Similarity Matching for Uncertain Time Series: Analytical and Experimental Comparison

Michele Dallachiesa
University of Trento, Italy
dallachiesa@disi.unitn.it

Besmira Nushi
University of Trento, Italy
besmira.nushi@studenti.unitn.it

Katsiaryna Mirylenka
University of Trento, Italy
kmirylenka@disi.unitn.it

Themis Palpanas
University of Trento, Italy
themis@disi.unitn.eu

ABSTRACT
In the last years there has been a considerable increase in the availability of continuous sensor measurements in a wide range of application domains, such as Location-Based Services (LBS), medical monitoring systems, manufacturing plants and engineering facilities to ensure efficiency, product quality and safety; hydrologic and geologic observing systems, pollution management, and others.

Due to the inherent imprecision of sensor observations, many investigations have recently turned into querying, mining and storing uncertain data. Uncertainty can also be due to data aggregation, privacy-preserving transforms, and error-prone mining algorithms.

In this study, we survey the techniques that have been proposed specifically for modeling and processing uncertain time series, an important model for temporal data. We provide both an analytical evaluation of the alternatives that have been proposed in the literature, highlighting the advantages and disadvantages of each approach. We additionally conduct an extensive experimental evaluation with 17 real datasets, and discuss some surprising results. Based on our evaluations, we also provide guidelines useful for practitioners in the field.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Mining

General Terms
Algorithms, Experimentation

Keywords
Time Series, Uncertain Data, Similarity, Distance Measure

1. INTRODUCTION
In the last decade there has been a dramatic explosion in the availability of measurements in a wide range of application domains, including traffic flow management, meteorology, astronomy, remote sensing, and object tracking. Applications in the above domains usually organize these sequential measurements into time series, i.e., sequences of data points ordered along the temporal dimension, making time series a data type of particular importance.

Several studies have recently focused on the problems of processing and mining time series with incomplete, imprecise and even misleading measurements [6, 12, 20, 21, 22]. Uncertainty in time series may occur for different reasons, such as the inherent imprecision of sensor observations, or privacy-preserving transformations. The following two examples illustrate these two cases:

- Personal information contributed by individuals and corporations is steadily increasing, and there is a parallel growing interest in applications that can be developed by mining these datasets, such as location-based services and social network applications. In these applications, privacy is a major concern, and it can be ensured by different privacy-preserving transforms [2, 10, 14], namely, noisy perturbations, noisy aggregates, and reduced granularity. The data can still be queried and mined but it requires a re-design of the existing methods in order to address the uncertainty introduced by these transforms.

- In manufacturing plants and engineering facilities, sensor networks are being deployed to ensure efficiency, product quality and safety [12]: unexpected vibration patterns in production machines, or changes in the composition of chemicals in industrial processes, are used to identify in advance possible failures, suggesting repairs or replacements. However, sensor readings are inherently imprecise because of the noise introduced by the equipment itself [6]. This translates to time series with uncertain values, and addressing this uncertainty can provide better results in terms of quality and efficiency.

While the problem of managing and processing uncertain data has been studied in the traditional database literature since the 80’s [4], the attention of researchers was only recently focused on the specific case of uncertain time series.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

ACM QeST’11 November 1, 2011, Chicago, IL, USA
Copyright 2011 ACM ISBN 978-1-4503-1037-6 ...$10.00.
Two main approaches have emerged for modeling uncertain time series. In the first, a probability density function (pdf) over the uncertain values is estimated by using some a priori knowledge [21][23][18]. In the second, the uncertain data distribution is summarized by repeated measurements (i.e., samples) [8].

In this study, we revisit the techniques that have been proposed under these two approaches, with the aim of determining their pros and cons. This is the first study to undertake a rigorous comparative evaluation of the techniques proposed in the literature for similarity matching of uncertain time series. The importance of such a study is underlined by two facts: first, the widespread existence of uncertain time series; and second, the observation that similarity matching serves as the basis for developing various more complex analysis and mining algorithms. Therefore, acquiring a deep understanding of the techniques proposed in this area is essential for the further development of the field of uncertain time series processing.

