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Abstract. In a variety of settings ranging from recommendation systems to informa-
tion filtering, approaches which take into account feedback have been introduced to
improve services and user experience. However, as also indicated in the machine learn-
ing literature, there exist several settings where the requirements and target concept
of a learning system changes over time, which consists a case of “concept drift”. In
several systems a sliding window over the training instances has been used to follow
drifting concepts. However, no general analytic study has been performed on the rela-
tion between the size of the sliding window and the average performance of a learning
system, since previous works have focused on instantaneous performance and specific
underlying learners and data characteristics.

This work proposes an analytic model that describes the effect of memory window
size on the prediction performance of a learning system that is based on iterative feed-
back. The analysis considers target concepts changing over time, either periodically or
randomly, using a formulation termed “the problem of the demanding lord”. Using a
signal-to-noise approach to sketch learning ability of underlying machine learning al-
gorithms, we estimate the average performance of a learning system regardless of its
underlying algorithm, and, as a corollary, propose a stepping stone towards finding
the memory window that maximizes the average performance for a given drift setting
and a specific modeling system. We experimentally support the proposed methodology
with very promising results on three synthetic and four real datasets, using a variety of
learning algorithms including Support Vector Machines, Naive Bayes, Nearest Neigh-
bor and Decision Trees on classification and regression tasks. The results validate the
analysis and indicate very good estimation performance in different settings.
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1. Introduction

In the literature it has been argued (Webb, Pazzani and Billsus, 2001) that
machine learning methods are not enough to follow changing concepts. This
opinion has been otherwise expressed as the inability of classifiers to detect
changing context (e.g., a user’s preferences), which in turn causes changes to
an observed behavior (or concept) a learning algorithm is trying to learn. This
implied change of context, its effects on classification and the reactions that
tackle the change have been studied in the machine learning and data stream
mining communities as the problem of “concept drift”. Drifting concepts also
appear in a variety of other settings in the real world, e.g., the state of a free
market or the traits of the most viewed movie. Even though there have been
a number of methodologies to either track or react to concept drift, there has
been little analytic work on the connection between (the quality of) learning
and the learning window. Most existing works rely on experimental results and
heuristic rules to determine the window parameter and optimize the learners’
performance.

In contrast, we propose1 a systematic approach that allows us to estimate
the average performance of learning algorithms for a range of learning window
sizes and concept drift frequencies, within a learning task in the presence of
concept drift. This approach will allow practitioners to optimize the average
performance of incremental learning systems; moreover, it provides the basis for
further analytic study of the connection between the average performance of an
incremental learning system and the noise in the training set. The questions we
answer with this study are the following.

– How can we model the expected performance of learning algorithms based
on knowledge of the characteristics of the abrupt concept drift (also termed
“concept shift”), such as the period of occurrence of these drifts?

– How can we estimate the performance of a learner for different window sizes
and concept change frequency, regardless of the underlying learning algorithm?

The case of concept shift is very common is cases such as spam filtering,
user modeling and real-world data prediction. In spam filtering (e.g., see (Liu
and Wang, 2011)), spammers may alter the mechanics of e-mail generation to
avoid detection. This change may be instantaneous and often times, radical.
Another case of shift in spam e-mail is when a filter trained on the preferences of
a user is applied on the mailbox of another user (Fdez-Riverola, Iglesias, Dı́az,
Méndez and Corchado, 2007). In user modeling, two different users may use
a single network address to navigate the Web. A server-side modeling system
should be able to adapt to the sudden change of user interests implied, e.g., for
a case of web page prefetching. Finally, when trying to predict real-word data,
as in market trend prediction, real-life events (e.g., terrorist act, announcement
of international co-operation, tax/loan rate change, etc) can significantly and
radically impact the distribution of observations.

1 A preliminary version of this work can be found in (Giannakopoulos and Palpanas, 2010b).
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We focus on the functional relation between the window size and the av-
erage performance of a learning system in the presence of concept shifts (i.e.,
abrupt change). We formulate this problem under the label of “the problem of
the demanding lord”, to facilitate understanding. Then, we propose a generic
methodology that allows to a-priori estimate a function of the window size that
maximizes average performance of a learning system in the presence of peri-
odic target concept shifts. To realize this methodology we show that one can
approximately express the average performance of a system as a function of
signal-to-noise ratio, referring to the training instances in the memory window.
Then, for a given period of abrupt concept drift (also termed “interest shift”)
with a given implied context (e.g., user), we analytically express the signal-to-
noise ratio at each moment in time as a function of the selected learning window
size. We then illustrate that the methodology is also effective when applied on
real-world cases, where not all theoretic prerequisites are met.

We stress that we do not propose a new learner for concept drift, neither do
we evaluate the performance of learners in the presence of concept drift. Instead,
we propose for the first time a theory for modeling the expected performance of
existing learners in the presence of concept drift, applicable to window optimiza-
tion in partial memory approaches. We chose the window-based approaches as
the basis of this theory, because the context is basic and easily transferrable to
more complex problems, as part of our future work.

In summary, we make the following contributions.

– We propose a formulation and analytic solution for the problem of estimating
the average performance in incremental learning systems for a given context
(e.g., user) in the presence of abrupt concept drift (interest shift).

– We describe a methodology to approximately estimate the performance (ac-
curacy) of a learning algorithm as a function of signal-to-noise in the training
set, regardless of the algorithm idiosyncrasies.

– We experimentally validate the proposed approach, using a wide variety of
learning algorithms for classification and regression tasks, on both synthetic
and real datasets.

In the following sections, we present the related work (Section 2) on concept
drift and we formulate the problem we face within this work (Section 3). We then
describe the proposed analytic methodology that describes the average perfor-
mance of a learning algorithm as a function of its memory window size. Then,
we experimentally validate the analysis (Sections 5, 6) and finally, we conclude
with a discussion of our findings in Section 7.

2. Related Work

There have been several studies with different assumptions on the speed or type
of drift. The drift can be slow (a drift) or instant (a shift) (Tsymbal, 2004).
It can also be caused by a real change of context (real drift) or by the change
on the distribution of arriving instances of the — otherwise fixed distribution
— target class (virtual drift). Drift has also appeared as a function of time
(Widmer and Kubat, 1996), an previous work describes drift which occurs every
50, 100 and 200 instances as moderately quick, slow and very slow, respectively
(Stanley, 2001). The systems and learning algorithms then react in different
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ways to the drift, sometimes using fixed window sizes, adaptive window sizes or
simply non-window-based methods. Algorithms that use windows either exploit
all the available information (full-memory) or only the last given information
(no-memory) (Maloof and Michalski, 1999). All the other cases, where a window
size between one and infinity is chosen, are termed partial-memory approaches.

In an early work (Schlimmer and Granger, 1986), the problem of “concept
attainment” in the presence of noise was indicated and studied in the STAGGER
system. The reaction to concept drift was a backtracking methodology that al-
lows changing the current description of the target concept to account for the
drift. From that time on a multitude of systems have appeared facing the problem
of change in a target learned concept, many of them in the incremental learning
domain, which has been studied since the late 80’s (Angluin, 1988; Reinke and
Michalski, 1988).

In later works, we find approaches where either hard-coded thresholds are
used (Mitchell, Caruana, Freitag, McDermott and Zabowski, 1994), or the win-
dow is adjusted whenever a shift is detected (Crabtree and Soltysiak, 1998). In
order to deal with the drift, in (Widmer and Kubat, 1996), a heuristic algorithm
is described (Window Adjustment Heuristic) that adjusts window size, but the
authors state that the algorithm requires optimization, as its performance affects
the whole system strongly. A heuristic approach to deal with concept drift is also
described in (Klinkenberg and Renz, 1998), where we can also find a study of
fixed and adaptive windows. However, the study is “interested in finding the best
window size for a certain transition period containing the onset of the concept
shift”, while we look for an overall best window as related to average perfor-
mance at the limit of time. In this work we also find the distinction between
“full memory” and “no memory” learner, which are used to compare against the
adaptive window methodology. Gradual forgetting (Koychev and Schwab, 2000)
has also been used.

A more recent approach uses small sequences (batches) of statistically signifi-
cant size to estimate the performance of the classifier over running data (Koychev
and Lothian, 2005). When concept drift is detected, it is handled through a
window-size optimization procedure (Kiefer, 1953): the process considers the
performance of the system to be a unimodal function of the window size and
through a divide-and-conquer algorithm searches for the optimal window size.

An alternative study (Kuncheva and Žliobaitė, 2009) approximates the clas-
sifier error rate after an instantaneous concept shift to estimate a locally optimal
learning window. The classifier error is estimated as a function of the training
window, based on a set of assumptions: the classifier is expected to be paramet-
ric; the theoretic error rate of the classifier is given; classes are equiprobable;
the stream of data is i.i.d. In our work, we require no prior knowledge of the
theoretic learner details or theoretic data distribution. We take into account the
learner as function between input (training) noise levels and expected perfor-
mance, which allows us to experimentally estimate the classifier behavior in the
presence of noise for a given dataset (see Characteristic Transfer Function in
Section 4.1). We overcome the requirement for parametric classifiers, and derive
generic formulas applicable to any distribution of data. Overall, we develop a
new, theoretical basis connecting the average performance of a system (at infin-
ity) to a fixed learning window size, in the presence of concept shift.

Recently, researchers have used “local windows” in sub-parts of models, as
in (Núñez, Fidalgo and Morales, 2007) where an incremental decision tree uses
local sub-concept adaptive window sizes. The approach performs well in handling
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different concept drift speeds, as well as being relatively insensitive to noise
and virtual drift. The notion of local optimization is also applied in the SAIRT
(Fidalgo-Merino and Nunez, 2011) and the FIRT-DD methods (Ikonomovska,
Gama, Sebastião and Gjorgjevik, 2009) to face regression problems under drift.
Another approach uses multiple competing windows of different sizes (Lazarescu,
Venkatesh and Bui, 2004), that try to tackle the problem of differentiating noise
from virtual drift from actual concept drift. The idea is that there are three
windows — small, medium, large — each limited to a different size range. Each
window maps to a level of persistence for any concept drift apparent in incoming
data, so an algorithm can use the best window based on each window’s current
performance.

