
Distributed Real-Time Detection and Tracking of
Homogeneous Regions in Sensor Networks∗

Sharmila Subramaniam, Vana Kalogeraki
Department of Computer Science and Engineering

University of California, Riverside
{sharmi,vana}@cs.ucr.edu

Themis Palpanas
IBM T.J. Watson Research Center

themis@us.ibm.com

Abstract

In many applications we can deploy large number of sen-
sors spanning wide geographical areas, to monitor environ-
mental phenomena. The analysis of the data collected by
such sensor network can help us to understand the field dy-
namics, and optimize the deployment of other solutions. We
define a group of sensors having similar underlying distri-
bution over a period of time as a homogeneous region. In
this paper we propose distributed algorithms to detect such
regions, approximate their boundary with a piece-wise lin-
ear curve and track the boundary in real-time. Experimen-
tal results show the accuracy and efficiency of our detection
and tracking algorithms.

1. Introduction

Sensor networks are very useful tools for observing en-
vironmental phenomena. Typically, a large number of in-
expensive sensors are deployed in some field to observe
characteristics of interest [28]. Spatial division of the field,
based on the similarity of the observed values, helps us to
understand the physical properties of the observed phenom-
ena. We call such regions in the sensor field, homogeneous
regions. For example, an oil spill detected in the ocean is
a homogeneous region (Figure 1). The sensors deployed
around the origin of the spill can organize themselves into a
network and communicate the measurements, to detect re-
gions of varying oil concentrations.

Recent studies propose methods for delineating homoge-
neous regions by a boundary [7, 27]. However, these stud-
ies assume that the underlying phenomenon measured by
the sensors can be quantified by a user specified predicate
known a priori. For example, these predicates can be of
the form “all sensors observing temperature value > 40 de-

∗This research has been supported by NSF Awards 0330481 and
0627191.

gree”, or “all sensors observing same mean temperature”.
However, in several situations we need a more generalized
grouping of the sensors, based on the sensor measurements
over a time interval.

In this work, we address the problems of detecting and
tracking such homogeneous regions in real-time when the
definition of the phenomenon is not known in advance.
Specifically, the problems we are considering are the fol-
lowing:

Problem 1. (Homogeneous Region Discovery) Given N
sensors monitoring an area of interest, find a group of sen-
sors (corresponding to a region in space) such that the ob-
servations of the sensors belonging to the same group are
similar, and are different from those of other sensors.

Problem 2. (Homogeneous Region Tracking) For a given
region R defined by a set of similar sensors, track its move-
ment over time.

Since we may be dealing with fast moving events or with
time-critical situations, we are required to meet real-time
constraints to enable timely response to the events. In order
to solve these problems, we need to address the following
issues. First, to detect homogeneous regions, we need an
efficient technique to identify sensors with similar readings.
Such a technique has to be robust against spurious readings,
and thus it has to estimate the distribution of several obser-
vations over a time interval. To be efficient it also has to
operate in an online fashion. Second, we need to provide a
formulation that allows us to define and discover homoge-
neous regions that differ from the surrounding area. Third,
during tracking, we require that the user is informed about
the label (i.e., the homogeneous region that the sensor be-
longs to) with minimum delays. Thus, we need an efficient
tracking technique where only the updates of the labels are
transmitted to the sink. Finally, we need to reduce resource
consumption in the system during detection and tracking.
This is essential in sensor networks since they are typically
low-power systems.

0
at time t

Oil spill at
time t

2

Oil spill at
time t

1

Oil Spill
detected

Figure 1. Spread of an oil spill detected in the ocean over
time. Sensors are deployed in the ocean to detect and track
the spread of the spill.

In a typical sensor network, the energy required to trans-
mit data is higher than the energy required to process the
data [29]. Hence it is often preferred to process the data
in-network and communicate only the aggregates or results
[15, 14]. Taking into account the above special character-
istics of sensor networks, the framework we propose for
detecting and tracking homogeneous regions operates in a
distributed fashion. We assume a hierarchical, spatial de-
composition of the field that enables the sensor network to
perform localized processing, and then aggregate the results
while moving up in the hierarchy. The spatial decomposi-
tion also enables real time tracking of the regions by en-
abling localized computation of the region labels. This is
essential for real time tracking since with local label assign-
ment the sensors can suppress transmission of values across
the system to the sink sensor, thereby reducing delay and
energy consumption. In addition, we observe that it suffices
to monitor the movement of the boundary regions, and pro-
pose an algorithm based on a piecewise linear approxima-
tion of the boundary curve that can efficiently detect bound-
ary lines and track their movement in a distributed manner.

The contributions of this work are as follows:

• We address the problem of detecting homogeneous re-
gions by clustering together sensors with similar prob-
ability density functions, and we propose a distributed
approach in order to minimize the energy dissipated
through communication (Section 5).

• We achieve real-time tracking by approximating the
boundary of the homogeneous regions by a piecewise
linear curve, in a distributed manner (Section 6).

• We present experimental results to show the conditions
under which we can detect homogeneous regions with
high accuracy (Section 7).

2. Related Work

The problem of detecting boundaries between regions in
a sensor network is addressed by Nowak and Mitra [27],
and by Chintalapudi and Govindan [7]. Both studies as-
sume that the underlying phenomenon is known a priori.
In the first of these studies, boundary is defined as a delin-
eation between regions of different mean values of sensor
measurements. The method partitions the field to form a
quad-tree structure, and prunes the tree back to get the tree
which minimizes the sum of squared errors. In [7], the true
boundary between the regions is approximated by an edge
of finite thickness. Sensors gather information from their lo-
cal neighborhood in order to decide if they lie on the bound-
ary. Our approach is most similar in spirit with this second
study. However, in our approach, we provide a robust com-
putation of the region by using clustering techniques to dy-
namically find the regions with similar characteristics.