In summary, we make the following contributions.

- We review the state of the art techniques for similarity matching in uncertain time series, and analytically evaluate them. Our analysis serves as a single-stop comparison of the proposed techniques in terms of requirements, input data assumptions, and applicability to different situations.
- We propose a methodology for comparing these techniques, based on the similarity matching task. This methodology provides a common ground for the fair comparison of all the techniques.
- We perform an extensive experimental evaluation, using 17 real datasets from diverse domains. In our experiments, we evaluate the techniques using a multitude of different conditions, and input data characteristics. Moreover, we stress-test the techniques by evaluating their performance on datasets for which they have not been designed to operate.
- Finally, we provide a discussion of the results (some of which are surprising), and complement this discussion with thoughts on interesting research directions, and useful guidelines for the practitioners in the field.

The rest of this paper is structured as follows. In Section 2, we survey the principal representations and distance measures proposed for similarity matching of uncertain time series. In Section 3, we analytically compare the methods proposed for uncertain time series modeling, and in Section 4, we present the experimental comparison. Finally, Section 5 concludes this study.

2. SIMILARITY MATCHING FOR UNCERTAIN TIME SERIES

Time series are sequences of points, typically real valued numbers, ordered along the temporal dimension. We assume constant sampling rates and discrete timestamps. Formally, a time series \(S = (s_1, s_2, \ldots, s_n) \) where \(n \) is the length of \(S \), and \(s_i \) is the real valued number of \(S \) at timestamp \(i \). Where not specified otherwise, we assume normalized time series with zero mean and unit variance. Notice that normalization is a preprocessing step that requires particular care to address specific situations [19].

In this study, we focus on uncertain time series where uncertainty is localized and limited to the points. Formally, an uncertain time series \(T \) is defined as a sequence or independent random variables \(< t_1, t_2, \ldots, t_n > \) where \(t_i \) is the random variable modeling the real valued number at timestamp \(i \). All the three models we review and compare fit under this general definition.

The problem of similarity matching has been extensively studied in the past [1][2][17][16][15][14]. Given a user-supplied query sequence, a similarity search returns the most similar time series according to some distance function. More formally, given a collection of time series \(C = \{S_1, \ldots, S_N\} \), where \(N \) is the number of time series, we are interested in evaluating the range query function \(RQ(Q, C, \epsilon) \):

\[
RQ(Q, C, \epsilon) = \{S \in C \mid \text{distance}(Q, S) \leq \epsilon\}
\]

In the above equation, \(\epsilon \) is a user-supplied distance threshold. A survey of representation and distance measures for time series can be found in [8].

A similar problem arises also in the case of uncertain time series, and the problem of probabilistic similarity matching has been introduced in the last years. Formally, given a collection of uncertain time series \(C = \{T_1, \ldots, T_N\} \), we are interested in evaluating the probabilistic range query function \(PRQ(Q, C, \epsilon, \tau) \):

\[
PRQ(Q, C, \epsilon, \tau) = \{T \mid T \in C \mid \text{Pr(\text{distance}(Q, S) \leq \epsilon)} \geq \tau\}
\]

In the above equation, \(\epsilon \) and \(\tau \) are the user-supplied distance threshold and the probabilistic threshold, respectively.

In the recent years three techniques have been proposed to evaluate \(PRQ \) queries, namely MUNICH [8][1], PROUD [24], and DUST [15]. In the following sections, we discuss each one of these three techniques.