Other approaches use a window differently or not at all. In (Lam, Mukhopad-
hyay, Mostafa and Palakal, 1996), a two-level probabilistic learning approach is
used: one level for shift detection, one level for user model learning. Shifts are
detected per category of interest. A shift in the interestingness of a category —
detected by the analysis of a window of recent feedback — causes redistribution
of interest probabilities over categories. In (Widyantoro, Ioerger and Yen, 1999)
we find a distinction between short- and long-term changes in user interests for
information filtering in a feedback-based system. However, no window is used in
this case. In (Maloof and Michalski, 1999), the proposed system learns, not based
on the most recent instances, but based on extreme examples and batch learn-
ing. Related work (Maloof and Michalski, 2004) applies the strategy proposed
in (Maloof and Michalski, 1999) as an extension of the AQ11 and GEM online
learning algorithms and offers their “partial memory” counterparts. A boosting-
based, alternative approach (Scholz and Klinkenberg, 2007) uses a set of base
classifiers, using only the last batches of instances to determine dynamically
the training instances per iteration, based on the performance of the classifiers
on the current batch of data. In (Stanley, 2001) a Concept Drift Committee
(CDC) of decision trees vote for the current classification of instances and each
decision tree classifier remains used until its voting record efficiency is reduced
below a given threshold. At that point, a new decision tree replaces the retiring
classifier. This new classifier is trained only from new concepts. The CVFDT
algorithm (Hulten, Spencer and Domingos, 2001) builds upon the VFDT deci-
sion tree learner (Domingos and Hulten, 2000), updating statistics of subtrees
based on a recent window of examples. When needed, new subtrees appear in the
existing tree and replace the old ones that are no longer accurate. The window
size is static, but the authors note that it would be important to dynamically
adjust their size. In another approach (Zhang, Gao, Zhu and Guo, 2011), a Lazy-
Tree (L-Tree) representation is used to keep recent instances for a classification
problem. The number of kept instances per iteration is related to the maximum
allowed instances per tree node, which is a parameter. If the number of instances
in a node of the tree exceeds the maximum, then the oldest node is deleted.
In (Ramon, Driessens and Croonenborghs, 2007), a set of tree operators (e.g.,
split/prune leaf, revise node, prune subtree) are used to update the incremental,
relational, first-order decision tree model. The updates occur when a splitting
criterion (described in a tree node) is redundant or insufficient to desribe the
current context.

A focused study of the mistake rate of a learning algorithm that updates its
estimate based on the most recent examples (Kuh, Petsche and Rivest, 1990)
identifies bounds for this rate, based on the number of recent examples. In this
work, the adaptation to concept drift over time is termed “incremental tracking”.
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In (Helmbold and Long, 1994), the authors study the problem of tracking a
subset of a domain (called the target) which changes gradually over time, under
the assumption that the drift occurs slowly. The work connects the VC-dimension
(d) of the class of possible targets to the difficulty of attaining the target concept,
finally indicating the sampling rate that makes a concept drift trackable.

In this work, we provide, through an analytic framework, a methodology that
provides the basis for efficient optimization of window sizes in online learning.
A major contribution, other than the analysis itself, is based on the proposal
of a signal-to-noise function (see Section 4.1) describing the connection between
noisy input and the performance of a learning algorithm. The estimation of this
function allows one to optimize the window size without explicit knowledge of
the learning algorithm, based on an estimation step that captures the behavior
of any learning algorithm in the presence of noise.

The methodology presented in the next paragraphs holds for both classifi-
cation tasks (e.g., classifying incoming mail (Liu and Wang, 2011)) and regres-
sion tasks (such as modeling user preference (Ahmed, Low, Aly, Josifovski and
Smola, 2011) or estimating stock prices (Dashnyam, Liu, Hsu and Tsai, 2011)).
Furthermore, the learning algorithms supported include all the supervised learn-
ing algorithms, e.g., Naive Bayes, SVMs, Decision Trees, or k-Nearest Neighbor
(see the experimental section, Section 6 for the related experiments), because no
restrictive assumptions are made for the details of the learners.

3. Problem Formulation

We term the problem formulation, the “problem of the demanding lord”. The
idea is that there is a demanding lord that requires a meal every day from his good
servant. The servant tries to estimate a ranking or classification of the meals his
lord likes, based on his reactions to previous meals. Each day the servant offers a
set of meals and gets the full set of reactions from the lord as feedback. The lord,
however, changes his preferences randomly. We want to determine how many of
the lord’s latest answers the servant needs to remember, in order to offer the lord
the most satisfactory meals on average over time. It is important to note that
we allow the servant to have his own way of learning based on his lord’s answers.

The analogy to the actual learning problem is the following:

– The context generating (and causing changes to) the target concept — e.g.,
the user, or the market stakeholders — W is the demanding lord.

– The learning system H is the servant.

– A day identified by its number d, d ∈ N∗, counted from the beginning of the
servant’s arrival, is a system iteration.

– The meal G is the information that has to be evaluated by the learned model.

– The preference A of the lord to a meal is the feedback to the system, concerning
a given meal. We consider this to be a value taken from a set A. We note that
this problem formulation allows application of our method on both regression
and classification problems. In classification problems A is an enumerated set
of classes. In a regression problem on R, A = R. In the case of regression a
total ordering operator (≤) should be imposed, i.e., there are some degrees of
preference.

– The way the servant learns, or training policy P, is the machine learning algo-
rithm or methodology used by the learning system.
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– The number r of the lord’s reactions, which the servant remembers when
training.

– The period of shift Ts is the time of days (iterations) that (are expected to)
pass between two consecutive concept shifts. In the case of random shifts Ts,
can be approximated by the expected value of days between two consecutive
shifts, given a set of existing observations.

We can differentiate servants from their policy of learning P and by the
number of reactions r they take into account.

The finite-memory servant remembers the last r reactions only.

The all-remembering servant remembers all his lord’s reactions. The all-
remembering servant is a special case of the finite-memory servant one with
r →∞.

Therefore, a servant can be described as the pair H ≡< P, r >. The lord can
be described based on the probability distribution p(d) of an occurring shift, over
the days elapsed from the last shift: W ≡< p(d) >. To facilitate the reader, we
provide in Table 1 a synopsis of the notation we use in the following paragraphs.

Example 3.1. Following the above analogy and symbols, consider a user W.
The user uses an e-mail spam filtering system H, based on the Naive Bayes
algorithm P. The spam filter, trying to be somewhat adaptive takes into account
for training the reactions of the user W within the last r = 30 days. Thus,
H =< NaiveBayes, 30 >.

Each e-mail G is labeled as “spam” or “legitimate (ham)” by the system.
Then the user reacts to the label of an e-mail by either agreeing or disagreeing
(A = {agree, disagree}).

50 days after the first use of the system, W becomes ill and is suddenly only
interested in pharmacy related e-mail, which was previously considered “spam”.
This causes a complete, sudden shift in the user’s interests. Another Ts = 50
days later the user has gotten well and his interests shift once again.

We make some assumptions that facilitate the representation of the problem:

– The lord W periodically changes his interests through what we call an interest
shift, or simply shift. This implies that:
p(d) = 1, if d = kTs, k ∈ N∗ else p(d) = 0. Based on Example 3.1, our user’s
p(d) = 1, if d = 50× k, k ∈ Z∗+, otherwise p(d) = 0.

– A shift is radical, so that no information is valid concerning reactions on
the previous sets of meals. This makes sure that we know which part of the
information we have is useful, based on the knowledge of the last interest shift
that has occurred. In our example, when our user becomes ill, he does no
longer care about anything he cared before the illness.

– There is no periodicity in the change of interests, i.e., we cannot predict the
interests of the lord after a shift, based on previous shifts. Every shift can be
considered to be a randomization of interest over meals, independent of the
previous randomizations. This makes sure that all information before the last
shift is useless, i.e., noise. In our example, once the user gets over his illness,
he now gains a completely new set of interests, independent of his original
interests (before the illness).

We stress at this point that, even though we make these strict assumptions, we



8 G. Giannakopoulos et al.

W The context/lord.
H The adaptive system/servant.
r The memory window of the system/servant.
T The training set of the system/servant.
S The valid feedback subset of the training set.
N The no longer valid feedback subset of the training set.
Ts The period of the concept/interest shift.
d The current iteration/day.
ρ The ratio of the window to the period ( r

Ts
).

Ud The preference function related to the context/lord for day d.

Table 1. Notation synopsis

show in Section 6 that the method is applicable even in settings where none of
these assumptions stand.

For a given day d and a set of offered meals

Gd = {G1, G2, G3, ..., Gn}, n > 0

the set of the lord’s reactions on that day is

Ad = {A1, A2, A3, ..., An}

containing the reactions mapped to each one of the n meals. If Ud : Gd → Ad
is the mapping (model) of meals to reactions for a given day, then we define as
signal for day d any < G,A >,G ∈ G, A ∈ A pair where A = Ud(G) and as
noise any other pair < G′, A′ >,G′ ∈ G, A′ ∈ A. In the following paragraphs, for
the sake of simplicity, when we refer to feedback A we imply the < G,A > pair,
unless otherwise noted. A shift on day d implies that Ud−1 ∩ Ud = ∅. If no shift
occurs, then Ud−1 = Ud (inertia of the target concept). Based on Example 3.1,
the user keeps his interests U(G) until the illness comes up. And then again, right
after the illness none of his previous interests stand. Thus, U49(G) 6= U50(G).

