
Eliminating the Redundancy in
Blocking-based Entity Resolution Methods

George Papadakis$,], Ekaterini Ioannou^,
Claudia Niederée], Themis Palpanas‡, and Wolfgang Nejdl]

$ National Technical University of Athens, Greece gpapadis@mail.ntua.gr
^ Technical University of Crete, Greece ioannou@softnet.tuc.gr

] L3S Research Center, Germany {surname}@L3S.de
‡ University of Trento, Italy themis@disi.unitn.eu

ABSTRACT
Entity resolution is the task of identifying entities that refer to the
same real-world object. It has important applications in the con-
text of digital libraries, such as citation matching and author disam-
biguation. Blocking is an established methodology for efficiently
addressing this problem; it clusters similar entities together, and
compares solely entities inside each cluster. In order to effectively
deal with the current large, noisy and heterogeneous data collec-
tions, novel blocking methods that rely on redundancy have been
introduced: they associate each entity with multiple blocks in order
to increase recall, thus increasing the computational cost, as well.

In this paper, we introduce novel techniques that remove the
superfluous comparisons from any redundancy-based blocking
method. They improve the time-efficiency of the latter without
any impact on the end result. We present the optimal solution to
this problem that discards all redundant comparisons at the cost
of quadratic space complexity. For applications with space limita-
tions, we also present an alternative, lightweight solution that oper-
ates at the abstract level of blocks in order to discard a significant
part of the redundant comparisons. We evaluate our techniques on
two large, real-world data sets and verify the significant improve-
ments they convey when integrated into existing blocking methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering

General Terms
Algorithms, Experimentation, Performance

Keywords
Data Cleaning, Entity Resolution, Redundancy-based Blocking

1. INTRODUCTION
Nowadays, the growing availability of semi-structured and struc-

tured data in the Web of Data opens new opportunities for digital
libraries. These data collections can clearly profit from a variety of
digital library principles and technologies, such as the systematic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’11, June 13–17, 2011, Ottawa, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0744-4/11/06 ...$10.00.

and uniform description of data by metadata, metadata harvest-
ing services and technologies for federated search. Furthermore,
they can be exploited to create new types of services by combin-
ing them with traditional types of library content. The integration
of related data in meaningful ways relies on the detection of data
records (from different collections) that refer to the same object,
e.g., author.

The process of identifying, among a set of entities, those refer-
ring to the same real-world object is called Entity Resolution (ER).
There are two main applications of this process in digital libraries:
citation matching for identifying references that describe the same
publication, and author disambiguation for identifying author pro-
files that pertain to the same person [9, 10, 25, 27]. The latter con-
sists of detecting - within a collection of bibliographical records -
the correct coupling between author names and persons, by resolv-
ing the mixed citation problem (same name - different persons) and
the split citation problem (same person - different names) [14].

At its core, ER constitutes a quadratic problem, as each entity has
to be compared with all others. To enhance its efficiency, blocking
methods are typically employed [6, 11, 15]; they extract from every
entity profile (or record) a Blocking Key Value (BKV) that encap-
sulates its most distinguishing information and define blocks on the
equality (or similarity) of BKVs. Thus, each block corresponds to
a specific instance of the BKV and contains all entities associated
with that value.

However, in order to select the most reliable and distinguishing
attributes of the given entity profiles, traditional blocking methods
rely on a predefined entity schema. This renders them inapplica-
ble for the Web of Data, due to the special characteristics of the
latter: it involves individual collections that are highly heteroge-
neous, stemming from a rich diversity of sources, which evolve
autonomously, following an unprecedented growth rate (especially
the user-generated data of the Social Web, and the data created by
sensors). More specifically, the following challenges are present in
these settings:
Loose schema binding. The schemata describing entities may

range from locally defined attributes to pure tag-style anno-
tations, and data often have no strict binding to the employed
schemata.

Noisy, missing, and inconsistent values. They are introduced in
the data due to extraction errors, sources of low quality, and
use of alternative descriptions. As a result, entity profiles
may contain deficient, or even false information.

Extreme levels of heterogeneity. This is caused by the fact that
data stem from a variety of distributed, self-organized, col-
laborative sources. Actually, heterogeneity pertains not only
to schemata describing the same entity types, but also to
profiles describing the same entity. For instance, Google

Base1 encompasses 100, 000 distinct schemata correspond-
ing to 10, 000 entity types [16].

High growth rates in terms of volume and fast evolution. This
is caused partly due to automatic generation and partly due
to the high involvement of users: they typically add new
content, and update incorrect, outdated, or simply irrelevant
information.

These inherent characteristics of heterogeneous information
spaces break the fundamental assumptions of traditional blocking
techniques. Novel blocking schemes, that do not require a prede-
fined schema, have been introduced to effectively deal with these
challenges. They all rely on redundancy, associating each entity
with multiple blocks [3, 20, 21, 28]. In this way, they minimize
the likelihood that two duplicate entities have no block in common,
and achieve high levels of effectiveness (i.e., detected duplicate en-
tities). This comes, though, at the cost of time efficiency: the re-
sulting blocks are overlapping, and the same pairs of entities may
be compared multiple times. Therefore, the main challenge for im-
proving the efficiency of redundancy-based blocking methods is to
eliminate the superfluous comparisons they entail, without affect-
ing their accuracy.

In this paper, we address the above problem through an abstrac-
tion of the redundancy-based blocking techniques: blocks are asso-
ciated with an index indicating their position in the processing list
and entities are associated with a list of the indices of the blocks
that contain it. Thus, we can identify whether a pair of entities con-
tained in the current block has already been compared in another
block simply by comparing their least common block index with
the index of the current block. In this way, we achieve the optimal
solution to the problem, since we efficiently propagate all executed
comparisons, without explicitly storing them.