Ali et al. [1] propose an interesting approach to detect
and track discrete phenomena (PDT) in sensor networks. A
phenomena is said to take place in the sensor system when
a set of sensors report similar discrete readings within a
time window. Detecting phenomena with PDT is a central-
ized approach, demanding high energy for communication
of all the measurements from the sensors to a sink. In our
work, we consider a more general problem and we employ
a distributed approach. Hellerstein et al. [16] propose algo-
rithms to partition the sensors into isobars, that is, groups of
neighboring sensors that have approximately equal values
during an epoch. In our case we are partitioning the sen-
sors according to the summary of their values over a time
interval that spans several epochs. Moreover, we make no
a priori decisions as to how to group sensors together based
on their value ranges. Some recent studies propose an ap-
proach using dual space transformations, to track a non lo-
cal phenomenon in sensor systems [21, 22]. This approach
exploits the fact that when a region spreads, only the sensors
at the frontier of the boundary change their region member-
ship. Although this is an interesting approach, it is difficult
to implement it in a distributed fashion to decide which sen-
sors should be observing and which ones can be sleeping.

There is a sizable literature on the problem of tracking
a point-target using a sensor network. An approach using
linear regression and trigonometry methods is described by
Brooks et al. [6]. A binary model for tracking a moving
object in sensor networks is presented by Aslam et al. [2].
Hwang et al. [19] propose techniques for simultaneously
tracking and maintaining identities of multiple targets. Nam
et al. [24] propose a time-parameterized sensing task model
that unlike previous models that assume that the sensing
job’s parameters are fixed at release time, allows the pa-
rameters to be described as time-varying functions. A dis-
tributed, collaborative approach is proposed with the Dy-

a

Leader

(a)

Cell Leader
Sink Node

Level

i

i−1

Level

(b)

Figure 2. (a) Sensor field is divided into square cells of
side a. (b) One of the sensors in the cell is selected as a
leader sensor.

namic Convoy Tree-based Collaboration framework [36].
A cluster based approach for predictive tracking in sensor
networks is proposed in [33]. In the same context, in [32]
a prediction-based energy saving scheme is proposed that
aims at reducing the energy consumption for object track-
ing, under the assumption that the target’s movement re-
mains constant for a certain period of time. In the context
of real-time tracking, He et al. design a tracking framework
that guarantees an end-to-end tracking deadlines [13]. The
above studies describe efficient solutions for the problem of
tracking a mobile object, represented by a single point in
space. However our approach differs because we consider
regions with changing spatial extends.

There is also work on multicast protocols that take into
account spatio-temporal constraints [17, 18]. Finally, tech-
niques have been proposed for clustering sensors that aim
at minimizing the network’s energy consumption [5, 35].

3. Sensor System and Communication Model

We assume a sensor network that consists of a set of sen-
sors (each having a location on a 2-d plane) used to moni-
tor and report observed measurements. When we deal with
very large sensor networks, we have to consider the scala-
bility of the query processing technique with respect to the
size of the network. To that effect, we adopt a hierarchical
organization for the sensor network, similar to the one used
in [34]. The idea is to organize the network using overlap-
ping virtual grids. We define several tiers for the grid with
different levels of granularity, ranging from small local ar-
eas at the lowest tier, to the entire network area at the highest
tier (see Figure 2).

At each cell at the lowest tier of the grid, there is one
leader (or parent) node, that is responsible for processing
the measurements of all the sensors in the cell. Moving up
the hierarchy, the leader node of a cell collects values from

the leader nodes of all its sub-cells in the lower level. The
hierarchical decomposition of the sensor network, as well
as the selection of the leaders for each level of the hierar-
chy, can be achieved using any of the techniques proposed
in the literature [15, 26, 23]. These techniques ensure the
leadership role rotates among the nodes of the network, and
describe protocols that achieve this in an energy efficient
way.

4. Estimating the Distribution of the Data

In this section we present a general framework for iden-
tifying sensors with similar readings. The fundamental idea
is to compute an approximation of the underlying distribu-
tion of the sensor readings, and use this approximation to
estimate how similar the readings of two different sensors
are. Computing an approximation of the probability density
function (PDF) of the readings allows us to efficiently com-
pare the measurements from different sensors and combine
the information from many sensors efficiently, thus mini-
mizing the communication costs required to identify groups
of similar sensors.

Since we are interested in detecting changes in the distri-
bution of the values we consider the values in a sliding win-
dow W . The size of W can be kept small, but sufficient so
that the process is robust in the presence of spurious read-
ings. At each point in time, we want to approximate the
distribution of the data values within the sliding window.
This procedure is illustrated in Figure 3. The figure shows,
for a particular time instance, the sliding window, and the
distribution of the corresponding data.

past future

window

time PDF

Figure 3. Estimation of the data distribution within a slid-
ing window.

Estimating the Probability Density Function: There are
several model estimation techniques that have been pro-
posed in the literature, such as histograms [12], wavelets
[11], kernel density estimators [30], and others. In our
framework, we choose to estimate the distribution of the
values generated by the sensors using Kernel Density Esti-
mators, because of the following desirable properties: (i)
they are efficient to compute and maintain in real-time

in a window streaming environment, (ii) they are non-
parametric and can effectively approximate an unknown
data distribution, (iii) they can easily be combined and (iv)
they scale well in multiple dimensions.

Let M denote the set of measurements whose distribu-
tion we want to approximate, with values in the interval
[0, 1]. (This requirement is not restrictive, since we can map
the domain of the input values to the interval [0, 1].) Let R
be a random sample of M , and k(x) a function, such that∫
[0,1]

k(x)dx = 1, for all tuples in R. We call k(x) the
kernel function. We can now approximate the underlying
distribution f(x), according to which the values in M were
generated, using the following function

f(x) =
1
|T |

∑
ti∈R

k(x − ti). (1)

The choice of the kernel function is not significant for
the results of the approximation [30]. Hence, we choose the
Epanechnikov kernel that is easy to integrate:

k(x) =
{

3
4B

(
1 − (x

B)2
)

, if | x
B | < 1

0 , otherwise
(2)

where B is the bandwidth of the kernel function. In order
to set B, we use Scott’s rule [30]: B =

√
5σ|R|− 1

5 , where
σ is the standard deviation of the values in M .