In the following elaboration we refer to Figure 2 to visualize the described
states. In Figure 1 we provide the explanation-legend of the corresponding sym-
bols. Each given day dc, the servant H uses the r last feedback sets (see Figure 2)
Adc−r,Adc−r+1, ...,Adc−1 to learn, using his training policy P, to estimate meals.
We call this set of feedback sets the training set T of the servant. In a given point
it time dc the servant is trained using only valid information (the white circles
in Figure 2), if within the last r days, no shift has occurred. Otherwise, if a shift
occurred on day ds, before the current day dc, dc − ds ≤ r, then the servant has
some no longer valid feedback set N ⊂ T (noise, shown as black circles in Figure
2) and some valid S ⊂ T (signal), and T = S∪N. The first interest shift happens
on day d = Ts. We start with this assumption of periodicity, to facilitate the
formulation of the problem. Later (in Sections 6.1.5, 6.4), we demonstrate that
our analysis is also valid for random shift frequency cases.

If |̇| is the operator of the size of a training (sub)set, then we let S = |S| and
N = |N| represent the signal magnitude and the noise magnitude of a training
set T. We also allow S = ∅ ⇒ S = 0,N = T ⇒ N = r, when all the training
set is not valid any longer because a shift has just occurred. Correspondingly,
N = ∅ ⇒ N = 0,S = T⇒ S = r, when no change has occurred within the last r
days (fore more intuition on why this is the case see Figure 2).

Given the above definitions, we define the signal to noise ratio Z of a given
moment in time, as:

Z = ln′S − ln′N (1)
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Fig. 1. Explanation of the symbols in the following illustrations (not a valid
example).

Fig. 2. The validity of training data over time. When the current day is after an
interest shift, all data before the interest shift become invalid (i.e., noise).

where ln′x = ln(1 + x) returns for a given x the natural logarithm of x + 1, to
return a value also for x = 0.

Let us consider that the servant training set size r is a ratio ρ of the shift
period Ts:

r = ρTs (2)

We call this ratio ρ, i.e., the memory window-to-shift period ratio, charac-
teristic ratio of a given servant H. In our example, the ratio ρ = 30

50 = 0.6. For
a given servant, H and a given lord W we support that the servant’s average
performance on predicting the preferences of the lord is a function f(W,H, ρ) or,
equivalently, f(p(d),P, ρ). This means that we consider the performance to be
a function of the shift probability distribution, the learning algorithm and the
characteristic ratio.

4. Concept Drift and Window Size

We perform an analysis of the effect of the memory (window) size of a learner
on its performance, in the presence of concept shift. The analysis is based on
the estimation of a function connecting signal-to-noise in the training set to the
expected performance of a given learner. The estimation process is described in
Section 4.1. Then, given the estimated function, an analysis of the mathematic
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relation between the characteristic ratio of a learner and the signal-to-noise ratio,
for every iteration of a modeling system with periodic concept shifts, allows the
estimation of the average performance of the learning system over time.

The described analysis can be used, in conjunction with concept shift detec-
tion methods (e.g., (Gama, Medas, Castillo and Rodrigues, 2004; Patist, 2007))
or various related shift indicators (see (Klinkenberg and Renz, 1998) for an
overview of indicators) to optimize the ρ parameter, for a given underlying con-
text W and learning algorithm.

4.1. The Characteristic Transfer Function of a Learning
Algorithm

To describe the P component of the predictive function f(p(d),P, ρ), we con-
sider that each learning algorithm is described by a function which indicates
the impact of signal-to-noise ratio in the training set to the performance of the
algorithm. Given that an algorithm has a minimum performance of m and a
maximum performance of M for a given domain, then we argue that the func-
tion that describes the average performance f as a function of the signal-to-noise
ratio Z, is of the form:

f(Z) = m+ (M −m)
1

1 + b× exp(−c× Z)
(3)

where exp(x) = ex and the constants b ∈ R, c ∈ R are parameters of the sigmoid
function. We call the f function the characteristic transfer function (CTF) of
the learning algorithm. In the case where m = 0,M = 1, Equation 3 takes the
form

fN (Z) =
1

1 + b× exp(−c× Z)
(4)

which we call the normal characteristic transfer function (NCTF) and it repre-
sents a normalized version of the CTF.

The intuition behind the sigmoid in Equations 3 and 4 is based on the fact
that a (non-trivial) learning algorithm starts to perform well after a certain
ratio of good to bad examples has been observed. From that moment on, the
performance of the algorithm constantly improves (on average) as the ratio is im-
proved (monotonicity assumption), until the point where the best performance is
reached. Then, no matter how much the ratio of good to bad examples increases,
there is little change, because the algorithm cannot do much better, e.g., due to
its generalization property. We consider the CTF to be characteristic of an al-
gorithm for a given dataset. We expect that the sigmoid can be estimated from
training sets of varying Z and, then, it can be used as a known function for the
given algorithm. We illustrate this property of the function in the experimental
section (Section 6).

In existing literature there have been works that estimate aspects of a learning
algorithms’ performance, e.g., based on the interaction between design (training)
and test instance sets (Fukunaga and Hayes, 1989b), or based on the relation
between number of training samples and features to performance (Fukunaga and
Hayes, 1989a). However, these works do not refer to noisy settings. Other works
measure the generalization ability, e.g., of Support Vector Machines (Joachims,
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2000) or neural network classifiers (Musavi, Chan, Hummels and Kalantri, 1994).
However, these approaches do not deal directly with the presence of noise in the
original data and they do not offer a straight-forward way for estimating the
performance as a function of the signal-to-noise ratio.

We emphasize that we do not make any specific assumption for the underlying
distribution of training instances in the concept space.

The proposed CTF estimation methodology exploits experimental results to
estimate the parameters of the CTF discussed in our analytical study (Section 5).
If a more accurate formula for the CTF is available, then our estimated function
can be simply replaced, without any further consequence to the overall method-
ology of average performance estimation, described in the following sections, as
long as the monotonicity assumption remains in force.

4.2. Average Performance as a Function of Memory Window
to Shift Period Ratio

Given the estimation of the CTF, which describes the P component of the servant,
we need to find the relation between ρ and f(Z). We examine the following cases:

– The short-memory servant, where ρ ≤ 1.

– The long-memory servant, where ρ > 1.

– The infinite-memory servant, where the performance is the limit of the finite-
memory servant performance, when ρ→∞.

4.2.1. The Short-memory Servant (ρ ≤ 1)

For the case where ρ ≤ 1, we can calculate the signal to noise ratio, studying
different key iteration intervals as follows:

– In the beginning d = 0, S = 0, N = 0.

– In the interval 0 < d < Ts, S = min(d, r), N = 0. This happens because the
maximum number of training instances are r i.e.,

S +N = r ⇒ N = r − S (5)

Since everything we know so far is suddenly useless, i.e., noise, if [a]b is the
integer part of the division a

b (integer division operator), it stands that:

d ∈ {d′| [d′]Ts
= 0} ⇒ S = 0, N = r (6)

– The sum of training instances are r at most; also, everything that is not signal,
is necessarily noise. Thus, while d ∈ {d′|d′ > Ts, 0 < [d′]Ts

< Ts} it stands
that

S = min([d]Ts
, r), N = r − S (7)

The function min() is the minimum function.

In Figure 3 we illustrate the case where the characteristic ratio ρ = 1, and Ts = 3.
Since we are interested on the overall average performance, we will only

take into account equations 6, 7. From the above we deduce that S,N are
actually S(d), N(d) functions of the current day. Every day d the Z is: Z(d) =
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Fig. 3. Three consecutive days of a short-memory servant. ρ = 1, Ts = 3.

ln′(S(d))− ln′(r−S(d)) = ln′(S(d))− ln′(ρTs−S(d)). The expected value Z of
Z is:

Z = E(Z) =
∑
i

Ziq(Zi) (8)

where q(Zi) is the probability of occurrence of Zi and Zi, 0 ≤ i < r = ρTs, i ∈ N∗
indicates the possible values of Z.

The possible values of Z, that appear after the first shift, are exactly r = ρTs
in number, since S is an ρTs bounded function of d(modTs) (see Eq. 7). Their
values are:

Zi = ln′(i)− ln′(ρTs − i), 0 ≤ i < ρTs

The possible values of Z before the first shift, indicated as Z1
i , are also exactly

r = ρTs with

Z1
i = ln′(i)− ln′(0), 0 ≤ i < ρTs

because no noise is present. Over the time of several days (i.e., many iterations),
the probability q(Z1

i ) of the Z1
i values tends to zero, because there is only one

occurrence of the value, regardless of the current day. So for day d, the probability
q(Z1

i ) = 1
d , so when d→∞⇒ q(Z1

i )→ 0. In the following analysis, we therefore

ignore th Z1
i values of Z.

A day d can be modeled related to the last shift that occurred. So, if d is k1
days after the last shift, which occurred on day k0Ts, then we can express d as
d = k0Ts + k1. Then, for a chosen, arbitrarily big k0 >> 0, k0 ' k0 + 1

d = k0Ts + k1, k0 >> 0, 0 ≤ k1 < ρTs

i.e., after many shifts, all the values Zi, i 6= ρTs−1 have a probability of approx-
imately

q(Zi) =
k0
k0Ts

⇒

q(Zi) '
1

Ts
(9)
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since they appear k0, or k0 + 1 times (depending on k1) in k0Ts days. For
the value ZρTs−1 ≡ Zmax = ln′(ρTs) − ln′0 (which is a constant) — i.e., the
maximum value of Z — the probability of occurrence of Zmax is what is left
from the probability mass, if you subtract the probabilities of other values:

q(Zmax) = 1−
ρTs−2∑
i=0

q(Zi) = 1− ρTs − 1

Ts
⇒

q(Zmax) = 1− ρ+
1

Ts
(10)

Therefore, Equation 8, gives

Z =
1

Ts

ρTs−2∑
i=0

Zi + (1− ρ+
1

Ts
)Zmax ⇒

Z =
1

Ts

ρTs−2∑
i=0

Zi − (ρ− 1

Ts
− 1)Zmax

Setting

Rtot =

ρTs−1∑
i=0

Zi =

ρTs−2∑
i=0

Zi + Zmax (11)

we get:

Z =
1

Ts
(Rtot − Zmax)− (ρ− 1

Ts
− 1)Zmax ⇒

Z =
Rtot
Ts
− Zmax

Ts
− ρZmax +

Zmax
Ts

+ Zmax ⇒

Z =
Rtot
Ts

+ (1− ρ)Zmax (12)

Example 4.1. Since from Equation 11, Rtot is a function of ρTs, as is Zmax,
then the average performance is a function of the ρ and Ts as well. In other
words, for a given memory size ratio ρ and a given context generating periodic
interest shifts, the expected signal to noise ratio is a constant.