The above approach has low computational cost, but results in
quadratic space complexity. In order to remedy this drawback,
we introduce a method that approximates the optimal solution by
gracefully trading space for computational cost. It comprises of
a series of block manipulation techniques, which discard those
blocks that exclusively entail superfluous comparisons (i.e., they
are entirely contained in another block), and merge pairs of highly
overlapping blocks, giving birth to blocks that entail less compar-
isons. These functionalities are facilitated by mapping the blocks
to a Cartesian space and contrasting their spatial representations,
without the need to examine their contents analytically.

In summary, the contributions of this paper are the following:
(1) We formulate the problem of purging redundant comparisons
from a blocking technique and explain how its solution can be fa-
cilitated through the abstraction of blocks (i.e., enumerating and
mapping them to the Cartesian space).
(2) We describe Comparisons Propagation, an optimal solution to
this problem, which efficiently propagates all executed compar-
isons based on the enumeration of blocks. This method is suitable
for applications that can afford high space complexity.
(3) We further propose a solution that partially discards redundant
comparisons, trading space requirements for time complexity. It
consists of a series of methods that remove blocks involving exclu-
sively redundant comparisons and merge highly overlapping ones.
(4) Finally, we thoroughly evaluate our methods on two large, real-
world data sets, demonstrating the great benefits they convey to the
efficiency of existing blocking methods.

The rest of the paper is structured as follows. Section 2 sum-
marizes previous work and Section 3 defines the basic notions of
our algorithms. Section 4 introduces our approach to determining
the processing order of blocks and mapping them to the Cartesian
1See http://www.google.com/base.

Space, and Section 5 presents our approach to propagating com-
parisons and manipulating blocks. Experimental evaluation is pre-
sented in Section 6, while Section 7 concludes the paper.

2. RELATED WORK
A variety of methods for solving the ER problem has been pre-

sented in literature. They range from string similarity metrics [2],
to similarity methods using transformations [19, 26] and relation-
ships between data [5, 12]. A comprehensive overview of the ex-
isting work in this domain can be found in [4, 6, 13].

The approximate methods of data blocking typically associate
each record (i.e., entity) with a Blocking Key Value (BKV). They
define blocks on the equality (or similarity) of BKVs and compare
solely the entities that are contained in the same block [6]. For in-
stance, the Sorted Neighborhood approach [11] orders records ac-
cording to their BKV and slides a window of fixed size over them,
comparing the records it contains. The StringMap method [15]
maps the BKV of each record to a multi-dimensional Euclidean
space, and employs suitable data structures for efficiently identify-
ing pairs of similar records. The q-grams blocking approach [8]
builds overlapping clusters of records that share at least one q-
gram (i.e., sub-string of length q) of their BKV. Canopy clus-
tering [17] employs a cheap string similarity metric for building
high-dimensional overlapping blocks, whereas the Suffix Arrays
approach [3] considers the suffixes of the BKV instead. [28] ex-
plores another aspect of these blocking approaches, arguing that
more duplicates can be detected and more pair-wise comparisons
can be saved through the iterative distribution of identified matches
to subsequently (re-)processed blocks.

The performance of blocking methods typically depends on the
fine-tuning of a wealth of application- and data-specific parame-
ters [3, 29]. To automate the parameter setting procedure, several
methods that model it as a machine learning problem have been
proposed in the literature. For instance, [18] defines it as learning
disjunctive sets of conjunctions that consist of an attribute (used
for blocking) and a method (used for comparing the corresponding
values). Similarly, [1] considers disjunctions of blocking predicates
(i.e., conjunctions of attributes and methods) along with predicates
combined in disjunctive normal form (DNF). On the other hand,
[29] introduces a method for adaptively and dynamically setting the
size of the sliding window of the Sorted Neighborhood approach.

Attribute-agnostic blocking methods were recently introduced to
make blocking applicable to voluminous, heterogeneous data col-
lections, such as the Web of Data. These methods do not need a
predefined schema for grouping entities into blocks, as they com-
pletely disregard attribute names. In this way, they are able to han-
dle thousands of attribute names without requiring the fine-tuning
of numerous parameters. Instead, they tokenize (on all special char-
acters) the attribute values of each entity profile, and create an in-
dividual block for each token; that is, every block corresponds to
a specific token and contains all entities having this token in their
profile [21]. Blocks of such low-level granularity guarantee high
effectiveness due to the high redundancy they convey: each entity
is associated with multiple blocks, which are, thus, overlapping.
Hence, the likelihood of a missed match (i.e., a pair of duplicates
that has no block in common) is low. This redundancy-based ap-
proach is a common practice among blocking techniques for noisy,
but homogeneous data, as well [3, 17, 20, 28].

To the best of our knowledge, this is the first work on formally
defining and dealing with the problem of eliminating redundant
comparisons of blocking methods for ER.