2.1 MUNICH

In [5], uncertainty is modeled by means of repeated observations at each timestamp, as depicted in Figure 1(a). Assuming two uncertain time series, \(X \) and \(Y \), MUNICH proceeds as follows. First, the two uncertain sequences \(X, Y \) are materialized to all possible certain sequences: \(TS_X = \{< v_{i1}, \ldots, v_{i1} >, \ldots, < v_{ij}, \ldots, v_{ij} >\} \) (where \(v_{ij} \) is the \(j \)-th observation in timestamp \(i \)), and similarly for \(Y \) with \(TS_Y \). Thus, we have now defined \(TS_X, TS_Y \). The set of all possible distances between \(X \) and \(Y \) is then defined as follows:

\[
dists(X, Y) = \{L^p(x, y) \mid x \in TS_X, y \in TS_Y\}
\]

The uncertain \(L^p \) distance is formulated by means of counting the feasible distances:

\[
\text{Pr(distance}(X, Y) \leq \epsilon) = \frac{|\{d \in dists(X, Y) \mid |d| \leq \epsilon\}|}{|dists(X, Y)|}
\]

Once we compute this probability, we can determine the result set of \(PRQ \)'s similarity queries by filtering all uncertain sequences using Equation 4. We will refer to this method as MUNICH (it was not explicitly named in the original paper), since all the authors were affiliated with the University of Munich.
Figure 1: Example of an uncertain time series $X = \{x_1, ..., x_n\}$ modeled by means of repeated observations (a), and pdf estimation (b).

Figure 2: The probabilistic distance model.

Note that the naive computation of the result set is infeasible, because of the exponential computational cost: $|\text{dists}(X,Y)| = s_X s_Y$ where s_X, s_Y are the number of samples at each timestamp of X, Y, respectively, and n is the length of the sequences. Efficiency can be ensured by upper and lower bounding the distances, and summarizing the repeated samples using minimal bounding intervals \footnote{[23]}. This framework has been applied to Euclidean and DTW distances and guarantees no false dismissals in the original space.

2.2 PROUD

In \footnote{[23]}, an approach for processing queries over PRObabilistic Uncertain Data streams (PROUD) is presented. Inspired by the Euclidean distance, the PROUD distance is modeled as the sum of the differences of the streaming time series random variables, where each random variable represents the uncertainty of the value in the corresponding timestamp. This model is illustrated in Figure 1(b).

Given two uncertain time series X, Y, their distance is defined as:

$$\text{distance}(X,Y) = \sum_i D_i^2$$ \hspace{1cm} (5)

where $D_i = (x_i - y_i)$ are random variables, as shown in Figure 2.

According to the central limit theorem, we have that the cumulative distribution of the distances approaches a normal distribution:

$$\text{distance}(X,Y)_{\text{norm}} = \frac{\text{distance}(X,Y) - \sum_i E[D_i^2]}{\sqrt{\sum_i \text{Var}[D_i^2]}}$$ \hspace{1cm} (6)

The normalized distance follows a standard normal distribution, thus we can obtain the normal distribution of the original distance as follows:

$$\text{distance}(X,Y) \sim N(\sum_i E[D_i^2], \sum_i \text{Var}[D_i^2])$$ \hspace{1cm} (7)

The interesting result here is that, regardless of the data distribution of the random variables composing the uncertain time series, the cumulative distribution of their distances (1) is defined similarly to their euclidean distance and (2) approaches a normal distribution. Recall that we want to answer PRQs similarity queries. First, given a probability threshold τ and the cumulative distribution function (cdf) of the normal distribution, we compute ϵ_{lim} such that:

$$\Pr(\text{distance}(X,Y)_{\text{norm}} \leq \epsilon_{\text{lim}}) \geq \tau$$ \hspace{1cm} (8)

The cdf of the normal distribution can be formulated in terms of the well known error function, and ϵ_{lim} can be determined by looking up the statistics tables. Once we have ϵ_{lim}, we proceed by computing also the normalized ϵ:

$$\epsilon_{\text{norm}}(X,Y) = \frac{e^2 - E[\text{distance}(X,Y)]}{\sqrt{\text{Var}[\text{distance}(X,Y)]}}$$ \hspace{1cm} (9)