We use kernel estimators for computing online an ap-
proximation of the data distribution at each sensor. The first
step for creating a kernel estimator for a sliding window W
is to maintain online a random sample of size |R| of the set
of the values in the most recent window W . The other quan-
tity we need for the kernel estimator is the standard devia-
tion σ of the values in the sliding window W . Both of these
operations can be efficiently supported in a data streaming
environment[31].

We use the “chain-sample” algorithm for producing a
uniform random sample of size |R|, of a sliding window
W (with |R| ≤ |W |). The algorithm [3] starts with an ini-
tial random sample, and proceeds as follows. For each point
in the sample, it picks at random the next element from the
data stream that will replace it. The only restriction is that
the new value must replace the old one, before the old one
expires from the sliding window (that is, they should not
be more than N values apart in the stream). The memory
requirement is O(|R|).

The estimate for the standard deviation of the sliding
window is computed using a concise histogram along the
time axis [4]. The estimate of the standard deviation is de-
rived by combining the statistical information stored in all
the buckets of the histogram. The memory required by this
method is O(1

ε2 log|W |), where ε is the maximum relative
error we wish to tolerate in the estimation, and |W | is the
size of the sliding window.

Combining Multiple Estimator Models: This allows us
to take the data distribution models of two different sensors
in the network and construct a single model that describes
the behavior of the data of both sensors. Our kernel estima-
tors can be easily combined, and thus are well suited for our
framework. There are two quantities that we have to com-
bine, the sample set, R, and the bandwidth of the kernel
function, B. We can combine the sample sets just by taking
their union. We may then reduce the size of the resulting set
by re-sampling, if necessary. In order to combine the band-
widths of two kernel functions, we only need to combine
the two standard deviations upon which the bandwidths de-
pend. This is accomplished using the same techniques as
the ones for computing the standard deviation in a sliding
window of streaming data [4].
Comparing Distributions: We now discuss how to com-
pare the distributions of the values of two different sensors.
To do that, we have to quantify the difference between two
distributions. Kullback-Liebler divergence D(p ‖ q) [8], is
a well known and widely used technique, and is defined as
D(p ‖ q) =

∫
y
p(y)(logp(y) − logq(y)) where p(y) and

q(y) are probability distribution functions over y, and y is
drawn from a finite set Y . However, the measure is unde-
fined when p(y) > 0 but q(y) = 0 for some y ∈ Y . The
KL− divergence is therefore not applicable to the density
distributions derived by kernel density estimation method,
because this method may assign probability of zero for re-
gions in the domain of the values. We use a variation of the
KL-divergence, called the Jensen-Shannon divergence [20]
which is defined as follows

JS(p, q) =
1
2

[D(p ‖ avg(p, q)) + D(q ‖ avg(p, q))] (3)

where avg(p, q) is the average distribution (p(y)+q(y))/2.
We estimate the JS-distance between two kernel estima-

tor models p(x) and q(x) as follows. We approximate the
estimated distribution with the values of the function with a
finite set of grid points b1, b2, . . . , bk, where bi+1−bi = bs.
Let Pp(x, y) =

∫ x+y

x−y
p(x)dx (Pq is similar). We approx-

imate the term D(p ‖ avg(p, q)) in Equation 3 as follows
which can be done in O(k|R|) time:

D(p ‖ avg(p, q)) =
∑

i=1...k

Pp(bi, bs/2)×
[
log(Pp(bi, bs/2)) − log(Pp(bi,bs/2)+Pq(bi,bs/2)

2)
]

(4)

5. Distributed Detection of Homogeneous Re-
gions (DDHR)

In this section we describe our technique for identify-
ing homogeneous regions in a sensor field. Let us as-
sume that each sensor si computes the values it observes,

vi, and that there exists a user-specified threshhold δ such
that two sensors are considered similar if JS(vi, vj) ≤ δ.
To solve this problem, we have to cluster the sensors us-
ing the JS-divergence as a distance metric, thus identifying
groups of similar sensors. Let us first consider the brute-
force method where all the sensors transmit their pdf model
to the sink and the sensors are clustered based on their vi,
i = 1, . . . , N . This method demands high amounts of en-
ergy since it requires transmission of the kernel samples and
the bandwidth from each sensor to the sink. Moreover, it in-
curs high latency in transmission due to the large number of
packets sent across the network. We propose a distributed
technique, where we detect homogeneous regions at each
cell in the grid, and then communicate only the summary
information of each cell to the leader in the next higher level
in the network.

The sensors at the lowest level of the communication tree
transmit their model parameters to their leader (as shown in
steps of part (a) in Figure 4). This is followed by the two
processes (Part (b) in Figure 4) described below:

1. Finding local regions within a cell: The leader of a
cell collects the vi from all the other sensors in the cell.
These density functions are then clustered according to
a clustering algorithm with JS-divergence as the distance
measure.

The density estimator models belonging to a cluster are
combined as described in Section 4, and the combined
model is chosen to be the representative of that cluster.
These representative estimator models are the local repre-
sentatives of the homogeneous regions present inside the
cell. These local representatives are then communicated to
the leader at the next higher level. (We will use the term rep-
resentative and representative distribution model synony-
mously.)

2. Finding homogeneous regions in the field: At any
intermediate level of communication, the leader sensor col-
lects local representatives from all the four leaders at its im-
mediate lower level. These representative estimator models
are then clustered. A new set of representative models for
each cluster is transmitted to the leader at the next higher
level (if any). Finally, at the sink, the combined estima-
tor models of each cluster corresponds to one homogeneous
region present in the field. We denote these representative
models as region representatives.

We observe from the above two steps that only a few esti-
mator models are clustered at a leader sensor, both at the cell
level and at any intermediate level. We conducted exper-
iments to compare two different clustering algorithms hi-
erarchical clustering and k-means in our context and found
that the hierarchical clustering approach gives better results.
Therefore, we use hierarchical clustering of the estimator
models to identify the homogeneous region within a cell,
and in the field.