3. PROBLEM DEFINITION
To formally describe the problem we are tackling in this paper,

we adopt the definitions introduced in [21] for modeling entity pro-
files and entity collections. As such, an entity profile p is a tuple
〈id, Ap〉, where Ap is a set of attributes ai, and id ∈ ID is a global
identifier for the profile. Each attribute ai ∈ Ap is a tuple 〈ni, vi〉,
consisting of an attribute name ni and an attribute value vi. Each
attribute value can also be an identifier, which allows for modeling
relationships between entities. An entity collection E is a tuple
〈AE ,VE , IDE , PE〉, where AE is the set of attribute names appearing
in it, VE is the set of values used in it, IDE ⊆ ID is the set of global
identifiers contained in it, and PE⊆ IDE is the set of entity profiles
that it comprises. We define a blocking scheme as follows:

Definition 1. A blocking scheme bs for an entity collection E
is defined by a transformation function ft : E 7→ T and a set of con-
straint functions f i

cond : T ×T 7→ {true, f alse}. The transformation
function ft derives the appropriate blocking representation from
the complete entity profile (or parts of it). The constraint function
f i
cond is a transitive and symmetric function that encapsulates the

condition that has to be satisfied by two entities, if they are to be
placed in the same block bi.

Apparently, any blocking method can define and use its own
blocking scheme that follows the above definition. For example,
the schemes described in Section 2 consist of a transformation
function that extracts the BKV from an entity profile and a set of
constraint functions that define blocks on the equality (or similar-
ity) of the BKVs. Once a blocking scheme is applied on an entity
collection, a set of blocks is derived, whose instances are formally
defined as follows:

Definition 2. Given an entity collection E and a blocking
scheme bs for E, a block bi ∈ B is the maximal subset, with a mini-
mum cardinality of 2, that is defined by the transformation function
ft and one of the constraint functions f i

cond of bs:

bi ⊆ E ∧ ∀p1, p2 ∈ E : f i
cond(ft(p1), ft(p2)) = true⇒ p1, p2 ∈ bi.

The ER process on top of a blocking method consists of iterating
over its set of blocks B in order to compare the entities contained
in each one of them. We use mi,j to denote a match between two
profiles pi and p j that have been identified as matching pi ≡ p j

(i.e., describing the same real-world object). The output, therefore,
of a blocking method is a set of matches, which we denote as M.

To address the aforementioned characteristics of heterogeneous
information spaces, redundancy-bearing blocking methods have
been recently introduced [3, 20, 21, 28]. They associate each en-
tity with multiple, overlapping blocks. This practice minimizes
the likelihood that two duplicate entities have no block in com-
mon, thus resulting in higher effectiveness for the ER process. Ef-
ficiency, on the other hand, is significantly downgraded, due to
the redundant comparisons between pairs of entities that appear in
many blocks. Apparently, the higher the redundancy conveyed by
a blocking method, the lower the efficiency of the ER process.

In this paper, we focus on developing methods that enhance the
efficiency of redundancy-based blocking methods, without affect-
ing their effectiveness. To this end, our techniques aim at eliminat-
ing the superfluous comparisons of redundancy-bearing blocking
methods in order to save considerable computational effort. In this
way, they can operate on top of any blocking method, without al-
tering its effectiveness, producing an output that is equivalent to
the original one. The following definition introduces the concept
of semantically equivalent blocking sets:

Definition 3. A blocking set B′ is semantically equivalent to
blocking set B, if the set of matches resulting from blocking set B′

are equal to the set of matches resulting from blocking set B (i.e.,
MB′=MB).

Based on the above definition, we now formally state the prob-
lem we are addressing in this paper:

Problem 1. Given a set of blocks B that are derived from
a redundancy-bearing blocking technique, find the semantically
equivalent blocking set B′ that involves no redundant pair-wise
comparisons.

4. BLOCK SCHEDULING AND MAPPING
As stated above, our goal is to propose generic methods for en-

hancing the efficiency of any redundancy-bearing blocking tech-
nique (such as the ones discussed in Section 2). Therefore, the
methods we describe make no assumptions on the mechanism or
functionality of the underlying blocking method. Instead, they treat
blocks at an abstract level, considering solely the identifiers of the
entities they contain (i.e., each block is represented as a set of entity
ids).

We distinguish between two types of blocks according to the lin-
eage of their entities. The first type of blocks is called unilateral,
since it contains entities of the same lineage, i.e., stemming from
the same entity collection. This type of blocks arises when integrat-
ing one dirty collection (i.e., a collection that contains duplicate
entities) either with a clean, duplicate-free collection (i.e., Dirty-
Clean), or with another dirty collection (i.e., Dirty-Dirty). Both
cases are equivalent with resolving a single, dirty entity collection,
where each entity profile could match to any other [24]. More for-
mally, the blocks of this kind are defined as follows:

Definition 4. A unilateral block is a block containing entity
ids from a single entity collection E, thus being of the form bi =

{id1, id2, . . . , idn}, where idi ∈ ID.

The second type of blocks is called bilateral, and arises when in-
tegrating two individually clean entity collections, E1 and E2, that
are overlapping (Clean-Clean) [24]. The goal is, therefore, to iden-
tify matches only between E1 and E2, thus requiring that each block
contains entities from both input collections. More formally, this
kind of blocks is defined as follows:

Definition 5. A bilateral block is a block containing entity
ids from two entity collections, E1 and E2. It follows the form
bi, j = {{idi,1, idi,2, . . ., idi,n},{id j,1, id j,2, . . ., id j,m}}, where idi,k ∈ ID1

and id j,l ∈ ID2. The subsets bi = {idi,1, idi,2, . . ., idi,n} and
b j = {id j,1, id j,2, . . . , id j,m} are called the inner blocks of bi, j.

4.1 Block Scheduling
Specifying the processing order of blocks is important for the

effectiveness of ER techniques. This order forms the basis for
block enumeration, which associates each block with an integer
that represents its position in the processing list. This practice finds
application in various techniques, such as the propagation of com-
parisons (see Section 5.1). The processing order is also an inte-
gral part of lossy efficiency techniques, like Block Pruning in [21];
these are methods that sacrifice (to some extent) the effectiveness
of a blocking method in order to enhance its efficiency. They do so
by discarding comparisons according to some criteria, even if they
involve non-redundant comparisons among matching entities.