Then, we have that if a candidate uncertain series Y satisfies the inequality:

$$\epsilon_{\text{norm}}(X,Y) \geq \epsilon_{\text{lim}}$$ \hspace{1cm} (10)

then the following equation holds:

$$\Pr(\text{distance}(X,Y)_{\text{norm}} \leq \epsilon_{\text{norm}}(X,Y)) \geq \tau$$ \hspace{1cm} (11)

Therefore, Y can be added to the result set. Otherwise, it is pruned away. This distance formulation is statistically sound and only requires knowledge of the general characteristics of the data distribution, namely, its mean and variance.
2.3 DUST

In [18], the authors propose a new distance measure, DUST, that compared to MUNICH, does not depend on the existence of multiple observations and is computationally more efficient. Similarly to [24], DUST is inspired by the Euclidean distance, but works under the assumption that all the time series values follow some specific distribution. Given two uncertain time series X, Y, the distance between two uncertain values x_i, y_i is defined as the distance between their true (unknown) values $r(x_i), r(y_i)$: $dist(x_i, y_i) = L^1(r(x_i), r(y_i))$. This distance can then be used to define a function ϕ that measures the similarity of two uncertain values:

$$\phi(|x_i - y_i|) = Pr(dist(0, |r(x_i) - r(y_i)|) = 0) \quad (12)$$

This basic similarity function is then used inside the dust dissimilarity function:

$$\text{dust}(x, y) = \sqrt{-\log(\phi(|x - y|)) - k}$$

with

$$k = -\log(\phi(0))$$

The constant k has been introduced to support reflexivity. Once we have defined the dust distance between uncertain values, we are ready to extend it to the entire sequences:

$$\text{DUST}(X, Y) = \sqrt{\sum_i \text{dust}(x_i, y_i)^2} \quad (13)$$

The handling of uncertainty has been isolated inside the ϕ function, and its evaluation requires to know exactly the data distribution. In contrast to the techniques we reviewed earlier, the DUST distance is a real number that measures the dissimilarity between uncertain time series. Thus, it can be used in all mining techniques for certain time series, by simply substituting the existing distance function.

Finally, we note that DUST is equivalent to the Euclidean distance, in the case where the error of the time series values follows the normal distribution.

3. ANALYTICAL COMPARISON

In this section, we compare the three models of similarity matching for uncertain time series, namely, MUNICH, PROUD and DUST, along the following dimensions: uncertainty models used and assumptions made by the algorithms; type of distance measures; and type of similarity queries.

3.1 Uncertainty Models and Assumptions

All three techniques we have reviewed are based on the assumption that the values of the time series are independent from one another. That is, the value at each timestamp is assumed to be independently drawn from a given distribution. Evidently, this is a simplifying assumption, since neighboring values in time series usually have a strong temporal correlation.

The main difference between MUNICH and the other two techniques is that MUNICH represents the uncertainty of the time series values by recording multiple observations for each timestamp. This can be thought of as sampling from the distribution of the value errors. In contrast, PROUD and DUST consider each value of time series to be a continuous random variable following a certain probability distribution.

The amount of preliminary information, i.e. a priori knowledge, of the characteristics of the time series values and their errors, varies greatly among the techniques. MUNICH does not need to know the distribution of the time series values, or the distribution of the value errors. It simply operates on the observations available at each timestamp.

On the other hand, PROUD and DUST, need to know the distribution of the error at each value of the data stream. In particular, PROUD requires to know the standard deviation of the uncertainty error, and a single observed value for each timestamp. PROUD assumes that the standard deviation of the uncertainty error remains constant across all timestamps.

DUST uses the largest amount of information among the three techniques. It takes as input a single observed value of the time series for each timestamp, just like PROUD. In addition, DUST needs to know the distribution of the uncertainty error at each time stamp, as well as the distribution of the values of the time series. This means that, in contrast to PROUD, DUST can take into account mixed distributions for the uncertainty errors (albeit, they have to be explicitly provided in the input).

