it might start its own microcluster; this
depends on its proximity to the microclusters. In more
detail, when a new point p arrives at time t:

1. We �rst try to add p to its closest po-
tential core projected microcluster in
pCore�pMicroClusters (line 12).

Algorithm add(p, pCore�pMicroClusters)

Input a new point p at t
the list of pCore�pMicroClusters at t

distances: array of distances w.r.t. p
1. for each pmc ∈ pCore�pMicroClusters do

2. //update the dimension preference vector of pmc

3. prefDim = updateDimensionPreferences(pmc,p);

4. if (prefDim ≤ π) then

5. //compute projected distance

6. dist = computeProjectedDistance(pmc,p);

7. distances.add(dist);

8. end if

9. end for

10. if (distances not empty) then

11. //get the closest microcluster

12. pmcclosest = getClosestSummary(distances);

13. //check the radius

14. radius = computeRadius(pmcclosest);

15. if (radius ≤ ε) then

16. Add p to pmcclosest;

17. return true;

18. end if

19. return false;

Figure 2: Pseudo code of the add procedure

2. If this is not possible, we then try to add p to its
closest outlier microcluster in o�microClusters
(lines 13�16).

3. If both are not possible, we �nally create a new
outlier microcluster for p (lines 17�21).

We explain hereafter each step in more detail.

4.2.1 Adding p to pCore�pMicroClusters The
procedure of adding p to some potential core projected
microcluster in pCore�pMicroClusters consists of
three steps: i) updating the dimension preferences of
the microclusters, ii) computing the closest microcluster
to p and, iii) �nalizing the assignment. Each step
is explained in detail below. The pseudocode of the
algorithm is depicted in Figure 2.

Step 1 � Update dimension preferences

We temporarily add p to each microcluster in
pCore�pMicroClusters and compute the new pro-
jected subspaces of the microclusters (line 3) based on
De�nition 3. Due to the addition of p to a microcluster
pmc ∈ pCore�pMicroClusters, the projected sub-
space of pmc might be a�ected since the variance along
some dimension j in pmc might change and thus, the
jth dimension might turn now into a preferred/non-



preferred dimension for pmc. In particular, for each
dimension j, we compare the variance along this dimen-
sion in pmc before and after the addition of p. Three
cases might occur:

• If the jth dimension was a non-preferred dimension,
it might turn now into a preferred dimension if after
the addition of p, Varj(pmc) ≤ δ.

• If the jth dimension was a preferred dimension, it
might turn now into a non-preferred dimension if
after the addition of p, Varj(pmc) > δ.

• No changes in the preference of the jth dimension
occur due to the addition of p, that is, j remains
either a preferred or a non-preferred dimension.

If after the addition of p, more dimensions turn into
preferred dimensions, the projected dimensionality of
pmc, PDim(mc), increases. Such an increase might vio-
late condition ii) of De�nition 6 regarding the maximum
projected dimensionality π. If this condition is violated,
we do not consider pmc as a candidate for the insertion
of p and we proceed with the rest of the microclusters
in pCore�pMicroClusters (line 4�8). The reason is
that we do not want to further `develop' potential core
microclusters that violate their de�nition.

Step 2 � Find the closest microcluster To �nd
the closest microcluster, we compute the distance be-
tween p and every potential core projected microcluster
pmc ∈ pCore�pMicroClusters, taking into account
the updated projected subspace of pmc (lines 4�8). We
call this projected distance since it relies on the projected
subspace of a microcluster and we de�ne it as follows.

Definition 8. (Projected distance) Consider a
point p at time t. Let pmc be a projected microcluster
at t with dimension preference vector Φ. The projected
distance between p and pmc is de�ned as follows:

distΦ(p, pmc) =

√√√√ d∑
j=1

1

Φj
(pj − center j)

2

where center is the center of the microcluster given by:
center(pmc) = CF1(t)/W (t). The values centerj, pj,
Φj refer to the jth dimension.

The projected distance between p and pmc is com-
puted w.r.t. the dimension preferences of pmc. In par-
ticular, the value di�erences between the point and
the center of the microcluster in each dimension are
weighted based on the preference of the microcluster for
that dimension. The closest microcluster pmcclosest ∈
pCore�pMicroClusters is chosen (line 12).

Step 3 � Finalize the assignment Although
pmcclosest was found to be the closest projected mi-
crocluster to p, the assignment is possible only if the
addition of p to pmcclosest does not a�ect the natural
boundary of pmcclosest. This boundary is expressed by
the projected radius of pmcclosest (cf. De�nition 5). If
the radius is below the maximum radius threshold ε, p
is added to pmcclosest and the statistics of pmcclosest are
updated according to Property 3.1 (lines 15�18).