Scheduling techniques typically associate each element of the
given set of blocks B with a numerical value and sort B in ascend-
ing or descending order of this value. Their computational cost

(a) 0 1 2 3 4 5

b
1

b
2

b
3

(b) 0 1 2 3 4 5

1

2

3

4

b1,1

b2,2

b3,3

Figure 1: Illustration of block mapping.

is O(|B| · log |B|), which scales even for large sets of blocks. In
each case, the most suitable approach for determining the process-
ing order of blocks depends heavily on the application at hand. For
the needs of the methods we introduce in Section 5, we define a
different scheduling method for each kind of block. In particular,
unilateral blocks are ordered in ascending order of cardinality: the
more entities a block bi contains, the higher its position in the list.
Bilateral blocks, on the other hand, are ordered in ascending order
of their utility [21]: ubi, j = 1

max(|bi |,|b j |)
, where |bi| and |b j| are the

cardinalities of the inner blocks of the bilateral block bi, j. Bilat-
eral blocks of equal utility are ordered in ascending order of the
cardinality of their smallest inner block.

4.2 Block Mapping
We now introduce our approach for Block Mapping. The gist

of this technique is that it allows us to efficiently check whether
two blocks have overlapping content (i.e., they share some enti-
ties), without exhaustively comparing them. The mapping is per-
formed by transforming blocks into the Cartesian space; for uni-
lateral blocks this corresponds to Cartesian coordinates in one di-
mension (i.e., lines), and for bilateral blocks to coordinates in two
dimensions (i.e., rectangles). Thus, Block Mapping is performed
by assigning each entity to a point on the corresponding axis.

Example 1. Figure 1(a) illustrates the mapping of the unilat-
eral blocks b1 = {id2, id3, id4}, b2 = {id0, id1, id4}, and b3 =

{id0, id1, id3, id4} on the X-axis. Their entities are assigned to co-
ordinates as follows: C={〈id0, 3〉, 〈id1, 4〉, 〈id2, 0〉, 〈id3, 1〉, 〈id4,
2〉}.
Figure 1(b) illustrates the mapping of the bilateral blocks b1,1 =

{{id1,0, id1,2}, {id2,0, id2,1}}, b2,2 = {{id1,0, id1,3}, {id2,1, id2,3}} and
b3,3 = {{id1,0, id1,3, id1,4}, {id2,1, id2,2, id2,4}} to the XY-axes, where
id1,i ∈ E1 and id2,i ∈ E2. The entities of E1 are transformed to
points on the X-axis as follows: CX={〈id1,0, 3〉,〈id1,1, 4〉, 〈id1,2,1〉,
〈id1,3, 5〉, 〈id1,4, 2〉}, whereas the entities of E2 are mapped to points
on the Y-axis as follows: CY={〈id2,0, 3〉,〈id2,1, 1〉,〈id2,2,0〉, 〈id2,3, 2〉,
〈id2,4, 4〉}.

The difference between the size bsp
i of the spatial representation

of a block bi and its actual size bas
i is called spatial deviation spi

of block bi. More formally, it is defined as follows:

spi = bsp
i − bas

i ,

Algorithm 1: Mapping Blocks to the Cartesian Space.
Input: B={bi} a set of unilateral blocks
Output: C={〈idi, j〉} a mapping of entity ids to coordinates

1 B′ ← blockScheduling(B);
2 C ← {};
3 lastIndex← 0;
4 foreach bi ∈ B′ do
5 E ← sortInAscendingOrderOfFrequency(bi.entities());
6 foreach e ∈ E do
7 if (!C.containsKey(e.id)) then
8 C ← C ∪ {〈e.id, lastIndex〉};
9 lastIndex++;

10 return C;

where bsp
i is the length (area) of the spatial representation of a uni-

lateral (bilateral) block bi, and bas
i is the actual length (area) of the

unilateral (bilateral) block bi. In the case of unilateral blocks, we
have bas

i = |bi| − 1, while for a bilateral block bi, j it is equal to
bas

i, j = (|bi| − 1) · (|b j| − 1). For example, b2,2 has an actual area of
((2-1)×(2-1)=)1, whereas its spatial representation has an area of
((5-3)×(2-1)=)2; that is, sp2,2 = 1.

The value of spi is always positive, but in the ideal case it should
be equal to 0. This requirement can be easily satisfied for non-
overlapping blocks, by associating the entities of each block with
contiguous coordinates. In the case of overlapping blocks, though,
the spatial transformation leads to a positive deviation, since it can-
not be done independently for each block: assigning a coordinate
to an entity idi in the context of a block bi can be contiguous with
the rest of entities in bi, but not necessarily with the other entities
that share blocks with idi.

Example 2. Consider the entities in Figure 1(a). The way the
depicted blocks are mapped is the optimal one, since the entities
of every block are contiguous. Imagine, though, that we place an
additional entity to each block: id5 to b1, id6 to b2 and id7 to b3. In
this case, there is no way of mapping the new blocks to the X-axis,
so that the entities of each block are contiguous.

The above discussion gives rise to the following optimization
problem:

Problem 2. Given a set of blocks B, transform its elements to
the Cartesian space, so that their aggregated spatial deviation∑

bi∈B (bsp
i − bas

i) is minimized.