Overall, we observe that the three techniques make different initial assumptions about the amount of information available for the uncertain time series, and have different input requirements. Consequently, when deciding which technique to use, users should take into account the information available on the uncertainty of the time series to be processed.

3.2 Type of Distance Measures

All the considered techniques use some variation of the Euclidean distance. MUNICH and PROUD use this distance in a pretty straightforward manner. Moreover, MUNICH and DUST can be employed to compute the Dynamic Time Warping distance [19], which is a more flexible distance measure.

DUST is a new type of distance, specifically designed for uncertain time series. In other words, DUST is not a similarity matching technique per se, but rather a new distance measure. It has been shown that DUST is proportional to the Euclidean distance in the cases where the value errors are normally distributed [18]. Moreover, the authors of [18] note that if all the value errors follow the same distribution, then it is better to use the Euclidean distance. DUST becomes useful when the value errors are modeled by multiple error distributions.

3.3 Type of Similarity Queries

MUNICH and PROUD are designed for answering probabilistic range queries (defined in Section 2). DUST being a distance measure, it can be used to answer top-k nearest neighbor queries, or perform top-k motif search.

MUNICH and PROUD solve the similarity matching problem that is described by Equation 8, resulting to a set of time series that belong to the answer with a certain probability, τ. On the other hand, DUST produces a single value that is an exact (i.e., not probabilistic) distance between two uncertain time series.

In Section 4, we describe the methodology we used in order to compare all three techniques using the same task, that of...
similarity matching.

4. EXPERIMENTAL COMPARISON

In this section, we present the experimental evaluation of the three techniques. We first describe the methodology and datasets used, and then discuss the results of the experiments.

All techniques were implemented in C++, and the experiments were run on a PC with a 2.13GHz CPU and 4GB of RAM.

4.1 Experimental Setup

4.1.1 Datasets

Similarly to [5, 24, 18], we used existing time series datasets with exact values as the ground truth, and subsequently introduced uncertainty through perturbation. Perturbation models errors in measurements, and in our experiments we consider uniform, normal and exponential error distributions with zero mean and varying standard deviation within interval [0, 2, 20].

We considered 17 real datasets from the UCR classification datasets collection [1], representing a wide range of time series. For example, assume that we increase \(\epsilon \) (maintaining \(\tau \) fixed). Then the ordering of the time series in a top-k search task may change, since the probability that the time series are similar within distance \(\epsilon_t \geq \epsilon \) may increase. Thus, in the case of uncertain time series, MUNICH and PROUD might produce very different top-k answers even if \(\epsilon \) varies a little. This, in turn, means that the top-k task is not suitable for comparing the three techniques.

We instead perform the comparison using the task of time series similarity matching. Even though DUST is not a similarity matching technique (like PROUD and MUNICH), it can still be used to find similar time series, when we specify a maximum threshold on the distance between time series. In [18], the evaluation of DUST was based on top-k similar time series. However, we note that this problem includes the problem of similarity matching [8], where the most similar time series form the answer to the top-k query.

Following the above discussion, in order to perform a fair comparison we need to specify distance thresholds for all three techniques. This translates to finding equivalent thresholds \(\epsilon \) for each one of the techniques. We proceed as follows.

Since the distances in MUNICH and PROUD are based on the Euclidean distance, we will use the same threshold for both methods, \(\epsilon_{eucl} \). Then, we calculate an equivalent threshold for DUST, \(\epsilon_{dust} \). Given a query \(q \) and a dataset \(C \), we identify the 10th nearest neighbor of \(q \) in \(C \). Let that be time series \(c \). We define \(\epsilon_{eucl} \) as the Euclidean distance on the observations between \(q \) and \(c \) and \(\epsilon_{dust} \) as the DUST distance between \(q \) and \(c \). This procedure is repeated for every query \(q \).

The quality of results of the different techniques is evaluated by comparing the query results to the ground truth. We performed experiments for each dataset separately, using each one of the time series as a query and performing a similarity search. In the graphs, we report the averages of all these results, as well as the 95% confidence intervals.