Distributed Detection of homogeneous regions(DDHR)
(a) At sensor j where j is not a cell leader
(vj is the estimated pdf of the values observed at sensor j)
1. CRepsj ← vj

2. Send CRepsj to parent(j)

(b) At sensor i, where i is a cell leader (Ni denotes the
number of clusters obtained at sensor i, by grouping the
cluster representatives from its children. λik denotes
the representative pdf of the kth cluster observed at sensor i)
1. Receive [CRepsm]m∈Children(i)

2. (λi1, λi2, ..., λiNi)← Cluster([CRepsm]m∈Children(i))
3. CRepsi ← (λi1, λi2, ..., λiNi)
4. if i is not the sink
5. Send CRepsi to parent(i)
6. else
7. Regions← CRepsi

Figure 4. Outline of the detection algorithm.

The above steps for region identification are followed by
a label propagation process as described below. Homoge-
neous regions in the sensor field are identified by their rep-
resentative estimator models. Each of these estimator mod-
els i.e. the global representatives, are assigned a unique la-
bel. The labels are then communicated to the individual sen-
sors following the same communication tree, as described
below.

The sink and the leader nodes of each hierarchical level
stores the mapping of the cluster representatives transmit-
ted from the lower level to the cluster representatives (of
the current level) that they are grouped under. The sink
now transmits pairs of (label, representativemodel) to
the children nodes. At any intermediate level, a leader re-
ceives label pair(s) from its parent, assigns labels to its chil-
dren representatives and communicates them to its children.
This is repeated until the cell-leader level is reached. Thus,
at the end of this step, the cell leaders have label(s) corre-
sponding to the field region(s) present in their cell.

For example, let (λs1, λs2, ..., λsNs
) be the cluster rep-

resentatives at the sink. For each k, the sink maintains
a mapping of all the lower-level representatives C ′ ⊂
[CRepsm]m∈Children(sink) grouped under λsk. The sink
communicates (k, λsk) to C ′ (assuming k is the label for
the homogeneous region with representative representative
model λsk.). This process is repeated until the leaf level
sensors and the nodes are assigned labels accordingly.

We observe that there are two types of cells depending
on the number of homogeneous regions their leaders iden-
tify - boundary cells, and interior (homogeneous) cells. This
is illustrated with the highlighted cells in Figure 5(a). If

(a) (b)

Figure 5. (a) Region Detection: Sensors belonging to dif-
ferent regions are shown with different markers. The high-
lighted cells are the boundary-cells consisting of more than
one region. (b) Tracking: The dark nodes are the active
sensors i.e. the nodes within distance α from the estimated
boundary.

we know in advance that the homogeneous regions that we
want to identify are at least δ different from each other,
then we can determine if a cell is a boundary cell in the
initial steps of the algorithm in Figure 4. With hierarchi-
cal clustering algorithm, this is achieved by having a condi-
tion that two clusters should be combined at a stage when
JS(λj , λk) < δ, where λj and λk are the representative
estimator models of the clusters.

If the cell leader has more that one representative model
after this step, it labels itself to be a boundary cell and trans-
mits the representatives models of the local regions to the
leader at the next higher level. If on the other hand, the
step results in only one representative, the cell is assumed
to consist of only one homogeneous region, and the leader
sensor does not communicate the representative model to its
parent. We will refer to this variation of DDHR as DDHR-
SC.

6. Tracking of Homogeneous Regions

In many practical applications involving sensor net-
works, it is necessary to not only detect the homogeneous
regions, but also to track their spread over time. In our prob-
lem setup, the sink determines the homogeneous regions in
the sensor field and identifies the interesting region, for ex-
ample, the region under the influence of the spill, that needs
to be tracked. It then transmits a query to the sensors to
track the spread of this region.

The spread of a region is characterized by some sen-
sors getting added to the region and some others getting
removed. Therefore, it is required that we monitor the dis-
tribution of the observations at the sensors continuously to
determine the regions they belong to. A simple approach
to tracking the spread of a region is to iteratively detect the
regions with the technique discussed in Section 5.

Our approach is to compute the new region labels for the

sensors at the cell level leaders. This approach succeeds in
reducing the latency and energy consumption, by evading
transmission of model parameters to the sink sensor. How-
ever, the power analysis of sensors show that they dissipate
high amount of energy being alive (in mW compared to
µW for sleep), irrespective of whether they are measuring
the environmental phenomena or listening or transmitting.
Thus, we propose the following technique wherein only a
fraction of the sensors continue observing over the tracking
duration.

6.1. Tracking the boundary of the region

In this section, we propose a method to track the re-
gions by approximating the region boundary with a bound-
ary curve and alerting only the sensors that are within a dis-
tance α from the boundary curve to observe. The other sen-
sors switch to sleep mode to conserve energy.
Distributed Detection of Boundary Lines: Once the sen-
sors within the cells are assigned their global region labels
as described in Section 5, the cells that contain multiple ho-
mogeneous regions approximate the boundary between the
homogeneous regions by a line segment. In [7], the authors
employ a classifier based approach ([10]) to examine if a
sensor is located within certain threshold distance from the
boundary line (we will refer to this as LED-ClassifierLine).
In this section, we describe how we adapt the classifier
based method to approximate the boundary of the region
in a distributed way (DDBL). To simplify the discussion,
we assume there are at most two regions in a cell, Region 1
and Region 2, and the classifier in a linear classifier. Let Sg

be the set of sensors in cell g. Let the boundary line be of
the form l(a, b, c) = (ax + by + c = 0). For each sensor i
in Sg , let Fi be defined as

Fi =
{

1 if i belongs to Region 1
−1 if i belongs to Region 2

Classifier score CS(a, b, c) for line l is defined as
CS(a, b, c) = |∑i∈Sg

FiS(axi + byi + c)| where

S(x) =

−1 if x ≤ 0
0 if x = 0
1 if x > 0

and (xi, yi) is the location of sensor i. We consider lmax,
the line with the highest classifier score, as the boundary
line within the cell. When a cell consists of more than two
homogeneous regions, boundary lines between all pairs of
regions can be approximated in a similar way.