In our methods, we require that emphasis is placed on minimiz-
ing the spatial deviation of large blocks (we elaborate on the rea-
sons in Section 5.2.2). That is, the larger a block is, the lower its
spatial deviation should be. More formally, this optimization prob-
lem can be defined as the minimization of the following quantity:∑

bi∈B

bi.size() × (bsp
i − bas

i), (1)

where bi.size() is the size of block bi. For a unilateral block, it is
equal to its cardinality (i.e., number of entities it contains), while
for a bilateral block bi, j it is equal to the sum of cardinalities of its
inner blocks: bi, j.size() = |bi| + |b j|.

We solve this optimization problem using a scalable method,
applicable to voluminous data collections. Algorithm 1 outlines
this method for the case of unilateral blocks; for bilateral ones,
the algorithm is applied twice, independently for each axis, con-
sidering in each iteration solely the corresponding entity collec-
tion. In essence, the algorithm assigns coordinates from the in-
terval [0, |E| − 1] to the entity profiles of the given collection E.

After Block Scheduling, it starts assigning the entities of the last
(usually largest) block to contiguous coordinates, thus minimizing
the spatial deviation of this block. To ensure the minimal spatial
deviation for the rest of the blocks, as well, the profiles are or-
dered and mapped in ascending order of their frequency (i.e., the
number of blocks associated with each entity): the least frequent
of the not-yet-mapped entities takes the first available coordinate,
the second least frequent takes the next coordinate etc. Two en-
tities that share many blocks are more likely to be contiguous in
this way. The algorithm is then repeated for the remaining blocks,
traversing their ordered list from bottom to top. The algorithm
has a linear space complexity, O(|B| + |E|), and time complexity of
O(|B| · log |B|+ |E · log |E|), due to the sorting of blocks and entities.

Example 3. The result of applying this algorithm is illustrated
in Figure 1(a). The profiles of b1 are mapped to the X axis as fol-
lows: id2 has frequency 0 and goes to the first available coordinate
(i.e., 0), id3 with frequency 1 goes to next available coordinate (i.e.,
1) , and, finally, id4 with frequency 2 goes to point 2.

5. APPROACH
In this section, we present the methods we developed for reduc-

ing the redundancy of blocking methods (Problem 1), based on the
Block Scheduling and Mapping techniques we introduced above.
The optimal solution to this problem (i.e., the one that discards all
redundant comparisons) is presented in Section 5.1. Its effective-
ness, though, comes at the cost of high space complexity, caused
by the data structure it employs. As an alternative, we present in
Section 5.2 an approximate solution, that removes the high space
requirements.

5.1 Comparisons Propagation
Block Scheduling determines the processing order of blocks, and

enables their enumeration; that is, each block is assigned to an in-
dex indicating its position in the processing list. Based on this enu-
meration, the propagation of comparisons is made feasible through
a common data structure, namely a hash table; in particular, its keys
are the ids of the entities of a given collection E, and its values are
lists of the indices of the blocks that contain the corresponding enti-
ties. The elements of these lists are sorted in ascending order, from
the lowest block index to the highest.

This data structure can be used in the context of a blocking
method in the following way: to compare a pair of entities, the
Least Common Block Index Condition should be satisfied. That
is, the lowest common block index of these entities should be equal
to the index of the current block, indicating in this way that this
is the first block in the processing list that contains both of them.
Otherwise, if the former index is lower than the latter, the entities
have already been compared in another block, and the comparison
is redundant. In this way, each pair of entities is compared just
once, and Comparisons Propagation provides the optimal solution
to Problem 1.

Theorem 1 (Optimality of Comparisons Propagation). Given
a set of blocks B, Comparisons Propagation produces the se-
mantically equivalent set of blocks B′ that entails no redundant
pair-wise comparisons.
Proof. Let us assume that the set of blocks produced by Com-
parisons Propagation entails redundant comparisons. This means
that there is a blocking set B′′ that is semantically equal to B and
involves no redundant comparisons. Hence, there must be at least
one pair of entities that is compared twice in B′ and just once in B′′.
The Least Common Block Index Condition is, therefore, satisfied
in two blocks of B′, which is a contradiction. Thus, B′′ ≡ B′.

Algorithm 2: Propagating Comparisons.
Input: B a set of blocks
Output: B′′ the semantically equivalent set of blocks with no

redundant comparisons
1 B← blockScheduling(B);
2 B′ ← blockEnumeration(B);
3 B′′ ← {};
4 entityIndex← indexBlocksOnEntityIds(B′);
5 foreach bi ∈ B′ do
6 E ← bi.entities();
7 for i← 1 to E.size do
8 BEi ← entityIndex.associatedBlocks(E[i]);
9 for j← i + 1 to E.size do

10 BE j ← entityIndex.associatedBlocks(E[j]);
11 if (bi.index = leastCommonBlockIndex(BEi ,BE j)) then
12 bi ← newBlock(E[i], [E[j]);
13 B′′ ← B′′

⋃
bi ;

14 return B′′;

Algorithm 2 outlines the way Comparisons Propagation operates
on a set of blocks B in order to produce its semantically equivalent
set of blocks B′ that is free of redundant comparisons. In essence,
B′ consists of blocks with minimum cardinality, since each non-
redundant comparison results in a new block that contains the cor-
responding pair of entities. This may result in a very large number
of blocks, and storing them poses a serious challenge. Processing
them on-the-fly, though, is an efficient alternative.

Comparisons Propagation can be integrated in the execution of
any blocking method, without affecting its time complexity. The
reason is that the computation of the least common block index is
linear to the number of blocks associated with the corresponding
pair of entities (due to the ordering of indices in the values of the
hash table). Its space complexity, though, is equal to O(|B| · |E|), in
the worst case (i.e., each entity is placed in all blocks), where |B|
is the total number of blocks, and |E| is the cardinality of the given
entity collection (for Clean-Clean ER, this cardinality is equal to
|E1| + |E2|). In practice, however, space complexity depends on the
level of redundancy introduced by the underlying blocking method.
In fact, it is equal to O(|E| · ¯BPE), where ¯BPE is an estimate of
redundancy, denoting the average number of blocks per entity.