4.2.2 Adding p to o�microClusters If p cannot
be added to some potential core projected microcluster
in pCore�pMicroClusters, we try to add it to some
outlier microcluster in o�microClusters (lines 13�16,
Figure 1).

The procedure is similar as for adding p to
pCore�pMicroClusters (cf. Figure 2), so we do not
explain here all the details. The di�erence is that, due
to the de�nition of the outlier microclusters, there is
no restriction on the maximal projected dimensional-
ity, so the line 4 of the algorithm in Figure 2 is ir-
relevant now. We �nd the closest outlier microcluster
omcclosest ∈ o�microClusters for p by comparing p
to all microclusters in o�microClusters. If the radius
of omcclosest does not exceed the radius threshold ε, we
add p to omcclosest and we update its statistics based
on Property 3.1.

Due to the insertion of p, omcclosest might turn
into a potential core projected microcluster according
to De�nition 6 if now its weight exceeds β · µ and its
projected dimensionality does not exceed π (Note that
the radius threshold ε should also hold for outlier micro-
clusters.). If this is the case, we remove omcclosest from
the outlier microclusters list, o�microClusters, and
we add it to the potential core projected microclusters
list, pCore�pMicroClusters.

4.3 O�ine clustering The online maintained pro-
jected microclusters capture the density of the stream,
however they do not comprise the �nal clusters. To ex-
tract the �nal clusters, an o�ine procedure is applied
on�demand over these microclusters. This procedure
is a variant of PreDeCon [6] applied over microclusters
instead of raw data. In traditional PreDeCon, the pref-
erence weighted core points are used as seeds for the
`creation' of the clusters. For each such point, an ex-
pansion procedure is applied starting with the points
in its preferred neighborhood till the full cluster is re-
vealed.

A similar procedure could be employed
here: The core projected microclusters in
pCore�pMicroClusters act as seeds for the
extraction of the projected clusters. In particular, for



each microcluster pmc ∈ pCore�pMicroClusters
we check whether it is a core projected microclus-
ter (cf. De�nition 4). If so, we start a projected
cluster with it and all its neighbor microclusters in
pCore�pMicroClusters and we use these neighbors
as possible seeds for the further expansion of the
cluster. We mark these microclusters as covered and
we proceed with the remaining microclusters until all
projected clusters are extracted.

4.4 Discussion In this section, we discuss di�erent
issues related to the HDDStream algorithm.

During the update of the projected dimensionality
of the microclusters, we temporarily assign the new
point p to each microcluster (Step 1, Section 4.2.1).
This way, if p is assigned to that microcluster, the e�ect
of p to the projected subspace of the microcluster is
also taken into account. Another reason is that the
computation of the variance along each dimension in the
microcluster becomes more stable, especially in cases
where the microcluster contains only a few points.

At each timepoint, we receive from the stream a
certain number of points w, where w is the window size.
Also, the old data are gradually forgotten based on the
exponential fading function f(t) = 2−λ·t. However, the
overall weight W of the data stream is constant. Let
tc be the current time, tc → ∞. The overall weight W
of the stream at tc is given by: W = w · 2−λ·(tc−0) +
w · 2−λ·(tc−1) + . . .+ w · 2−λ·(tc−(tc−1)) + w · 2−λ·(tc−tc)
= w·(2−λ·0+·2−λ·1+. . .+·2−λ·(tc−1)+2−λ·tc) = w· 1

1−2−λ

So, the overall weight of the stream at time tc depends
on the window size w that determines how many data
points arrive at each timepoint and on the decay rate λ
that determines how fast the old data are forgotten.

In the previous sections, we described the update of
a microcluster when a new instance is assigned to the
microcluster. However, there might be microclusters
that are not `supported' by new instances. These
microclusters should be also updated, since the data are
subject to ageing and, thus, the microclusters are also
subject to change over time. In particular, potential
core projected microclusters may be downgraded to
outliers and outlier microclusters may be vanished.

Obviously, updating all microclusters after each
timepoint to account for the ageing of data points
is not so e�cient. To this end, we follow the ap-
proach of [7] and check the weight of each microcluster
in pCore�pMicroClusters periodically, every Tspan
timepoints. Tspan is the minimum time span such that
a potential core projected microcluster that does not re-
ceive any new points from the stream may fade into an
outlier microcluster, i.e.,: 2−λ·Tspan · β · µ = β · µ − 1.