Cell Borders as the Boundaries: An additional step is re-
quired in cases where the boundary between regions coin-
cides with the borders of the cells. Two adjacent cells which
are completely inside two different homogeneous regions

will not detect a boundary between them with the above
boundary line detection method. Such boundary lines i.e.,
boundaries lying on the cell borders, are easily identified by
passing a message between the adjacent cells. In a field of
two regions, if a non-boundary cell shares a cell border with
another non-boundary cell, and if both of them have differ-
ent region labels, the common cell border is identified as
the boundary line between the two regions. In a field with
more than two regions, this can be easily extended, where
each region label in a cell is checked against labels of its
adjacent cells.

6.2. Tracking Algorithm

Assuming we have an initial set of estimated region
boundary lines L0 at time t0 in the field, we estimate the
set of boundary lines L1, L2, . . . at the successive times
tτ , t2τ , . . . where τ is the time interval between successive
detections. The time interval τ is the time taken at a sensor
to observe a window W of values i.e., rτ = |W | where r is
the sample rate at the sensors.

Leader sensors of the boundary cells store information
about the boundary lines that are within their cells (or on
the cell borders). Given Li, the number of sensors alive for
estimating Li+1 can be minimized by keeping alive only
those sensors which are within a specified distance α from
any of the lines in Li. For the time duration tiτ to t(i+1)τ ,
we define the following active quantifier:

• Active zone: The area within a cell where for any point
P in the area, Euclidean Distance(P, lke) < α for
some lik ∈ Li, where lik is the kth line in the set Li.
(Note here that lik is the line segments within the cell,
and not a line with infinite length.)

• Active sensor: if it lies within an active zone.

• Active cell: if any of the sensors within the cell is ac-
tive.

Figure 6 illustrates the steps for updating the boundary
information during the time interval tiτ to t(i+1)τ . The ac-
tive sensors continue observing during the time interval, and
obtain a new estimator model of their observations. The
leader sensor of an active cell receives the new estimator
models and relabels the active sensors as shown in Steps
2-4 of the Algorithm (b). The function ClosestRepresenta-
tive is implemented by a simple look up table of distances
from all the region representatives. The corresponding la-
bel of the closest representative is assigned to the sensor
under consideration. When the new labels of a sensor are
different from the labels during the earlier time interval, the
leader sensor transmits this information to the sink.

Once all the sensors are assigned new labels, a new
boundary line within the cell is estimated. If all the sensors

Distributed Tracking of homogeneous regions during
(i + 1)th time step
(a) At an active sensor j where j is not a cell leader
1. vj ← Estimator model measurements during tiτ to t(i+1)τ

2. send vj to parent(j)

(b) At a sensor k where k is the leader of an active cell
1. Receive [vj]j∈Children(k) from active children
2. for each j ∈ Children(k) where j is an active sensor
3. λ = ClosestRepresentative(vj)
4. Labeli+1(j)← RegionLabel(λ)
5. if (Labeli+1(j) �= Labeli(j))
6. transmit Labeli(j) to parent(k)
7. Get new boundary line
8. Alert current active sensors to continue observing and

other sensors to sleep

Figure 6. Outline of the tracking algorithm.

within a cell have same label, the leader sensor communi-
cates (as discussed earlier) with leaders of neighboring cell
to check if any of its border is a boundary line. All member
sensors within a distance α from the boundary line are set
as active sensors and they are alerted to continue observ-
ing over the next time interval. With DDHR-SC, the meth-
ods described for detecting and tracking boundary lines are
modified as follows. (a) The non-boundary cells are not
labeled with the label back propagation step. Therefore,
the boundaries which coincide with the cell borders are de-
tected by comparing the representatives of the straddling
cells, and not by comparing the labels. (b) During track-
ing, the region label pairs [k, λk] are communicated along
with the boundary line information to the neighboring cells.
This enables the neighbor cell to label all the member sen-
sors with the label information received, and alert the active
sensors, if any, to observe.

While the above method conserves energy and reduces
delay in tracking, any new regions (or holes) that evolve dur-
ing the tracking process are not identified and are grouped
with the existing region that is closest in terms of the es-
timator model. A typical example is tracking of oil spills
where the concentration of the spill may decrease with time
when the spill spreads over a wide area. In such a scenario,
the new regions (i.e. the new concentration) are detected by
having the system run the detection algorithm periodically.
The frequency of this is computed based on the availability
of the resources and the requirements of the tracking appli-
cation.

7. Experimental Evaluation

Implementation. We built a simulator to evaluate our
framework, implemented on top of the TAG [25] simula-
tor. Specifically, we use the TAG simulator infrastructure in
order to define the topology of the network and the type of
messages exchanged, to disseminate queries, and to gather
statistics. We also made the necessary modifications to en-
able the hierarchical organization of the nodes in the sensor
network. We build the network hierarchy as described in
Section 3.

Our implementation required 5, 000 lines of Java code.
However, the code that implements our algorithm has very
small footprint. For instance, the kernel density estimation,
detection and tracking module (that is, the code that would
have to run on a sensor to implement our algorithms) re-
quired a total of 200 lines of Java code.

For the experiments, the default value of the number of
sensors is 1000 and they are assumed to be positioned at
random locations in a square field of side 100m. We as-
sume that the field consists of two regions R1 and R2 with
their representatives (distribution functions) as N1 and N2

respectively. The distance between the regions dR1,R2 is
the JS-divergence between the representatives.

We generate measurements at sensors based on the rep-
resentative distribution function of the homogeneous region
they geographically belong to. In our experiments, each
sensor keeps a window of 50 values of the observed feature.