5.2 Block Manipulation
Block Manipulation consists of a series of techniques that op-

erate on two levels: first, they investigate the given set of blocks
in order to discard those elements that contain purely redundant
comparisons. In this way, they reduce not only the number of com-
parisons, but also the number of blocks that will be processed in the
next level. Second, they aim at identifying profitable block merges;
that is, pairs of highly overlapping blocks, which, when combined,
result in a block with fewer comparisons. The combined result of
these two levels approximates the optimal solution of Comparisons
Propagation at a lower space complexity. The individual strategies
of Block Manipulation are analytically presented in the following
paragraphs, in the order they should be executed.

5.2.1 Block Cleaning
Cleaning a set of blocks B is the process of purging the dupli-

cate elements from it. These are blocks that contain exactly the
same entities with another block, regardless of the constraint func-
tion defining each of them (i.e., independently of the information
that is associated with them). We call such blocks identical, and,
depending on their lineage, we formally define them as follows:

Algorithm 3: Mining a clean set of blocks.
Input: B a clean set of highly similar blocks
Output: B′′ the semantically equivalent, mined set of blocks

1 B′ ← blockScheduling(B);
2 DominatedB← {};
3 for i← 1 to B′.size do
4 for j← B′.size to i + 1 do
5 if (B′[i].size() , B′[j].size())) then
6 break;

7 if (areaConditionHolds(B′[i], B′[j]) then
8 if (isDominated(B′[i], B′[j]) then
9 DominatedB← DominatedB ∪ B′[i];

10 break;

11 B′′ ← B′ - DominatedBlocks;
12 return B′′;

Definition 6. Given a set of unilateral blocks B, a block bi ∈ B
is unilaterally identical with another block b j ∈ B, denoted by
bi ≡ bj, if both blocks contain the same entities, regardless of their
constraint functions, f i

cond and f j
cond: bi ≡ b j ⇔ bi ⊆ b j ∧ b j ⊆ bi.

Definition 7. Given a set of bilateral blocks B, a block bi, j ∈ B
is bilaterally identical with another block bk,l ∈ B, denoted by
bi,j ≡ bk,l, if their corresponding inner blocks are unilaterally iden-
tical: bi, j ≡ bk,l ⇔ bi ≡ bk ∧ b j ≡ bl.

In this context, the process of Block Cleaning can be formally
defined as follows:

Problem 3 (Block Cleaning). Given a set of blocks B, reduce
B to its semantically equivalent subset B′ ⊆ B that contains no
identical blocks. We call B′ a clean set of blocks.

The solution to this problem can be easily implemented by as-
sociating each block with a hash signature; its value is equal to
the sum of the coordinates assigned to its entities by Block Map-
ping. Identical blocks necessarily have the same signature, but not
vice versa: signature equality can also lead to false positives. For
this reason, the size as well as the elements of two blocks with the
same signature are analytically compared to make sure that they
are indeed identical. In practice, this functionality is efficiently of-
fered by default by most programming languages. Both its time
and space complexity are linear to the size of the input set of blocks
(i.e., O(|B|)), as it involves traversing its elements just once.

5.2.2 Block Mining
Given a clean set of blocks, the process of mining it consists of

identifying the blocks that are subsets of at least one other block
in the set; that is, blocks whose entities are all contained in some
other block, independently of the corresponding constraint func-
tions. This situation is called a relation of dominance, where the
latter is the dominant block, and the former the dominated one.
This is more formally defined as follows:

Definition 8. Given a clean set of unilateral blocks B, a block
bi ∈ B is unilaterally dominated by another block b j ∈ B, denoted
by bi � bj, if bi is a proper subset of b j, regardless of the constraint
functions f i

cond and f j
cond: bi � b j ⇔ |bi| < |b j| ∧ @idi ∈ bi : idi < b j.

Definition 9. Given a clean set of bilateral blocks B, a block
bi, j ∈ B is bilaterally dominated by another block bk,l ∈ B, de-
noted by bi,j � bk,l, if at least one inner block of bi, j is unilater-
ally dominated by the corresponding inner block of bk,l and the

other is either unilaterally identical or unilaterally dominated:
bi, j � bk,l ⇔ (|bi| � |bk |∧|b j| � |bl|)

∨
(|bi| � |bk |∧|b j| ≡ |bl|)

∨
(|bi| ≡

|bk | ∧ |b j| � |bl|).

In this context, the problem of Block Mining can be formally
defined as follows:

Problem 4 (BlockMining). Given a clean set of block B, re-
duce B to its semantically equivalent subset B′ ⊆ B that contains
no dominated blocks. We call B′ a mined set of blocks.

Apparently, this constitutes another quadratic problem, since the
elements of every block have to be compared with those of all oth-
ers. However, the abstract representation of blocks we are propos-
ing leads to a series of necessary conditions that have to be satisfied
by a pair of blocks, if one of them is dominated. The benefit is that
these conditions can be checked in a fast and easy way, without
the need to analytically compare the elements of the blocks. The
conditions are also complementary, with their conjunction forming
a composite mining method that effectively restricts the required
number of comparisons. In the following, we describe them in
more detail.

(i) Size Condition (SC). In a clean set of blocks B, there cannot
be a relation of dominance among a pair of equally sized blocks.
Instead, the dominant block has to be larger in size than the dom-
inated one. Therefore, to check whether a block is dominated, we
need to compare it solely with blocks of larger size.