Using the same methodology, we calculate the performance of the system,
using Equation 3. Given the fact that performance f is a strictly monotonic
function of Z, the unique values of f are exactly the same in number, as the
Z possible values. In addition, each value f(Zi) holds the same probability of
appearance as Zi. This means that, similarly to Equation 8, the expected value
of the performance of the system is:

f = E(f(Z)) =

ρTs−1∑
i=0

fiq(fi) (13)

where fi is the i-th possible distinct value of f(Z), with q(fi) ≡ Zi and, given
Equation 3:

fi = m+ (M −m)
1

1 + b× exp(−c× Zi)
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Thus, for f , we have the following equation.

f =

ρTs−1∑
i=0

((
m+ (M −m)

1

1 + b× exp(−c× Zi)

)
q(fi)

)
Performing associatively multiplication, and taking into account the fact that∑ρTs−1
i=0 q(fi) = 1⇒ m

∑ρTs−1
i=0 q(fi) = m, we have:

f = m+ (M −m)

ρTs−1∑
i=0

(
1

1 + b× exp(−c× Zi)
q(fi)

)
=

which, using Equations 9 and 10, gives:

f = m+ (M −m)(
1

Ts

ρTs−2∑
i=0

1

1 + b× exp(−c× Zi)
+

+(1− ρ+
1

Ts
)

1

1 + b× exp(−c× Zmax)
)

which with Equation 4, gives:

f = m+ (M −m)

(
1

Ts

ρTs−2∑
i=0

fN (Zi) + (1− ρ+
1

Ts
)fN (Zmax)

)
(14)

Example 4.2. Maximization of the average performance f of a learning system
with a specific training policy (learning algorithm), given a context with periodic
interest shifts, can be achieved by merely changing the parameter ρ (0 < ρ ≤ 1).

4.2.2. The Long-memory (ρ > 1) and the Infinite-memory (ρ→∞)
Servant

In the case of the long-memory servant (see Figure 4), the main difference is
the fact that the upper bound of the noise N changes for a given W, since from
Equations 6 and 7 the only thing that changes is r = ρTs. After the first shift,
there is no occasion where N = 0 (see the upper part of Figure 4).

The probability mass for Zmax, q(Zmax) = 1
Ts

, since now Zmax appears only
once from a shift to the next. The new Zmax has a value of:

Zmax = ln′(Ts − 1)− ln′((ρ− 1)Ts + 1) (15)

which is upper bounded by ln′Ts, no matter how large ρ is. Thus, the equation
of average performance, when ρ > 1 becomes:

f = m+ (M −m)

(
1

ρTs

ρTs−1∑
i=0

fN (Zi)

)
(16)

The expected signal-to-noise Z is lowered, due to the omnipresent noise N .
The same stands for performance. As ρ→∞, Equation 15 indicates that its value
will be dominated by the effect of noise. This means that the average performance
provided by Equation 16 will indefinitely decrease to asymptotically reach the
minimum value, as ρ→∞ (Infinite-memory servant).



Revisiting the Effect of History on Learning Performance: The Problem of the Demanding Lord15

Fig. 4. The best and worst signal-to-noise ratios of a long-memory servant. ρ =
5
3 , Ts = 3.

To summarize, the expected performance of the system when the charac-
teristic ratio ρ exceeds 1, will deteriorate. A previous case study, performed in
(Giannakopoulos and Palpanas, 2010a), on the relation between regression per-
formance and memory window ratio, appears to validate this assumption. In the
case where the characteristic ratio tends to infinity, the average performance of
the system over time will tend to be minimum, due to the unbounded effect of
noise, over a bound signal remains contribution to the average performance.

4.2.3. Optimization of the Performance

We argue that the optimization of a system, consists of the following process
steps:

– Estimation of the characteristic transfer function for a given learning algorithm
and domain. To attain this aim one needs a set of training instances with
different preference values (i.e., classes or ordered preference values) Ai ∈ A
covering as much as possible A. In this step, the focus is on detecting the
relation between signal, noise and learning algorithm performance.

– Detection of the interest shift period. In our experimentation section (Section
6), we also use the estimated average interest shift period to see whether the
estimation process stands for random interest shifts.

– Optimization of the ρ parameter. We do not elaborate on the optimization
process within this work.

– Building of a classification model, using the calculated window size based on
the optimized ρ.

For the optimization process there are two important considerations. The first
is that the values of the estimated CTF and the true function of performance
should be as linearly correlated as possible. If the correlation is strong, then the
optimization process will give near-optimal results. The second is that, if there is
a requirement for a maximally exact estimation of the average performance, we
need not only a collinear CTF but a CTF with minimum error, as error can be
defined by e.g., the absolute difference between the estimated and actual value
of performance for all possible Z values.

If the above process stands, then all problems that can be expressed through
the problem of the demanding lord can have an a-priori estimation of perfor-
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mance for any given algorithm. The additional effort is to estimate the charac-
teristic transfer function of the learning algorithm and calculate the expected
shift period, which of course may be non-trivial tasks.

We stress that, even on online scenaria, the CTF calculation and the ex-
pected shift period can be obtained by periodic estimation, based on a sample
of data (see also the German Market, Electricity and Chess dataset experiments
in Sections 6.4 and especially Section 6.6). Thus, the learning of the CTF in a
real-setting can be conducted by simply selecting a training subset of the data
and synthetically inserting noise at various levels and various (arbitrary) shift
points. This means that knowledge of the real shift period in the data is not
required beforehand. The experimental results show that the cases with a very
small number of training instances (i.e., S tends to 0 and N tends to 0) do not
adversely affect our approach.

5. Experimental Setup and Considerations

To validate the force of the assumptions we have made, we perform a set of
experiments on different tasks. The first task is a regression-based task, with
a target function representing user interest which is shifted from time to time,
either in a periodic (Section 6.1.4) or a random (Section 6.1.5) fashion. The
second task is a boolean concept attainment task, based on the approach of
the STAGGER system (Schlimmer and Granger, 1986). The third task (Section
6.3) is classification task, based on a moving plane, as described in the SEA
system (Street and Kim, 2001). The next task is applied on a real-world dataset,
concerning the financial environment of Germany over time (Section 6.4), where
some quantifying factors of business environment are mapped to the current state
of the market (which is the drifting concept). Finally, we examine the case where
the data is not available a priori and our method is based on an initial (small)
training sample from the data stream. For this task we use two real datasets
(Elec2 and Chess datasets).

The purpose of the experiments is twofold:

– First, we want to check whether estimation of the characteristic transfer func-
tion (CTF) of an algorithm can be achieved. To do this, for each dataset we
perform a 5-fold (or 10-fold, as indicated) cross-validation for the estimation
process (using as data the outcome of 10-fold classification experiments on the
dataset). We stress that this 5-fold (or 10-fold) process is meant to estimate
the CTF curve and not learn a concept or classify instances. The estimation
training set is used to estimate the CTF, which is in turn validated on the cor-
responding test set. To validate the model we use a linear correlation (Pearson)
test, where a high correlation value with statistical significance will indicate a
good estimator.

– Second, we want to determine whether the analytic estimator of signal-to-noise
converges to the actual average signal-to-noise of the system in the random
shifts case. If this is true, then the analytic estimator can be used for online
optimization of ρ, recalculated after every detected shift.

For each task, we describe the dataset used and the evaluation methodology
for the learning algorithm, we perform the modeling of the CTF for two algo-
rithms and we validate the CTF estimator concerning the mean performance
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Fig. 5. Mean Performance per signal-to-noise ratio (LogSN): Means plot with
standard deviation bars (left) and LOWESS regression plot (right).

(accuracy unless otherwise noted) estimation. Then, we provide the correlation
between the estimation and the real average performance of the system.

Before we proceed with the evaluation, we give an example of a Signal-to-
Noise to Mean Performance graph — drawn from a single test case — in Figure
5. The left figure indicates the average performance per signal to noise, including
also confidence interval bars within a 95% confidence level. Due to the fact that
a signal-to-noise value may appear more or less times, there are estimations of
average performance that are quite uncertain. Thus, to view the overall tendency
of average performance we also use LOWESS regression (Cleveland, 1981) (with
a span parameter of 0.03) to indicate a better estimate of average performance
per signal-to-noise value (right part of Figure 5). The figure illustrates that a
sigmoid underlying function possibly relates Z to performance f . In our experi-
ments, we will try to search for a good-enough sigmoid that describes the average
performance based on signal-to-noise. For the LOWESS regression calculation we
also use Z values that have enough support, i.e., have appeared enough times to
have a standard error below 0.05 for the estimation of their mean performance.

Searching for a Good Sigmoid

Given an equation of sigmoid type (see Equation 3), we need to identify the
parameters that best describe a set of observed data points. In our case, the
data points are measured performance values for given signal-to-noise ratios.

The search in the parameter space is performed by a genetic algorithm
(Goldberg, 1989), searching for an approximate good set of parameters2. The ge-
netic algorithms can maximize a function value by changing a set of parameters
related to that value. They are certain to converge to an optimal solution given
time, but they can also provide sub-optimal good results after a limited time of
iterations. They are most useful when the relation between the parameters and

2 We also applied non-linear regression alternatives for the search, but the methods failed to
converge in some cases and, thus, we were forced to try genetic algorithms.
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the function is non-linear and difficult to study analytically. The definition of
the problem in the genetic algorithm context requires the definition of:

– The genome: a set of parameters that will be changed and combined based on
genetic operators to form candidate solutions. The genome is actually a set of
alleles, the elements of which are mapped one-to-one to the parameters of the
model. Thus, in the sigmoid CTF equation

f(Z) = m+ (M −m)
1

1 + b× exp(−c× Z)

we are searching for good values of m,M, b, c, for which we have used corre-
sponding alleles.