By solving the above equation, Tspan is computed as:

Tspan =

⌈
1

λ
· log

β · µ
β · µ− 1

⌉
So, every Tspan timepoints we check each micro-

cluster pmc ∈ pCore�pMicroClusters. If either its
projected dimensionality exceeds π or its weight is lower
than β · µ, pmc is downgraded to an outlier microclus-
ter1. This way also the maximum number of projected
microclusters in memory at each timepoint is W

β·µ , where
W is the weight of the stream and β ·µ is the minimum
density of a potential core projected microcluster.

In case of outlier microclusters, it is more di�cult
to perform the ageing update, because there is neither
some lower limit on their density, not some maximum
limit on their projected dimensionality. A current
outlier microcluster may be a real outlier that we want
to delete or it may be the �rst point of a cluster. In
the latter case, we want to keep it but the problem
is that the time where the remaining members of that
cluster come in can be far in the future. This would
require to store these outlier microclusters for an in�nite
time. Since this is not feasible, we adopt the heuristic
proposed in [7] to di�erentiate between real outliers
and those that shall be upgraded later. In particular,
after Tspan timepoints, we check the real weight of each
outlier microcluster omc ∈ o�microClusters at the
current time t with its lower expected weight at t. The
lower expected weight of a microcluster at t is subject
to its creation time, t0 and is given by [7]:

Wexp(t, t0) =
2−λ(t−t0+Tspan) − 1

2−λTspan − 1

The expected weight is 1 if t = t0 and it approaches β ·µ
as time elapses. So, the intuition is that the longer an
outlier microcluster exists, the higher its weight should
be. So, if omc evolves to become a potential core
projected microcluster, its weight will be greater than
the expected lower weight. Otherwise, it is most likely
a real outlier. We delete omc if W (omc) < Wexp.

This procedure of ageing the microclusters takes
place in lines 23�24 of the Algorithm in Figure 1. The
result is an updated set of pCore�pMicroClusters
and o�microClusters.

The cost of adding a new point from the stream
depends on the number of the online maintained sum-
maries: for each arriving point, we have to check
whether it �ts into an existing summary, resulting in a
time complexity of O(d·(|pCore�pMicroClusters|+
|o�microClusters|)).

1Note that the weight of those microclusters receiving new

points from the stream is updated after each addition.



Table 1: Parameters
Param Description Relevant to

λ decay rate stream
δ variance threshold dimensionality
π maximal dimensionality

projected dimensionality
ε radius threshold clustering
µ density threshold for clustering

Core�pMicroClusters

β (·µ) density threshold for clustering
pCore�pMicroClusters

In Table 1 we summarize the di�erent parameters of
HDDStream grouped as stream relevant, dimension-
ality relevant and clustering relevant. Let us note that
only β is actually introduced as a new parameter here.
λ a�ects the decay rate of the stream and is commonly
used by other stream mining algorithms. δ, π, ε, and µ
are inherited from PreDeCon and discussed in [6].

5 Experimental evaluation

We compared HDDStream to HPStream [2] which to
the best of our knowledge is the only projected cluster-
ing algorithm for high dimensional data streams so far.
We experimented with the Network Intrusion and the
Forest Cover Type datasets, which are typically used for
the evaluation of stream clustering algorithms e.g., [1,7]
and they were also used in the experiments of HP-
Stream [2]. Both algorithms were implemented in JAVA
in the MOA framework [5].

We �rst describe the datasets and the evaluation
measures we examined and then we present the results
for each dataset.

5.1 Datasets The Network Intrusion dataset (KDD
Cup'99) contains TCP connection logs from two weeks
of LAN network tra�c (424,021 records). Each record
corresponds to a normal connection or an attack. The
attacks fall into 4 main categories and 22 more speci�c
types: DOS (i.e., denial-of-service), R2L (i.e., unau-
thorized access from a remote machine), U2R (i.e.,
unauthorized access to local superuser privileges), and
PROBING (i.e., surveillance and other probing). We
used all 34 continuous attributes as in [1, 2].

The Forest Cover Type dataset from UCI KDD
Archive contains data on di�erent forest cover types,
containing 581,012 records. The challenge in this
dataset is to predict the correct cover type from car-
tographic variables. The problem is de�ned by 54 vari-
ables of di�erent types: 10 quantitative variables, 4 bi-
nary wilderness area attributes and 40 binary soil type
variables. The class attribute contains 7 di�erent forest
cover types. We used all the 10 quantitative variables
for our experiments as in [2].