For the experiments, we consider regions of elliptical
(R1 is inside the ellipse and R2 is outside the ellipse) and
linear (R1 and R2 on either side of the line) boundaries.
Accuracy of detecting homogeneous regions: In the first
set of experiments, we evaluate the accuracy of the dis-
tributed detection algorithm (DDHR). We compare the ac-
curacy with a centralized approach based on [9], where
a multi-variate Gaussian model built from the data seen so
far is used for detecting the homogeneous regions. We con-
sider the Gaussian pdf over n sensors, p(X1,X2, ...,Xn).
The pdf is expressed in two parameters: length-n vector of
means, µ and a n × n matrix of covariances, Σ. We detect
the homogeneous groupings of the n sensors as follows.

1. For each pair of sensors (i, j), calculate the prob-
ability of both the sensors having the same mea-
surement, within a confidence limit of ε, as∫ ∞
−∞

∫ xi+ε

xi−ε
p(Xi,Xj)dxjdxi where P (Xi,Xj) is the

density when p(X1,X2, ...,Xn) is marginalized or
projected over sensors Xi and Xj . This probability
is a measure of similarity between the sensors i and j.

2. Cluster the sensors based on this similarity measure.

We refer to the above method as Gaussian-Fit and compare
the performance of DDHR and Gaussian-Fit approaches
based on the metric percentage of mislabeled sensors.

Figures 7(a) and (b) show the percentage of mislabeled
sensors as a function of distance between the two regions
dR1,R2 , for various sample sizes, where the representative
distributions are Gaussians and Zipfian. The accuracy of
DDHR and Gaussian-Fit depends on the number of observa-
tions used to build the pdf estimator. We consider the case
where 50% and 70% of the total measurements observed
are used. It can be seen that as the distance between the
representatives of the regions, dR1,R2 decreases, i.e., as the
regions become less distinguishable, more observations are
required in order to accurately detect the homogeneous re-
gions. For example, with DDHR, to obtain a 95% accuracy
in labeling, we require only 50 observation if the distance
between the regions is greater than 0.0035, whereas 70 ob-
servations are required if the distance between the regions
is 0.003.

The figures also show that, as expected, Gaussian-Fit
performs better than DDHR when the underlying distribu-
tions of the regions are Gaussians. However it fails to detect
the homogeneous regions when the underlying distributions
of the regions are Zipfian.
Communication Overhead: In the next set of experi-
ments we compare the energy consumed for homogeneous
region detection by DDHR and DDHR-SC, compared to
the centralized approach (i.e., all the sensors communi-
cate their estimated density parameters directly to the sink
node). We use a simple energy model where the radio dis-
sipates Eelec = 50nJ/bit to run the transmitter or receiver
circuitry and εamp = 100pJ/bit/m2 for transmission to
achieve an acceptable signal to noise ratio. The sensors
communicate through multi-hop communication.

We vary the sensor density of the field from 0.05
sensors/sq.m. to 0.15 sensors/sq.m to study the scala-
bility of the algorithms with respect to energy consumption.
In the experiments, 50% of the measurements (i.e, 400 bits)
at each sensor are communicated as the kernel sample. The
region boundary is circular with radius 20m and is centered
at (62.5, 62.5).

Figure 7(c) shows the percentage of energy saved with
DDHR and DDHR-SC compared to centralized detection of
homogeneous regions with Gaussian-Fit. Due to the local
clustering at each cell with DDHR, only the representatives
of the clusters are communicated across the network saving
57% to 72% of the total energy dissipated when all the sen-
sors communicate their estimator models to the sink. In the
case where only the boundary cells communicate their es-
timated density (DDHR-SC), we observe savings between
66% to 76%. The figure also illustrates that our detection
algorithm scales well with the increase in sensor density in
the field.

Figure 8 shows the energy consumed for bound-
ary detection with our distributed approach (DDBL) and
with the classifier line approach described in [7] (LED-

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

JS distance between the density functions of the Regions (× 10−3)

P
er

ce
nt

ag
e

of
 M

is
la

be
le

d
S

en
so

rs
DDHR SS=50%
DDHR SS=70%
Gaussian−Fit SS=50%
Gaussian−Fit SS=70%

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

JS distance between the density functions of the Regions (× 10−3)

P
er

ce
nt

ag
e

of
 M

is
la

be
le

d
S

en
so

rs

DDHR SS=50%
DDHR SS=70%
Gaussian−Fit SS=50%
Gaussian−Fit SS=70%

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Sensor density of the field (Sensors/sq. m)

P
er

ce
nt

ag
e

of
 E

ne
rg

y
S

av
in

gs

DDHR−SC
DDHR

(a) (b) (c)

Figure 7. Percentage of mislabeled sensors as a function of the JS distance between the density functions of the two regions,
for various data sample sizes (SS), where (a) the representative distributions are Gaussians (b) the representative distributions are
Zipfian. (c) Energy savings with DDHR and DDHR-SC compared to centralized detection of homogeneous regions.

1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

Ratio of Probing Radius to Tolerance Radius (PR/r)

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

(J
ou

le
s) DDBL

LED − Classifier Line

Figure 8. Energy consumption for boundary line detec-
tion using DDBL and LED-ClassifierLine.

ClassifierLine). The energy consumed in DDBL includes
(a) the energy required for communicating the label infor-
mation between cell leaders and sensors within the cells,
and (b) the energy required for communication across strad-
dling cell leaders to check if the common border is a bound-
ary.

In LED-ClassifierLine, each sensor collects label infor-
mation from all the sensors within a probing radius PR, to
identify if it is within a tolerance radius r from the boundary
line. The accuracy of the method increased with increase in
PR
r . The authors show in [7] that a value of PR

r = 2 yields
boundary detection rate of 90% or better. We assign the
value of r to be equal to the communication range R, as in
[7].

Figure 8 illustrates that DDBL is superior to LED-
ClassifierLine in terms of energy consumption. This is due
to the fact that, in DDBL, the cell leaders collect label infor-
mation from the sensors within the corresponding cells and
determine the boundary line whereas LED-ClassifierLine
involves multiple communication across all the sensors to
detect the boundary.
Delay in Tracking: In the first set of experiments for track-
ing, we evaluated the delays in tracking a region of interest.