– A fitness function: a function that uses the genome to evaluate how good a
candidate solution is. The Genetic Algorithm aims to maximize the fitness
function. In our case the fitness function is based on the Kolmogorov-Smirnov
(KS) goodness-of-fit D statistic (Massey Jr, 1951). We note that, even though
there are other versions of the KS test with more power (e.g., see (Harter,
Khamis and Lamb, 1984)), in this case we simply use the D statistic as an
indication of fitness, not really using the test significance values.
Consider that we have a set of data points (x, y), where each x indicates a
signal-to-noise ratio and each y the corresponding measured average perfor-
mance for this x. Then, we estimate a second set of points (x, f(x)). We would
like to know whether the distribution of values of y is actually different within
statistical error from the one of f(x).
The Kolmogorov-Smirnov test statistic D is expected to have a low value if two
sets of samples from distributions are more likely to originate from the same
underlying distribution. In fact, it measures the maximum vertical distance
between the Cumulative Distribution Function of a hypothesized underlying
distribution of a set of samples to an ideal distribution. In our experiments,
we try to optimize the parameters of the sigmoid CTF equation, so that the
D value between the y values and f(x) distributions is minimized. This aims
to find a sigmoid that can be used for the best possible approximation of the
average performance and not only for a function correlated to the true CTF,
as we discussed also in Section 4.2.3.

As a result of the above and of the nature of the D statistic, our search for a
good sigmoid is reduced to the search of good enough parameters that minimize
the maximum distance between the point-wise values of the Cumulative Distri-
bution Function of the measured average system performance and the estimated
average system performance for a given set of signal-to-noise values.

To determine whether the sigmoid estimation is indeed a good estimator even
given unseen values of signal-to-noise we perform a five-fold cross-validation of
our sigmoid estimation process. In every fold we use 4

5 of the data points as the
training set and the rest as the test set. The training set is used to determine
the CTF and the test set to determine the collinearity (through a Pearson test)
between the estimation and the real values of the performance with the given
CTF. A high collinearity value indicates that the CTF is a good estimator and
can be used for optimization, where collinearity between the estimated and true
values are of concern. The fact, however, that we search for a maximally similar
function, through the use of the Kolmogorov-Smirnov test, allows even a good
approximation of the actual average performance value.
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Name Type Brief description of data
and task

Source

ENS Synthetic User modeling (regres-
sion) task, using complex
data (string and multi-
dimensional)

(Giannakopoulos and Palpanas, 2010a)

STAGGER Synthetic Boolean concept attainment
(classification)

(Schlimmer and Granger, 1986)

SEA Synthetic Moving plane (classifica-
tion) task.

(Street and Kim, 2001)

German Mar-
ket

Real Market state identification
(classification) task.

(Ifo Institute, 2010)

Elec2 Real Electrical power price (clas-
sification) task.

(Harries and Wales, 1999)

Chess Real Chess game outcome (classi-
fication) task.

(Zliobaite, 2010)

Airline Delay Real Airline delay estimation (re-
gression) task.

(Ikonomovska, Gama and Deroski, 2011)

Table 2. Description of the used datasets and corresponding tasks.

To be able to have robust results when estimating the CTF, as well as when
testing the average performance, we wanted to take into account only values of
Z that have enough support in the data points, which means that the standard
error of the mean estimation is within a small interval (see also Figure 5 for the
problem of mean estimation). Thus, before generating the training and test sets
we make sure that we keep averages that have a standard error of mean below
0.05. As a reminder, the standard error of the mean σµ is measured by

σµ =
σ√
N

where σ is the standard deviation of the samples and N the number of those
samples. We note that the estimation process execution time is in the order of a
few seconds per fold in all the following experiments.

6. Experimental Evaluation

In the following paragraphs we illustrate the results of our experiments on three
synthetic and four real datasets, briefly described in Table 2. We cover the cases
of both periodic and random interest shifts, and we also examine the effectiveness
of our method on data where not all the theoretic assumptions (see Section 3)
hold. We also cover cases where none of the assumptions hold and there is a
limited training subset before the full data become iteratively available (Section
6.6).

We stress that this section aims to validate whether our theoretic findings
are applicable in a variety of settings. The use of this method in a real system
would imply the selection of a specific shift detector, which may seriously affect
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the performance of the system. Thus, we try to remain impartial by considering
optimal shift detection in the following experiments.

6.1. Experiments on the ENS Dataset

For our first dataset, we use the case of an adaptive entity-subscription system
(Giannakopoulos and Palpanas, 2009), which ranks, for each subscriber, infor-
mation chunks based on their importance, as determined by previous feedback
from the same subscriber. Thus, the approach is a feedback-based one. In the
following paragraphs we describe the setting and corresponding task in more
depth.

The dataset is based on the setting of a subscription service of an Entity Name
System (ENS) (Bouquet, Stoermer and Bazzanella, 2008; Palpanas, Chaudhry,
Andritsos and Velegrakis, 2008). The service allows people to get informed about
changes on data items they have subscribed to. The data items are sets of free-
form string key-value pairs, where each set offers information about a real-world
entity, such as a person, a location, etc. These changes are caused by editors of
an open community.

Each subscriber ranks the information received using a qualitative scale based
on importance: unnecessary, useful and critical. The qualitative scale maps to
a quantified interest level: -1.0, which indicates unnecessary information, 1.0,
which indicates useful information and 2.0, which indicates critical information.
The ranking acts as feedback to the system. The system takes into account
both the type of the change on an entity (deletion, update, etc.) but also the
content (e.g. which is the new value of an added attribute), representing all this
change information into vector space (see (Giannakopoulos and Palpanas, 2009)
for more). The system models the preferences of the subscriber as a regression
model on this vector space, based on ε-SVR (Vapnik, 1998).

The dataset is synthetic and has two aspects. The first aspect (Section 6.1.1)
is a set of changes happening to the entities, based on such editor classes, as
malevolent, benevolent and administrator. The second aspect (Section 6.1.2),
which is the one used for the subscriber modeling, is the feedback from users
to the generated changes. From this feedback a learning algorithm tries to esti-
mate the preference function of the subscriber. In the following paragraphs we
elaborate on those aspects. We chose to use this dataset due to its complex but
understandable modeling of preference and performance, that allows for generic
application.

6.1.1. ENS User Behavior Data

As behavior of the editors that change the entities’ data, we generate a number
of changes’ descriptions D — 10000 instances split into sets of 1000 instances
to provide for 10-fold validation. To generate this kind of dataset, we randomly
create changes based on a selection from the following editors behaviors: benev-
olent user changes, system administration changes and malevolent user changes.
The probabilities of emission per editor profile and change type are elaborated
on in Table 3.
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User type (Prob.) Change type Probability

Benevolent (0.95) Attribute change (normal) 0.60
Attribute insertion 0.30
Attribute deletion 0.10

Sys.admin.(0.03) Entity merge 0.45
Entity split 0.45

Entity deletion 0.10

Malevolent (0.02) Attribute change (abnormal) 0.70
Attribute deletion 0.30

Table 3. ENS user behavior: probability distribution of change emission

6.1.2. Entity Subscribers’ Feedback Data

The second part of this dataset consists of subscriber feedback. We consider
a few representative cases of subscribers to minimize the evaluation overhead,
while providing useful insight on the adaptivity of the system:

– a subscriber who is interested in the deletion of attributes, to make sure no
information concerning the entities he has subscribed to are missing. This
scenario is expected to mostly use the type of the change description as a
discriminating factor of importance.

– a subscriber mostly interested in the changes of names entities. This subscriber
scenario is expected to mostly use the content of a change description as a
discriminating factor of importance.

– a subscriber who is interested in whether any entity he has subscribed to has
its “isDeceased” status changed. This scenario aims to represent the difficulty
of users interested in specific attribute values.

– a subscriber who has the role of a validator of data in OKKAM, who wants to
be aware of abnormal changes in default attributes, such as deletion or change
with an abnormal value. This subscriber scenario is expected to use both the
type and the content of a change description as a discriminating factor of
importance.

A more detailed description of what each user finds interesting and critical can
be found in Table 4. All changes not noted within a profile are considered unin-
teresting for the profile. The profiles have been chosen so that they are require
different kinds of information to be determined, concerning either the type or
the content of the change.

Before the evaluation of the learning, we use the learning methodology and
produce corresponding results, also supplying feedback for every step. This pro-
cess is reiterated for every subscriber scenario for the whole set of change data.

6.1.3. Evaluation Methodology for the ENS dataset

To evaluate the learning performance we “emit” changes to the supposed user
— in groups of ten — and measure how well the system adapts to the feedback.
We consider that the user feeds back the system after every new emission, by
indicating the importance of all the items in the last group. We define the Rate
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Subscriber Importance Description

Type-based Critical Attribute deletion.
Interesting Entity deletion.

Attribute
name-based

Critical Any change concerning an attribute that con-
tains the string “name”.

Interesting (None)

Attribute
name-value
pair-based

Critical Attribute change or insertion on “isDeceased”
attribute, with a new value of “true”.

Interesting Attribute change or insertion on “isDeceased”
attribute, with a new value of “false”.

Complex Critical Default attribute (some attributes in the ENS
are considered default — e.g., the name of
a person entity — while all the others non-
default) update or insertion with an abnormal
value.

Interesting Default attribute deletion or normal update.

Table 4. Profile Descriptions. Note: All changes not noted within a profile are
considered uninteresting for the profile.

of Acceptable Errors measure, elaborated below, as an appropriate measure of
performance for the task.