In both cases, the datasets were turned into streams
by sorting on the data input order.

5.2 Evaluation criteria Several full dimensional
clustering algorithms, e.g., [1, 13] choose the sum of
square distances (SSQ) to evaluate the clustering qual-
ity. However, �SSQ is not a good measure in evaluating
projected clustering� [2] because it is a full dimensional
measure. So, as in [2], we evaluate the clustering qual-
ity by the average purity of clusters, which examines
the purity of the clusters w.r.t. the true class labels.
The purity is de�ned as the average percentage of the
dominant class label in each cluster [7]:

purity(Θ) =

∑
θ∈Θ

|Cdθ |
|Cθ|

|Θ|
where Θ = {θ1, θ2, . . . , θk} is the clustering result. |Cθ|
denotes the number of points assigned to cluster Cθ
and Cdθ is the number of points in Cθ belonging to the
dominant class d. In other words, purity describes how
pure in terms of the dominant class the clusters are.

Due to the fact that the data points age over time,
the purity is computed w.r.t. a set of points that arrive
within a prede�ned window of time from the current
time. We refer to this as the horizon H in order to
remove any ambiguity with the window size w that
de�nes the number of data points from the stream that
arrive at each time point. So, H describes over how
many windows the cluster purity is evaluated.

The memory usage is measured by the number of
microclusters maintained at each time point.

Unless particularly mentioned, the stream parame-
ters for both algorithms were set as follows: initial num-
ber of points initPoints = 2, 000, decay rate λ = 0.5 and
horizon H = 1.

5.3 Network Intrusion Dataset We tested the
clustering quality of HPStream and HDDStream on
the Network Intrusion Dataset. The parameters for
HPStream are chosen to be the same as those adopted
in [2]. The parameters for HDDStream were set as
follows: density threshold for projected core microclus-
ters µ = 10, density factor for potential core projected
microclusters β = 0.5 , radius threshold ε = 0.2, maxi-
mal projected dimensionality π = 30, variance threshold
δ = 0.001.

In Figure 3, we display the purity of the clusters
during the whole period of stream execution for a spe-
ci�c window size, w=1000 points per time. We can ob-
serve the change in the purity over time and also, that
HDDStream achieves better purity compared to HP-
Stream. Note that there are cases when both algorithms
achieve the maximum purity of 100%. This is due to the
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Figure 3: Clustering quality (Network Intrusion dataset,
window size w = 1000)

fact that there are timepoints where all instances belong
to the same connection type (e.g., timepoints of normal
connections or timepoints with burst of attacks of a spe-
ci�c type). As such, any clustering result would obtain
a purity of 100%.

For this reason, in Figure 4 we display the per-
centage of 100% pure clusters discovered by the two
algorithms under di�erent window sizes, varying from
w = 200 to w = 3, 000 points per each timepoint.
As we can see, HDDStream outperforms HPStream
for all window sizes. This is expected since HP-
Stream tries to summarize the stream at each time
point with only a constant number of clusters, whereas
HDDStream adapts the number of microclusters at
each time point to the characteristics of the incoming
data. Moreover, HDDStream takes into account the
fact that some points might correspond to noise and do
not necessarily �t into an existing microcluster. In par-
ticular, the notion of o�microClusters allows for the
true noisy points to be discarded (since they will not re-
ceive further points from the stream), and for the false
noisy points to grow into actual microclusters (since
they will be enriched with more points from the stream).
On the contrary, HPStream creates a new cluster when-
ever a point does not �t into the existing clusters and it
deletes the oldest from the previous clusters. So, if the
new point corresponds to noise, a new cluster would be
created and an old (possibly still valid) cluster would be
deleted.

The memory usage is measured by the number
of (micro)clusters maintained by each algorithm. In
Figure 5, the number of (micro)clusters is depicted,
for window size w = 1000 points per time. HPStream
utilizes a constant number of k = 23 clusters over time
(straight blue line), whereas HDDStream adjusts the
number of microclusters to the incoming stream data.

Figure 4: Clustering quality for di�erent window sizes
(Network Intrusion dataset)

There are timepoints where HDDStream utilizes only
a single microcluster to describe the incoming stream.
By an inspection of the original raw data at these
timepoints, we found that they correspond to attacks of
a single type, namely �smurf� attacks and actually they
all are described by the same values. So, it is reasonable
to be summarized by a single microcluster. In the above
results, note that the window size w determines the
number of points received per each timepoint. Due to
the history of the stream though, the actual weight of
the stream at each timepoint is much higher (Recall the
relevant discussion in Section 4.4).