(ii) Area Condition (AC). Block mapping adds an additional con-
dition for a relation of dominance: the spatial representation of the
dominated block has to be fully contained in the representation of
the dominant one; that is, the line (area) of the former lies entirely
inside the line (area) mapped to the latter. More formally, the AC
for a unilateral block bi to be dominated by a block b j is expressed
as follows:

bi � b j ⇒ (min(b j.entityCoods) ≤ min(bi.entityCoods)
∧max(bi.entityCoods) ≤ max(b j.entityCoods)),

where bk.entityCoods is the set of coordinates assigned to the en-
tities of block bk. Similarly, the AC for a bilateral block bi, j to be
dominated by a block bk,l takes the following form:

bi, j � bk,l ⇒ (min(bk.entityCoods) ≤ min(bi.entityCoods)
∧max(bi.entityCoods) ≤ max(bk.entityCoods))
∧(min(bl.entityCoods) ≤ min(b j.entityCoods)
∧max(b j.entityCoods) ≤ max(bl.entityCoods)).

AC is illustrated in Figure 1(a); b1 is smaller than b3, but cannot
be dominated by it, since the line of b1 is not entirely covered by
the line of b3. On the other hand, b2 satisfies the AC with respect
to b3 but not with b1.

As mentioned in Section 4.2, the priority of Algorithm 1 is to
ensure that large blocks end up with low spatial deviation. The
reason is that AC is intended to be used in conjunction with SC.
In this way, the latter condition saves comparisons among equally
sized blocks, even if their spatial representations are intersecting,
while the former saves unnecessary comparisons that involve large
blocks. Without AC, each block is inevitably compared with all
smaller blocks, even if they share no entities.

(iii) Entity Condition (EC). Another, straightforward way of con-
sidering the content of blocks before comparing them is to consider

merely those pairs of blocks that have at least one entity in com-
mon. This can be achieved by using the same data structure that
is employed in Comparisons Propagation: a hash table that con-
tains for each entity a list of the blocks that are associated with it.
However, this solution has the same (quadratic) space complexity
with Comparisons Propagation, thus violating the requirement for
an alternative solution with minimal space requirements. Thus, we
replace it with a near-duplicates detection method.

Locality Sensitive Hashing (LSH) [7] constitutes an established
method for hashing items of a high-dimensional space in such a
way that similar items (i.e., near duplicates) are assigned to the
same hash value with a high probability p1. In addition, dissimilar
items are associated with the same hash values with a very low
probability p2. In our case, blocks are the items that are represented
in the high-dimensional space of E (or E1 and E2) through Block
Mapping. Thus, LSH can be employed to group highly similar
blocks in buckets, so that it suffices it compare blocks contained
in the same bucket. The details of the configuration of LSH we
employ are presented in Section 6.

Algorithm 3 outlines the steps of our Block Mining algorithm.
In short, it encompasses two nested loops, with SC and AC inte-
grated in the inner one. Note that the input consists of the blocks
contained in the same bucket of LSH. It is worth noting that the
nested loop starts from the bottom of the ordered list of blocks and
traverses it to the top. In this way, smaller blocks are first compared
with the largest ones. The reason is that the larger the difference in
the size of the two blocks, the higher the likelihood that the larger
block contains all the elements of the smaller one (thus, dominat-
ing it). SC is encapsulated in lines 5 and 6, while AC in line 7.
Note that SC terminates the inner loop as soon as an equally sized
block is encountered, because Block Scheduling ensures that the
next blocks are of equal or smaller size.

5.2.3 Block Merging
An effective way of discarding superfluous comparisons is to

identify blocks that are highly overlapping. These are blocks that
share so many entities that, if merged, they would result in fewer
comparisons than the sum of the comparisons needed for each one.
Merging such blocks eliminates their redundant comparisons, thus
enhancing efficiency without any impact on effectiveness. Indeed,
pairs of entities that are common among the original blocks (i.e.,
the source of redundancy) are considered only once in the new
blocks, while the pairs of duplicate entities are maintained without
any change. This situation is illustrated in the following example:

Example 4. Consider the following unilateral blocks:
b1 = {id1, id2, id3, id4, id5}, b2 = {id1, id2, id4, id5, id6} and
b3 = {id1, id3, id4, id5, id7, id8}. Individually, these blocks involve
35 comparisons, in total. However, b2 and b3 contain most of the
comparisons in b1 (they share four entities with b1). Merging b1

with b2 leads to the new block b′2 = {id1, id2, id3, id4, id5, id6}. We
now need 30 comparisons in total (between b′2 and b3). In addition,
merging b′2 with b3 in a single block containing all 8 entities further
reduces the total number of comparisons to 28 (i.e., 20% less than
the initial number of comparisons).

More formally, the merge of two unilateral/bilateral blocks is
defined as follows:

Definition 10. Given a set of unilateral blocks B, the unilateral
merge of a block bi with a block b j is a new unilateral block bmi,j
that contains the union of the entities of bi and b j: bmi, j = bi ∪ b j.