The system performance for a given change emission is set to be the number
of times a ranking error has exceeded 0.5. Given our interest values, errors be-
yond this 0.5 margin may cause an error. Errors below this margin cannot cause
an error by themselves. So the performance is the percentage of the importance
estimation in a given set that have their absolute error below 0.5. Thus, a value of
1.0 in performance indicates a ranking that is ideal, while a value of 0.0 indicates
a ranking that will have several errors. We call this measure Ratio of Acceptable
Errors (RAE) and we use it as an equivalent of the classification accuracy for
a regression problem: acceptable errors are considered good estimates. The for-
mula, for a given set D of change descriptions, their corresponding sequence of
importance estimations Ĩ and actual importance values I, is:

RAE(Ĩ, I0) = 1.0−
∑
i∈(1,...,|I|) bmin(|̃I(i)− I(i)|, 0.5) + 0.5c

|I|
(17)

where Ĩ(i), I(i) is the i-th element of the corresponding sequence, bxc is the floor
operator, |X|, gives the number of elements of a sequence X, |x| is the absolute
value of a number x and min(x, y) is the minimum function.

6.1.4. Estimation of CTF for Regression — Periodic Change

In Table 5 we see the estimation correlation to the actual performance func-
tion. We provide the quantiles of the distribution of results from a 5-fold cross-
validation, as described above. We also calculate the mean correlation over all
folds, which is found in bold in the table. In the table we illustrate the results
for various ρ values and we also perform a run with different Ts to test whether
the method results are overall well, regardless of parameters.

The results indicate clearly that there is a consistently very strong linear
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SVR

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

100 0.50 0.98 0.98 0.98 0.98 0.99 0.99
100 0.85 0.96 0.97 0.97 0.97 0.98 0.98
100 1.00 0.97 0.97 0.98 0.98 0.98 0.99
100 1.15 0.98 0.98 0.99 0.98 0.99 0.99

200 1.00 0.86 0.87 0.88 0.89 0.89 0.94

Linear Regression

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

100 0.50 0.80 0.89 0.96 0.92 0.97 0.98
100 0.85 0.79 0.84 0.86 0.87 0.91 0.97
100 1.00 0.85 0.85 0.87 0.88 0.88 0.96
100 1.15 0.83 0.84 0.89 0.90 0.95 0.98

Table 5. Periodic Shift: Pearson Correlation between performance through CTF
estimation and actual performance values.Note: All correlations are with a p-
value of << 0.01.

correlation between the estimation of the performance for every Signal-to-Noise
and the actual data performance. All the results are within the 99% confidence
level (p-value which is << 0.01). Thus, we conclude that the sigmoid estimation
process can determine an approximation function that predicts successfully the
relation between Z and f .

It is important to note that the estimation process is effective, irrespective
of different learning methodologies (namely Support Vector Regression using a
radial basis kernel vs. simple linear regression).

6.1.5. Estimation of CTF for Regression — Random Change

To further examine whether our estimation process stands, we checked the case
of random period of interest shift. In this case the shift can take place at any
point between Ts ± (0.5 × Ts) (uniform sampling). The process returns more
possible Z values. We note, as we can see in Table 6, that the consistently strong
correlation still stands, regardless of the underlying learning method.

We found, through experiments that the CTF may be better expressed by
the (equivalent) form:

f(Z) = m+ (M −m)
1

1 + b× exp(−c× (Z − d))
(18)

This form adds a parameter d indicative of the horizontal position shift. This
addition merely helps the estimation algorithm to determine the parameters of
the sigmoid.

In the following experiments we have added the d parameter. The use of
the d parameter allowed over 0.4 improvement in the Pearson correlation value
between the estimation of the CTF and the actual data points.
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SVR

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

100 0.50 0.98 0.98 0.99 0.99 0.99 0.99
100 0.85 0.96 0.98 0.98 0.98 0.98 0.99
100 1.00 0.96 0.97 0.98 0.98 0.98 0.99
100 1.15 0.96 0.98 0.98 0.98 0.98 0.99

200 1.00 0.92 0.96 0.97 0.96 0.98 0.98

Linear Regression

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

100 0.50 0.78 0.85 0.95 0.90 0.96 0.97
100 0.85 0.72 0.86 0.92 0.87 0.92 0.94
100 1.00 0.86 0.87 0.93 0.92 0.97 0.99
100 1.15 0.82 0.83 0.94 0.90 0.95 0.96

Table 6. Random Shift: Pearson Correlation between performance through CTF
estimation and actual performance values. Note: All correlations are with a p-
value of << 0.01.

6.2. Experiments on the Boolean Concept Dataset

The second dataset we use is based on the STAGGER method evaluation dataset
(Schlimmer and Granger, 1986), which is traditionally used in the concept drift
domain. The experiment is performed as follows. The problem is a problem of
classifying 100 randomly generated instances per iteration as either belonging to
the current iteration’s target concept or not. The instances are objects described
based on three dimensions: size, which can be small, medium or large; color,
which is either red, green, or blue; shape, which is either square, circular, or
rectangular. In the beginning of the task, the set of 120 training instances is
generated randomly from the possible variations of objects. Each instance is
labeled according to the following rules:

– In iterations 1–40 only small, red objects are considered to belong to the target
concept.

– In iterations 41–80 objects that are either green or circular are considered to
belong to the target concept.

– In iterations 81–120 objects that are either medium or large are considered to
belong to the target concept.

In every iteration i the training algorithm has access to the first i training
instances. On that same iteration, the testing is performed on 100 randomly
generated instances, which are labeled according to the current target concept.
That is, for the test data, on every iteration the labeling is coherent with the
current target concept.

The results on this dataset, shown in Table 7, indicate the consistently high
correlation of the estimation to the true performance.
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Naive Bayes

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

40 0.50 0.89 0.94 0.95 0.94 0.95 0.96
40 0.85 0.87 0.88 0.89 0.90 0.89 0.95
40 1.00 0.97 0.97 0.98 0.98 0.98 0.98
40 1.15 0.88 0.90 0.90 0.91 0.90 0.96

J48 Decision Tree

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

40 0.50 0.83 0.86 0.96 0.92 0.96 0.97
40 0.85 0.84 0.87 0.88 0.89 0.91 0.95
40 1.00 0.92 0.95 0.97 0.96 0.98 0.98
40 1.15 0.88 0.91 0.91 0.92 0.93 0.96

Table 7. STAGGER Dataset: Correlation in 10-fold cross-validation between
performance through CTF estimation and actual performance values. Note: All
correlations are with a p-value below 0.05.

6.3. Experiments on the Moving Plane dataset: The SEA
Concept Drift Dataset

The third synthetic dataset we use comes from the Streaming Ensemble Algo-
rithm (SEA) (Street and Kim, 2001) (variations of this dataset have been used
in several papers, e.g., (Wang, Fan, Yu and Han, 2003)). This dataset is cre-
ated as follows. 50000 Random training points are created in a 3-dimensional
space, using three features < f1, f2, f3 >, fi ∈ R. The points are divided into
four blocks. In each block, a data point belongs to (is labeled as) “class 1”, if
f1 + f2 ≤ θ, where θ is assigned values 8, 7, 9, 9.5 correspondingly to the blocks.
10% class noise is further inserted in each block of data. Then, 10000 instances
are generated as test instances. These instances are not labeled yet.

To evaluate the performance of a system over time, we use a 500-instance step
on each iteration. The system uses a window of recent (previous) instances and
tries to learn the concept of “class 1”. The evaluation is performed on the test
instances on every iteration. These instances are correctly assigned labels based
on which the current block is (and the corresponding θ value) per iteration.

The results of 5-fold cross validation on this dataset, shown in Table 8, indi-
cate the consistently high correlation of the estimation to the actual performance.
The results we show were extracted from a Support Vector Machine Classifier
and a Naive Bayes Classifier. Similar results were extracted using a Decision Tree
and a Nearest Neighbor classifer.

6.4. Experiments on Real Datasets

In this section we examine whether the CTF can be adequately well estimated,
based on real world datasets. We use two ways to estimate the CTF. First, we
use the whole dataset (using the German Market dataset). Then, we also try to
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Naive Bayes

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

12500 0.40 0.83 0.90 0.92 0.91 0.93 0.96
12500 0.80 0.71 0.86 0.87 0.85 0.90 0.92
12500 1.00 0.87 0.88 0.89 0.90 0.91 0.96
12500 1.04 0.69 0.73 0.87 0.82 0.88 0.91

SVM

Setting Correlation Quantiles

Ts ρ Min 1st Q. Median Mean 3rd Q. Max

12500 0.40 0.78 0.84 0.84 0.85 0.90 0.90
12500 0.80 0.70 0.74 0.80 0.80 0.85 0.90
12500 1.00 0.76 0.81 0.84 0.84 0.86 0.93
12500 1.04 0.66 0.83 0.89 0.85 0.92 0.94

Table 8. SEA Dataset: Correlation in 10-fold cross-validation between perfor-
mance through CTF estimation and actual performance values. Note: All corre-
lations are with a p-value below 0.01.

estimate the CTF using few instances from a long set of instances (the Electricity
dataset).

6.4.1. The German Market Dataset

The first real world dataset we use is based on the Ifo Business Survey, which
describes some aspects of the business climate in Germany (Ifo Institute, 2010).
The data are based on questionnaires filled in by more than 7000 participating
members, indicating the view of the companies on business climate, current busi-
ness situation and business outlook. The dataset contains one record per month
from January, 1991 to February, 2010 (230 records). Each record contains six
measurements representing the balance values and the index values of the busi-
ness situation, the business outlook and the business climate. The balance value
of the current business situation is the difference in percentage of the responses
“good” and “poor” in the questionnaires; the balance value of the business out-
look (expectations) is the difference in percentage shares of the responses “more
favorable” and “more unfavorable”. The business climate is a transformed (actu-
ally, geometric) mean of the balances of the business situation and the business
expectations. The data also includes corresponding index values, normalizing the
balances to the average of the year 2000 (which is mapped to the index value 100).
Based on the signs of the balances the study classifies the state of the market as
“boom”, “downswing”, “recession”, “upswing” (also see Table 9). We note that
this dataset functions as a “stress test” of our methodology: the dataset contains
very few records. From the theoretical point of view, such analysis provides some
insight on the minimum amount of data necessary for the method to function.
From the application point of view, there exist settings where the sampling rate
can be low (e.g., when social studies are required to get the data, as is the case
for the German Market Data). Furthermore, there is a question of whether our
method performs well when really few instances are present (e.g., during the
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Situation Negative Situation Positive

Expectations Positive Upswing Boom

Expectations Negative Recession Downswing

Table 9. The state of the market as related to business situation and business
expectations balance signs.