As we can see from this �gure, by monitoring
the number of microclusters over time one can get
useful insights on the network status. In particular, we
might observe di�erent peaks in the network activity
which might correspond to changes in the underlying
connections, e.g. some new kind of attack. Such a peak
might act as an alert for the end user and calls for
closer inspection. This is extremely useful for intrusion
detection systems where the types of attacks are not
known in advance and also, the intruders might test new
attacks and abandon old, already known (and blocked)
intrusion types.

Due to the limitation on the �xed number of clus-
ters, HPStream tries to assign the new instances to
some of the existing clusters or if this is not possi-
ble, to create a new cluster in place of some old one.
For example, at timepoint t = 215, 86 �normal�, 8
�smurf�, 2 �ftp_write� and 104 �nmap� connections ar-
rive (in the scenario of window size w = 200 points
per time). HPStream achieves a purity of 86%, because
it mixes di�erent attack types and normal connections
into the same clusters. For example, in one of the clus-
ters HPStream assigns 8 �smurf�, 1 �ftp_write�, 17 �nor-
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Figure 6: Clustering quality (Forest Cover Type
dataset, window size w = 200)

mal� and 104 �nmap� connections. On the contrary,
HDDStream achieves a purity of 100% w.r.t. the true
class labels of the incoming points.

Forest Cover Type Dataset We also tested the
clustering quality of HPStream and HDDStream on
the Forest Cover Type Dataset. The parameters for
HPStream were set according to [2].The parameters for
HDDStream were set as follows: density threshold for
projected core microclusters µ = 10, density factor for
potential core projected microclusters β = 0.5 , radius
threshold ε = 0.2, maximal projected dimensionality
π = 8, variance threshold δ = 0.01.

In Figure 6, we display the cluster purity during
the whole period of stream execution for window size,
w = 200 points per time. Again, HDDStream achieves
better cluster purity compared to HPStream. In con-
trast to the Network Intrusion Dataset, where there ex-
ist timepoints for which both algorithms achieve a pu-
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Figure 7: Clustering quality for di�erent window sizes
(Forest Cover Type dataset)

rity of 100%, in the Forest Cover Type dataset, no algo-
rithm achieves 100% purity for many time points. This
is due to the characteristics of the datasets. The Net-
work Intrusion Dataset is a rapidly evolving dataset for
which there is usually one dominant class in the stream
over time (either the normal type connections or some
attack type). Contrary to this, in the Forest Cover Type
dataset, instances are arriving from more than one class
at each time point. To this end, for the Forest Cover
Type dataset we measure the average purity achieved
by both algorithms. In Figure 7, we display the average
purity achieved by both algorithms under di�erent win-
dow sizes, varying from w = 200 to w = 3, 000 points
per each timepoint. As we can see, HDDStream out-
performs HPStream for all window sizes.

Regarding the memory usage, the number of (mi-
cro)clusters is depicted in Figure 8 for window size,
w = 200 points per time. HPStream utilizes a con-
stant number of k = 7 clusters over time (straight blue
line), whereas HDDStream adjusts the number of mi-
croclusters to the incoming stream data. At di�erent
time points, the data characteristics are captured by a
di�erent number of microclusters. The increased num-
ber of microclusters in the beginning of the stream ex-
ecution is due to the fact that initially all seven classes
are represented in the incoming data. However, as the
stream proceeds, the number of classes represented by
the incoming instances is reduced. It is di�cult to derive
such kind of insights from HPStream, since the number
of clusters to be discovered is required as an input and
also, it remains constant over time.

6 Conclusions

While the problem of clustering in subspaces of high
dimensional static data and the problem of clustering
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stream data using all dimensions both attracted a
wealth of approaches, the combination of both tasks still
poses a hardly tackled problem.

Here, we proposed a new algorithm, HDDStream,
for projected clustering over high dimensional stream
data. As opposed to existing work, HDDStream fol-
lows the density-based clustering paradigm, hence over-
coming certain drawbacks of partitioning approaches.
The important points in our contribution, contrary to
existing work, are: (i) HDDStream allows noise han-
dling, (ii) HDDStream does not rely on any assump-
tions regarding the number of (micro)clusters and (iii)
HDDStream features interesting possibilities for mon-
itoring the behavior of the data stream in order to de-
tect drastic changes in the population. To this end,
we demonstrated the detection of an attack on network
monitoring data by means of monitoring the number of
microclusters over time. Overall, in our experiments the
clustering quality of HDDStream was superior to the
clustering quality of the canonical competitor.
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