4.2 Results on Quality Performance

In order to evaluate the quality of the results, we used the two standard measures of recall and precision. Recall is defined as the percentage of the truly similar uncertain time series that are found by the algorithm. Precision is the percentage of similar uncertain time series identified by the algorithm, which are truly similar. Accuracy is measured in terms of F1 score to facilitate the comparison. The F1 score is defined by combining precision and recall:

\[
F_1 = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}
\]

We verify the results with the exact answer using the ground truth, and compare the results with the algorithm output (as described in Section 4.1.2).

4.2.1 Accuracy

The first experiment, represents a special case with restricted settings. This was necessary to do, because the computational cost of MUNICH was prohibitive for a full scale experiment. We compare MUNICH, PROUD, DUST and Euclidean on the GunPoint dataset, truncating it to 60 time series of length 6. For each timestamp, we have 5 samples as input for MUNICH. We performed experiments for each dataset separately, using each one of the time series as a query and performing a similarity search. In the graphs, we report the averages of all these results, as well as the 95% confidence intervals.
creases to 2, the accuracy of all techniques decreases. This is expected, since a larger standard deviation means that the time series have more uncertainty. The behavior of MUNICH though, is interesting: its accuracy falls sharply for $\sigma > 0.6$. (This trend was verified with different error distributions and datasets, but we omit these results for brevity.)

Figure 4 shows the results of the same experiment, but just for PROUD, DUST, and Euclidean. In this case (and for all the following experiments), we report the average results over the full time series for all datasets. Once again, the error distribution is normal (results for uniform and exponential distributions are very similar, and omitted for brevity), and PROUD is using the optimal threshold, τ, for every value of the standard deviation.

The results show that there is virtually no difference among the different techniques. This observation holds across the entire range of standard deviations that we tried.

4.2.2 Precision and Recall

In order to better understand the behavior of the different techniques, we take a closer look at precision and recall. Figures 5 and 6 show respectively precision and recall for PROUD, as a function of the error standard deviation, when the distribution of the error follows a uniform, a normal, and an exponential distribution (results for DUST and Euclidean exhibit the same trends). PROUD is using the optimal threshold, τ, for every value of the standard deviation.

The graphs show that recall always remains relatively high (between 63%-83%). On the contrary, precision is heavily affected, falling from 70% to a mere 16% as standard deviation increases from 0.2 to 2. Therefore, an increased standard deviation does not have a significant impact on the false positives, but introduces many false negatives, which may be undesirable.
privacy techniques is the information that is available about the distribution of the time series and its errors. When we do not have enough, or accurate information on the distribution of the error, PROUD and DUST do not offer an advantage in terms of accuracy when compared to Euclidean. Nevertheless, Euclidean does not provide quality guarantees while MUNICH, PROUD and DUST do.

The probabilistic threshold τ has a considerable impact on the accuracy of the MUNICH and PROUD techniques. However, it not obvious how to set τ, and no theoretical analysis has been provided on that. The only way to pick the correct value is by experimental evaluation, which can sometimes become cumbersome.

Our experiments showed that MUNICH is applicable only in the cases where the standard deviation of the error is relatively small, and the length of the time series is also small (otherwise the computational cost is prohibitive). However, we note that this may not be a restriction for some real applications. Indeed, MUNICH's high accuracy may be a strong point when deciding the technique to use.

In conclusion, we note that the area of uncertain time series processing and analysis is new, with many interesting problems. In this study, we evaluated the state of the art techniques for similarity matching in uncertain time series, because it can be the basis for more complex algorithms. We believe that the results we report and the experience we gained will be useful for the further research investigations in this area.

Acknowledgments: Part of this work was supported by the FP7 EU IP project KAP (grant agreement no. 260111).

6. REFERENCES

Figure 7: F_1 score for PROUD, DUST, and Euclidean on all the datasets with mixed error distribution (normal, 20% with standard deviation 1.0, and 80% with standard deviation 0.4).