SVM

Setting Correlation Quantiles

Ts ρ(r) Min 1st Q. Median Mean 3rd Q. Max

8.46 0.59 (5) 0.82 0.87 0.95 0.91 0.95 0.96
8.64 1.04 (9) 0.91 0.91 0.93 0.93 0.96 0.96
8.48 3.75 (30) 0.90 0.91 0.95 0.94 0.96 0.97

NN

Setting Correlation Quantiles

Ts ρ(r) Min 1st Q. Median Mean 3rd Q. Max

8.46 0.59 (5) 0.84 0.87 0.91 0.90 0.93 0.93
8.64 1.04 (9) 0.89 0.91 0.91 0.92 0.93 0.98
8.48 3.75 (30) 0.96 0.97 0.97 0.97 0.98 0.99

Table 10. German Market Dataset: Correlation (5-fold validation) between per-
formance through CTF estimation and actual performance values.

early phases of data collection). This dataset allows us to examine whether and
how the presented approach can be applied in such extreme settings.

We consider that a system tries to learn the characteristics of the current
state of the market. Thus, if the market in iteration d is in state “Upswing”,
the system considers that the last few iterations (within its training window)
model this state. The system then tries to predict whether the market in the
next iteration is the same state, based on its features. This implies that every
change in the dataset from one class to another (e.g., “Upswing” to “Boom”) in
consecutive iterations is a shift point.

This dataset caused a problem for the evaluation of the CTF estimation, due
to the fact that 5-fold cross-validation was not possible. This was caused by the
few iterations and the few samples for different values of Z, which caused some
folds to lack testing set, if the weakly supported Z values were ignored.

To avoid this pitfall we have applied evaluation using the 5x2cv method(Dietterich,
1998) guidelines. The idea is that we perform 5 times 2-fold cross validation and
each time the data of each fold are picked randomly from the original dataset.
Based on this method, each time we learn the CTF based on only 115 samples
and we evaluate the CTF on the remaining 115 samples. For the evaluation, we
measure the correlation of the estimated performance for the Z values in the test
set to the actual performance in the test set. The results of the evaluation are
illustrated in Table 10 and indicate very high correlation between the estimated
and the true performance value for a given Z.
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6.4.2. The Chess Dataset

The Chess dataset (Zliobaite, 2010) consists of 533 instances, obtained from
chess.com portal. According to the document describing the dataset “the data
consists of game records of one player over a period from 2007 December to
2010 March. A player has a rating, which changes depending on his/her results
achieved (the higher is the rating, the stronger is the player). A player is devel-
oping skills over time, besides engages into different types of tournaments and
competitions. The rating and the type of game determine how the system selects
an opponent. This is where the concept drift is expected. The task is to predict
if the player will win or lose based on the setting. There is natural problem of
delayed labelling, the winner is known only after the game is finished. In turn
based chess one game might last even for several months”.

The dataset contains the following attributes: the Outcome (lost, won, or
draw) which is used as the instance label; Moves (the number of moves until the
end of the game); White/black (the color of the pieces for the player); Current
rating; Oponent’s rating; Type (type of the game: personal, tournament, cham-
pionship); Speed (days allowed per move); Start date. The data were sorted by
start date, but otherwise the date attribute itself was ignored for the classifica-
tion problem. About 37% of the instances were losses, 57% were wins and the
remaining 6% were draws.

For this dataset we selected the first 50 samples (less than 10% of the whole
set) to estimate the CTF. The average shift frequency in the dataset is extremely
low: every 2.20 iterations we have a shift of the current state (label). The es-
timated average period within the first 50 instances is 2.11, which is used in
the CTF estimation. This essentially means that there are too few points to
fully regenerate a sigmoid representative of the corresponding algorithm for a
whole range of Z values. On the other hand, we do not need to construct such
a detailed CTF, since the levels of noise in this specific dataset are within the
observed limits.

The results, when estimating the CTF for linear SVM — based on the Lib-
LINEAR library (Fan, Chang, Hsieh, Wang and Lin, 2008) — and Voted Per-
ceptron (Freund and Schapire, 1999), are still good (average correlation well over
0.75). We omit these results for brevity, since they do not offer new findings.

6.4.3. The Electricity Dataset

The Electricity market dataset was first described (as Elec2) by Harries (Harries
and Wales, 1999). It contains 45312 instances, drawn from May 7, 1996 to Decem-
ber 8, 1998, with each instance mapped to a half-hour interval. The class label
indicate whether the price of electricity was increased or decreased, as related
to a moving average of the last 24 hours. As in previous works (Baena-Garćıa,

del Campo-Ávila, Fidalgo, Bifet, Gavaldà and Morales-Bueno, 2006), we have
considered this problem as trying to predict the label of the class attribute for
the next 30 minutes.

The estimation of the CTF was performed, using only the first 1000 instances
(about 2% of the whole set of instances). The average period of this sample was
7.11 iterations, while the true (over the whole dataset) was 6.82.

In Table 11 we illustrate that the Pearson correlation between the estimated
and true performance of the NN and JRip algorithms on the Electricity dataset
is high.
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NN

Setting Correlation Quantiles

Ts ρ(r) Min 1st Q. Median Mean 3rd Q. Max

7.11 0.71 (5) 0.75 0.77 0.78 0.80 0.82 0.88

JRip

Setting Correlation Quantiles

Ts ρ(r) Min 1st Q. Median Mean 3rd Q. Max

7.11 0.71 (5) 0.61 0.77 0.90 0.83 0.91 0.93

Table 11. Electricity Dataset: Correlation (10-fold validation) between perfor-
mance through CTF estimation and actual performance values for first 1000
instances.

6.4.4. The Airline Delay Dataset

The Airline Delay Dataset contains flight arrival and departure details for all the
commercial flights within the USA, from October 1987 to April 2008, provided
in the Data Expo competition of 2009. The dataset contains around 120 million
records. We used a version (from Elena Ikonomovska) whcih has been cleaned and
records were sorted according to the arrival/departure date (year, month, and
day) and time of flight. From this dataset we used the records of flights from 1988
that involved the Washington Dulles Internation airport (airport code: IAD).
There records were 100.161, containing information related to the departure and
the arrival of a flight (time and location), total distance, and the airline.

In order to define when concept drift occurs in the dataset we performed
clustering over the whole set of instances. We used k-means clustering, with 5
clusters (k=5). The idea is that the clustering can detect underlying concepts in
the instance space. Thus, we can use the information of the cluster succession in
our iterative learning to determine whether a concept shift has occurred (simi-
larly to the STAGGER dataset). The average period of shift detected was 3.13
iterations. Therefore we used the values ρ ∈ {3, 6, 12} to perform CTF estimation
using the 5x2foldCV method (to avoid problems with under-represented Z val-
ues).The CTF estimation aimed at the rule-based M5P regression method(Wang
and Witten, 1996) and a “decision tree”-based method(Kohavi, 1995), as they
have been implemented in the WEKA platform(Hall, Frank, Holmes, Pfahringer,
Reutemann and Witten, 2009, v. 2.7.4).

In this setting, we chose to use the Mean Absolute Error (MAE) as an in-
dicator of performance. Thus, we provide an example of application when the
performance measure is unbounded and, in this case, an error estimate. The
higher the Mean Absolute Error of the regression estimation, the worse the esti-
mation is. In order to provide a performance measure that would increase when
the performance is better, and ideally within the [0, 1] interval, we represented
the system performance as a function of MAE:

f(MAE) = 1.0− exp(−MAE),MAE ≥ 1 (19)

In our experiments each iteration we used the 100 last instances as training and
estimated the next delay value. The results, shown in Table 12 indicate that the
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Decision Tree

Setting Correlation Quantiles

Ts ρ(r) Min 1st Q. Median Mean 3rd Q. Max

3.13 0.96 (3) 0.67 0.68 0.79 0.78 0.83 0.92

3.13 1.92 (6) 0.70 0.77 0.77 0.78 0.81 0.87
3.13 3.83 (12) 0.74 0.81 0.85 0.83 0.87 0.89

Rule-based M5P

Setting Correlation Quantiles

Ts ρ(r) Min 1st Q. Median Mean 3rd Q. Max

3.13 0.96 (3) 0.50 0.51 0.54 0.62 0.71 0.84

3.13 1.92 (6) 0.65 0.75 0.85 0.81 0.87 0.93
3.13 3.83 (12) 0.74 0.78 0.81 0.80 0.81 0.84

Table 12. Airline Delay Dataset: Correlation quantiles between performance
through CTF estimation and actual performance values.

CTF is a good approximation of the relation of Z to performance. We notice that
for values for low ρ the correlation is not extremely (especially in the M5P case).
This is caused by the fact taht the period Ts is very low: for low ρ the range
of possible Z values is minimal (3-4 values). Thus, there exist few samples to
measure correlation between true and estimated performance values. For higher
ρ values, this problem is mitigated.

6.5. Convergence between estimated and real average
performance

In this section we study whether the estimated and real average performance of
a demanding lord system (DLS), converge over time. We perform an estimation
of the sigmoid as indicated before and we keep the best performing estimation
function (in terms of collinearity to the actual performance). Using this CTF we
follow a system over time recalculating on every iteration:

– the average period of the shift. The calculation is essentially performed when
a shift is indicated. In our scenaria we know when the shift occurs, however in
a real world application a detection method would need to be applied.