We compared the delay incurred while tracking a plume
with the following approaches (i) All-Nodes, where a re-
gion is tracked by continuously querying the system to de-
tect regions, (ii) All-Cells, where the labels are assigned at
cell level, (iii) NC-Observe, where only the sensors in the
boundary cells and their neighbor cells continue observing
and report label updates and (iv) α-Nodes, where we track
the boundary line of the region as described in Section 6.2
(with α = 5).

In the experiments, the default value for the number of
levels in the communication hierarchy is 4 and the com-
munication radius is 30m. Delays are caused due to the
transmission of values from the nodes to their leaders and
the time delay between tracking. Figure 9(a) illustrates the
delays for various values of node density of the field. We
observe that the delay for All-Nodes is 3 to 5 times higher
than that obtained with the other approaches. This is ex-
pected since in the other approaches the new labels are com-
puted locally, reducing the traffic in the system reduces sig-
nificantly when compared to All-Nodes where the estimator
models are transmitted to the sink for computation of the
labels. Figures 9(b) and (c) present the delays for various
values of communication radio range R and the number of
levels in the communication hierarchy (which in turn de-
termines the average number of nodes in a cell). We ob-
serve that localized computation of labels is a very efficient
approach toward reducing the delay during tracking of re-
gions.
Tracking Accuracy: In our next set of experiments we
evaluate the accuracy of our tracking technique in terms of
the percentage of mislabeled sensors during successive time
intervals of tracking. The accuracy in assigning correct la-
bels to the sensors depends on (a) the ratio of the rate of
spread of boundary to α, (b) accuracy of the linear approx-
imation of the boundary between the regions inside cells,
(c) distance between the representatives dR1,R2 and (d) the
shape of the boundary.

We consider regions of dR1,R2 > 0.005 so that the simi-

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

500

1000

1500

2000

2500

3000

Number of Nodes

T
ra

ck
in

g
D

el
ay

 (
m

s)
All Nodes
All Cells
NC−Observe
α −Nodes

10 12 14 16 18 20 22 24 26 28 30
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Radio Range (m)

T
ra

ck
in

g
D

el
ay

 (
m

s)

All Nodes
All Grids
NC−Observe
α −Nodes

2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

7000

Number of Levels

T
ra

ck
in

g
D

el
ay

 (
m

s)

All Nodes
All Cells
NC−Observe
α −Nodes

(a) (b) (c)

Figure 9. Delay in tracking for various values of (a) Number of Nodes (b) Communication Radius and (c) Number of Levels in
the hierarchy.

1 2 3 4 5 6
0

5

10

15

20

25

30

Time

P
er

ce
nt

ag
e

of
 M

is
la

be
le

d
S

en
so

rs

speed = 1.25
speed = 2.50
speed = 3.75
speed = 5.00
speed = 6.25

1 2 3 4 5 6 7
0

5

10

15

20

Time

P
er

ce
nt

ag
e

of
 M

is
la

be
le

d
S

en
so

rs α = 5.0
α = 7.5
α = 10.0
NC−Observe

1 2 3 4 5 6 7
0

10

20

30

40

50

60

Time

P
er

ce
nt

ag
e

of
 S

en
so

rs
 A

liv
e

α=5.0
α=7.5
α=10.0
NC−Observe

(a) (b) (c)

Figure 10. (a) Percentage of mislabeled sensors when varying the plume spreading speed. Tracking a plume ((b) and (c)).

larity between the homogeneous regions does not contribute
to the error. (Refer to Figure 7(a).) Boundary lines within
cells are approximated using the DDBL method described
in Section 6.1.

Figure 10(a) shows the percentage of mislabeled sensors
while tracking a plume centered at (62.5, 62.5), for various
values of the speed (i.e. the rate of spread) of the plume
(results for different plumes are similar, and are omitted for
brevity.) α is kept constant at 5m and the rate of spread of
the plume is varied between 1.25m and 10m per time in-
terval of tracking. We run the experiment until the plume
spreads out of the sensor field. The accuracy of tracking the
plume decreases with increasing plume speed and is less
than 15% when the speed of the plume is less than 5m.
There is a significant increase in the percentage of misla-
beled sensors when the speed increases from 5 to 6.25. This
is due to the fact that when the rate of spread of the plume
is greater than α, the region boundary spreads beyond the
set of live sensors, and thus becomes infeasible to track the
boundary with high accuracy.

Figures 10(b), (c) show the percentage of mislabeled
sensors while tracking the plume for various values of α.
The speed of the plume is kept constant at 5m per time inter-
val of tracking. As the boundary of the plume spreads out of
the field after time instance 7, the experiment is conducted
only till time instance 7. We observe in Figure 10(b) that the
error remains below 17% for α = 5m, 7.5m or 10m. Fig-

ure 10(c) shows the percentage of sensors alive while track-
ing the plume. The figure shows that only a maximum of
33% of the sensors are alive during tracking with α = 10m,
while 52% of the sensors are alive with NC − Observe.

We observe from the experiments that while all localized
computation approaches are efficient in reducing the track-
ing delays, tracking in terms of the boundary of the region,
with only α-nodes being alive, play a significant role in re-
ducing the energy consumption of the system. Moreover
the error due to tracking in terms of the boundary is under
5%, with favorable values for the parameter α. Thus our ap-
proach is efficient in tracking the regions in real time while
reducing the energy consumption of the system.

8. Conclusion

This paper introduces the problem of identifying and
tracking homogeneous regions in a sensor field. We present
distributed techniques for clustering together sensors with
similar observations over a time interval. We estimate the
pdf of the data observed in each sensor and propose a dis-
tributed approach to clustering the pdfs from all the sen-
sors to obtain homogeneous regions, and to efficiently track
their boundaries in real-time. We experimentally evaluate
and validate the performance of our approach.

References

[1] M. H. Ali, M. F. Mokbel, W. G. Aref, and I. Kamel. Detec-
tion and tracking of discrete phenomena in sensor-network
databases. In SSDBM, pages 163–172, Santa Barbara, CA,
2005.