– the estimated performance, based on the sigmoid and the formula of estimation
of the average performance.

– the actual performance, based on the feedback.

Given the above information we plot graphs indicating the relation between
iteration and absolute difference between the estimation and the actual value
(absolute error). We call this absolute difference the delta of performance. To
determine whether this delta is reduced over time, indicating convergence, we
measure the Spearman and the Pearson correlations, indicating rank and linear
correlation correspondingly between iteration and delta. If their values are neg-
ative (ideally strongly negative), this would indicate that the absolute error is



Revisiting the Effect of History on Learning Performance: The Problem of the Demanding Lord31

Synthetic dataset: ENS Dataset - 6000 iterations

Setting Spearman Pearson

Regression 100-50 -0.663204 -0.4264592
Regression 100-100 -0.9421365 -0.5005253
Regression 100-150 0.6391099 -0.1948143

Synthetic dataset: Boolean Concept Dataset - 6000 Iterations

Setting Spearman Pearson

Bayes 40-20 -0.3022561 0.-0.272744
Bayes 40-40 -0.9611965 -0.482552
Bayes 40-60 0.8951005 0.3195209

Real dataset: Business Climate - 212 Iterations

Setting Spearman Pearson

SVM Random-5 -0.1777558 -0.3815536
SVM Random-9 -0.3168430 -0.4193718
SVM Random-15 -0.1914687 -0.3843884

Table 13. Correlation of iteration number and delta (10-fold Validation)

reduced over time. The system takes into account on every iteration the average
period, based on the shifts so far, in the case of the real dataset, where there is
no fixed period for the shift.

We perform 10-fold validation (10 experiment runs), also augmenting the
number of iterations during which we examine the system, for the synthetic
datasets. For example, for the Boolean Concept (STAGGER) dataset, we ex-
panded the iterations to 6000. For the convergence checking we used only two
out of three synthetic datasets (STAGGER and ENS), covering the cases of
classification and regression3. The results are illustrated in Table 13. We also
provide figures for the different ρ values (ρ < 1, ρ = 1,ρ > 1) for each dataset:
ENS Dataset, Figure 6; Boolean Concept dataset, Figure 7 ; Business Climate
dataset, Figure 8. The vertical axis of the figures corresponds to the delta, while
the horizontal axis to the iteration number. The dashed line indicates the linear
tendency (linear regression line) of the delta over iterations.

We see that, even though when ρ ≤ 1 the performance estimation converges,
this does not stand when ρ gets higher values. This comes to validate the fact
that the estimation cannot be optimal when either of the two following problems
appear.

– If there is periodicity in the drift (see also Section 3) and ρ > 1 then we may
mistake signal for noise.

– The CTF estimated in collinear to but not a precise approximation of the real
CTF.

In the cases where the estimation does not converge both problems appear. This
is also clear for the Airline Delay Dataset, in Figure 9.

On the other hand, it is very interesting that the system does well even in
the case of the random shift (e.g., Business climate dataset, in Figure 8), even

3 The results of the SEA dataset are similar to those of the STAGGER dataset.
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(a) ρ < 1 (b) ρ = 1

(c) ρ > 1

Fig. 6. ENS Dataset: Convergence (10-fold validation) of the average delta.
Dashed line: linear regression line fitting the observations.

though it shows that complete randomness in the shift period causes jumps in
the value of delta at several points in time.

6.6. Other real datasets — Limited Training

In this section we provide the delta curves for the Electricity Dataset (Figure 10
for NN, Figure 11 for Naive Bayes) and the curves for the Chess Dataset (Figure
12 for the Linear SVM, Figure 13 for the Voted Perceptron). We describe these
results separately from the previous dataset due to a methodological change: the
datasets were processed in a streaming fashion, i.e., in one pass. Thus, we have
used the CTF and average period times as they were estimated from a few, early
instances (see Sections 6.4.2, 6.4.3). This corresponds to the real-case scenario,
where not all data are available a priori.

In Figures 10, 11, 12, 13, we examine the different cases of ρ. We note that
for these experiments the theoretic prerequisites we discuss in our study do not
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(a) ρ < 1 (b) ρ = 1

(c) ρ > 1

Fig. 7. Boolean Concept Dataset: Convergence (10-fold validation) of the average
delta. Dashed line: linear regression line fitting the observations.

hold. However, the estimation process does converges over time (though, not
always to zero). The absolute error is on average around 0.05, and in some cases
as low as 0.01 (cf. all cases of Figure 12). This indicates that the estimation of
average performance can still be precise, even if the theoretic prerequisites do not
hold. It would be interesting to theoretically study the impact of removing each
prerequisite to the error bounds of the model estimations. We also see, in Figure
13, that the speed of the delta convergence does not appear to be collinear to ρ
— i.e., increasing or decreasing ρ does not guarantee a better estimate. Finally,
we note that the first few estimation values may bias the correlation of error and
time strongly, as we can see in Figures 13a, 13c.

In order to test whether the estimation of the shift period Ts is critical to
the performance of the system, we tested whether providing wrong Ts hinders
the estimation of the CTF. The CTF is estimated without apparent problems
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(a) ρ < 1 (b) ρ = 1

(c) ρ > 1

Fig. 8. Business Climate Dataset: Convergence (10-fold validation) of the average
delta. Dashed line: linear regression line fitting the observations.

(correlation is high). However, we map wrong Z values (which are calculcated
based on the period) to performance values. This essentially means that the CTF
is not a good estimate: it either over- or under-estimates the relation between Z
and performance. Since the CTF does not map the true values to Z values, the
estimation error is increased. In a real, difficult scenario (we used the Electricity
dataset case, with the Nearest Neighbor algorithm) where the minimum and
maximum performance values range from 0.40 to 0.60, changing the period up
to almost 2 orders of magnitude (from 7.11 to 240) caused an error increase from
0.05 to 0.07 (40% increase) to the average performance estimation. Given the
fact that the possible performance variation is 0.20, this is not a negligible loss
of estimation accuracy. In a case where the range of the CTF is broad (i.e., the
gap between the classifier optimal and worst performance in a dataset is big) the
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(a) ρ < 1 (b) ρ = 1

(c) ρ > 1

Fig. 9. Airline Delay Dataset: Convergence of the average delta for the Decision
Tree algorithm. Dashed line: linear regression line fitting the observations.

expected degradation of the results would be much higher. Thus, the impact of
the period estimation error is connected to the CTF value range and increases
as the period estimation error increases.

7. Discussion and Conclusions

Summarizing what we have seen in the course of this study, we have shown that
one can estimate a characteristic transfer function, connecting signal-to-noise
in the training set of a learning algorithm to the average performance of the
algorithm. Given this CTF, one can use a closed-form estimation function for
the average performance of a learning system after infinite time, in the presence
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(a) ρ < 1 (b) ρ ≈ 1

(c) ρ > 1

Fig. 10. Electricity Dataset: Convergence of the delta for Nearest Neighbor. Black
curve: Sample-based period estimation; Dashed line: linear regression line fitting
the observations.

of concept shifts. Even in cases where not all the assumptions of our closed-form
estimator stand, e.g., when we know just the average value for the period of
change, the system still provides a good estimate of performance as a function
of the “memory window”-to-“shift period” ratio. This means that, on a partial
memory online learning system, we can estimate a good memory window for a
given series of instances. We can even closely predict the average performance,
if the CTF estimation is good and our memory window is not bigger than the
average concept shift period.

What we also noted in our experiments is that theD value of the Kolmogorov-
Smirnov test we used in our search for a good sigmoid CTF and the corresponding
confidence interval are highly related to the accuracy of the estimator. This leads
us to consider, in the future, how one can define bounds in the estimation error,
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(a) ρ < 1 (b) ρ ≈ 1

(c) ρ > 1

Fig. 11. Electricity Dataset: Convergence of the delta for Naive Bayes. Black
curve: Sample-based period estimation; Dashed line: linear regression line fitting
the observations.

given D, or such measures as the chi-square statistic between the estimated and
actual CTF sample values.

The analysis we have performed offers a basis that allows further investiga-
tion of the learning algorithms from a signal-to-noise-response perspective. For
a given dataset, calculating a good CTF allows for the estimation of perfor-
mance, without exhaustive experiments. Furthermore, in cases where we know
the distribution of signal-to-noise we expect to find in a dataset, we can estimate
the average performance of a system by finding a weighted average of the CTF
values. We also plan to apply the optimization steps, described in Section 4.2.3
and measure the performance of such a system against state-of-the-art methods
of learning in the presence of concept drift. Our method would be interesting
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(a) ρ = 0.95 (b) ρ = 1.90

(c) ρ = 3.80 (d) ρ = 7.60

Fig. 12. Chess Dataset: Convergence of the delta for LibLINEAR. Black curve:
Delta over time (iterations); Dashed line: linear regression line fitting the obser-
vations.

to apply on ensemble methods, possibly optimizing individual learners’ memory
windows.

Taking a different point of view, there is the question of what aspects of
an algorithm the CTF parameters describe. For example, the d parameter may
indicate stability in the presence of noise. Other questions that arise are the
following. Is there always a collapse point and what does this imply for an algo-
rithm? Can one determine dataset-independent parameters that will allow the
classification of learning algorithms based on their behavior in the presence of
noise? And does the presented methodology stand also for the case of sequential
learning? These appear to be promising next steps of the research described in
this study and constitute part of our future work.



Revisiting the Effect of History on Learning Performance: The Problem of the Demanding Lord39

(a) ρ = 0.95 (b) ρ = 1.90

(c) ρ = 3.80 (d) ρ = 7.60

Fig. 13. Chess Dataset: Convergence of the delta for Voted Perceptron. Black
curve: Delta over time (iterations); Dashed line: linear regression line fitting the
observations.
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