[2] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko,
and D. Rus. Tracking a Moving Object with a Binary Sensor
Network. In SENSYS, Los Angeles, California, USA, Nov
2003.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling From a
Moving Window Over Streaming Data. In SODA, 2002.

[4] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan.
Maintaining Variance And k-medians Over Data Stream
Windows. In PODS, pages 234–243, San Diego, CA, USA,
2003.

[5] S. Bandyopadhyay and E. J. Coyle. An energy efficient hi-
erarchical clustering algorithm for wireless sensor networks.
In INFOCOM, San Fransisco, CA, 2003.

[6] R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target
classification and tracking in sensor networks. Proceedings
of the IEEE, 91(8), Aug. 2003.

[7] K. Chintalapudi and R. Govindan. Localized edge detection
in sensor fields. Ad-hoc Networks Journal, 2003.

[8] T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & sons, 1991.

[9] A. Deshpande, C. Guestrin, and S. Madden. Using proba-
bilistic models for data management in acquisitional envi-
ronments. In CIDR, Asilomar, CA, Jan 2005.

[10] R. O. Duda, P. E. Hart, and D. G. Stork. Patterrn Classifica-
tion. John Wiley and Sons, Inc., 2001.

[11] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing Wavelets on Streams: One-Pass Summaries for Ap-
proximate Aggregate Queries. In VLDB, Rome, Italy, 2001.

[12] S. Guha and N. Koudas. Approximating a Data Stream
for Querying and Estimation: Algorithms and Performance
Evaluation. In ICDE, pages 567–576, San Jose, CA, 2002.

[13] T. He, P. A. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou,
R. Stoleru, Q. Cao, J. A. Stankovic, and T. F. Abdelzaher.
Achieving real-time target tracking using wireless sensor
networks. In IEEE RTAS 2006, San Jose, California, April
2006.

[14] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless sensor
networks with low-level naming. In SOSP, New York, USA,
Oct. 2001.

[15] W. R. Heizelman, A. Chandrakasan, and H. Balakrishnan.
Energy-Efficient Communication Protocol for Wireless Mi-
crosensor Networks. In HICSS, Maui, Hawaii, Jan. 2000.

[16] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Be-
yond average: Toward sophisticated sensing with queries. In
IPSN, pages 63–79, 2003.

[17] Q. Huang, C. Lu, and G.-C. Roman. Mobicast: Just-in-time
multicast for sensor networks under spatiotemporal con-
straints. In IPSN, Apr 2003.

[18] Q. Huang, C. Lu, and G.-C. Roman. Spatiotemporal multi-
cast in sensor networks. In Sensys, Los Angeles, CA, Nov
2003.

[19] I. Hwang, H. Balakrishnan, K. Roy, J. Shin, L. Guibas, and
C. Tomlin. Multiple target tracking and identity manage-
ment. In 2nd IEEE Sensors, pages 36–41, Toronto, Canada,
Oct 2003.

[20] J. Lin. Divergence measures based on the shannon entropy.
IEEE Trans. Infor. Theory, 37:145–151, 1991.

[21] J. Liu, P. Cheung, F. Zhao, and L. Guibas. A dual-space ap-
proach to tracking and sensor management in wireless sen-
sor networks. In WSNA ’02, NY, USA, 2002. ACM Press.

[22] J. Liu, P. Cheung, F. Zhao, and L. Guibas. Apply geometric
duality to energy efficient non-local phenomenon awareness
using sensor networks. In IEEE Wireless Communication
Magazine, special issue on Wireless Sensor Networks: The-
ory and Systems, Dec 2004.

[23] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed
Group Management for Track Initiation and Maintenance
in Target Localization Applications. In 2nd International
Workshop on Information Processing in Sensor Networks
(IPSN), Palo Alto, CA, Apr 2003.

[24] M.-Y.Nam, C.-G. Lee, K. Kim, and M. Caccamo. Time-
parameterized sensing task model for real-time tracking. In
Proc. of IEEE RTSS, Miami, FL, December 2005.

[25] S. Madden, M. J. Franklin, and J. M. Hellerstein. TAG: A
Tiny Aggregation Service for Ad-Hoc Sensor Networks. In
OSDI, Boston, Massachusetts, Dec 2002.

[26] N. Malpani, J. Welch, and N. Vaidya. Leader Election Al-
gorithms for Mobile Ad Hoc Networks. In Proc. Fourth In-
ternational Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, 2000.

[27] R. Nowak and U. Mitra. Boundary estimation in sensor net-
works: Theory and methods. In IPSN, pages 80–95, Palo
Alto, CA, 2003.

[28] G. J. Pottie and W. J. Kaiser. Embedding the internet: Wire-
less integrated network sensors. Communications of the
ACM, 99(7):1–100, January 1999.

[29] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Commun. ACM, (5), 2000.

[30] D. Scott. Multivariate Density Estimation: Theory, Practice
and Visualization. Wiley & Sons, 1992.

[31] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kaloger-
aki, and D. Gunopulos. Online Outlier Detection in Sensor
Data Using Non-Parametric Models. In VLDB, Seoul, Ko-
rea, Sept. 2006.

[32] Y. Xu, J. Winter, and W. Lee. Prediction-based strategies
for energy saving in object tracking sensor networks. In
MDM’04, Berkeley, CA, January 2004.

[33] H. Yand and B. Sikdar. A protocol for tracking mobile tar-
gets using sensor networks. In IEEE International Workshop
on Sensor Networks Protocols and Applications, Palo Alto,
CA, Apr 2003.

[34] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier
Data Dissemination Model for Large-Scale Wireless Sensor
Networks. In MOBICOM, Atlanta, GA, USA, 2002.

[35] O. Younis and S. Fahmy. Distributed clustering in ad-hoc
sensor networks: A hybrid,energy-efficient approach. In
IEEE INFOCOM, Hong Kong, China, Mar. 2004.

[36] W. Zhang and G. Cao. Optimizing tree reconfiguration for
mobile target tracking in sensor networks. In IEEE INFO-
COM, Hong Kong, China, Mar. 2004.