Definition 11. Given a set of bilateral blocks B, the bilateral
merge of a block bi, j with a block bk,l is a new bilateral block

Algorithm 4: Merging a mined set of blocks.
Input: B a clean, mined set of blocks
Output: B′′ the semantically equivalent, merged set of blocks

1 B′ ← blockMapping(B);
2 FromMergesB← {};
3 MergedB← {};
4 OpenB← {};
5 ProcessedB← {};
6 for i← 0 to spatialBlocks.maxDimension do
7 NewOpenB← getBlocksStartingAtIndex(i, B′);
8 NewOpenB← NewOpenB

⋃
FromMergesB;

9 NewOpenB← NewOpenB \ MergedB;
10 NewOpenB← NewOpenB \ OpenB;
11 NewOpenB′ ← blockScheduling(NewOpenB);
12 OpenB← blockScheduling(OpenB

⋃
NewOpenB);

13 FromMergesB← {};
14 foreach bi ∈ NewOpenB′ do
15 mostS imilarBlock← getMostSimilarBlock(bi, OpenB);
16 if mostS imilarBlock , null then
17 newBlock← mergeBlocks(bi, mostS imilarBlock);
18 newBlock.mapToCartesianSpace();

FromMergesB.add(newBlock);
19 MergedB.add(bi);
20 MergedB.add(mostS imilarBlock);
21 OpenB.remove(bi);
22 OpenB.remove(mostS imilarBlock);

23 OpenB.addAll(NewOpenB);
24 EndingBlocks← getBlocksEndingAtIndex(i, OpenB);
25 OpenB.removeAll(EndingBlocks);
26 ProcessedB.addAll(EndingBlocks);

27 return ProcessedB;

bmi,k ,mj,l , whose inner blocks constitute the unilateral merge of the
corresponding inner blocks of bi, j and bk,l:
bmi,k ,m j,l = {bi ∪ bk, b j ∪ bl}.

Typically, each block shares comparisons with many other
blocks of the input set. However, these pairs of blocks differ in
their degree of overlap (i.e., the number of comparisons they share).
In fact, the higher the Jaccard coefficient2 of two blocks, the more
comparisons their merge saves. Thus, to maximize the effect of
Block Merging, each block should be merged with the block that
has the highest proportion of common entities with it. We call this
block maximum Jaccard block.

We can now formally define the problem of Block Merging as
follows:

Problem 5 (BlockMerging). Given a mined set of blocks B,
identify for each block bi its maximum Jaccard block b j, and merge
these bi b j pairs, so as to produce a semantically equivalent set
B′ with a smaller number of redundant comparisons. We call B′ a
merged set of blocks.

To address this problem, we introduce Algorithm 4. At its core
lies the idea that each block should have overlapping spatial repre-
sentations with its maximum Jaccard block. In other words, there
is no point in estimating the Jaccard similarity between two blocks
with disjoint spatial representations. Based on this principle, our
algorithm works for unilateral blocks as follows: two main lists are
maintained, the Open and the Processed ones (lines 4 and 5, re-
spectively). The former contains the blocks that are available for
comparison, whereas the latter encompasses the blocks that do not

2The Jaccard similarity coefficient J(A, B) of two sets A and B is
equal to: J(A, B) = |A∩B|

|A∪B| .

(a) 0 1 2 3 4 5

b
1

b
2

b
3

1 2 53 4 6

(b)

4

b3,3

5

5

4

6

1

2

3

b1,1

b2,2

2

3

4

0 1 2 3 4 5

1

Figure 2: Illustration of the block merge algorithm.

need to be considered any more. Starting from the beginning of the
X-axis, the algorithm traverses the X-axis by one point in every it-
eration (line 6); blocks, whose spatial representation starts from the
current point (line 7), are compared with the blocks in the Open list
(line 14). Then, at the completion of the iteration, they are added in
it, together with the merged blocks (lines 23 and 8, respectively).
Blocks, whose spatial representation ends at the current point, are
placed in the Processed list (lines 24-26). The reason is that they
do not overlap with any of the subsequently examined blocks. In
the case of bilateral blocks, the only difference in the execution
of the algorithm is that it traverses both axes simultaneously. The
following example illustrates the functionality of this algorithm.

Example 5. Figure 2(a) is an illustration of the Block Merging
algorithm for unilateral blocks that are mapped to the X-axis. The
main idea is that the grey area expands by one unit after each step.
All blocks lying partly within it are in the OpenB list, while all
blocks that lie entirely within it are placed in the ProcessedB list.
At the highlighted Step 4, b2 and b3 lie in the former list, while b1

is placed in the latter. The execution of the algorithm is as follows:
at Step 1, only b1 is in OpenB, while, at Step 2, b3 is also added
and compared with b1. At Step 3, b1 is removed from OpenB. Then,
b2 is placed in OpenB and compared with all other blocks. The
remaining blocks, b2 and b3, are placed in ProcessedB at the end
of Step 5.

Figure 2(b) is an illustration of the block merge algorithm for
bilateral blocks that are mapped to the XY-space. Again, the grey
area expands at each step by one unit, in both dimensions this time.
All blocks lying partly within it are placed in the OpenB list, while
all blocks that lie entirely inside its borders are moved to the Pro-
cessedB list. In the depicted case (step 5), b1,1 lies in the Processed-
Blocks list, while b2,2 and b3,3 are in the OpenBlocks one.

As mentioned in Definition 5, the input to Block Merging is a
mined set of blocks; that is, the input set contains neither identical
nor dominated blocks, since they do not contribute non-redundant
comparisons. The computational cost of Algorithm 4 is thus signif-
icantly reduced, without affecting its output. However, during the
execution of Algorithm 4, blocks that belong to one of these cate-
gories can be produced, and should be discarded on-the-fly. Indeed,

merges that lead to a block identical to another block of the input
set are immediately removed (lines 9-10 Algorithm 4). Regarding
new relations of dominance, merges can be involved in them only
as dominant blocks. Otherwise, the original blocks that produce
them would have already been dominated. More formally:

bmi, j � bk ⇔ (bi ∪ b j) � bk ⇒ (bi � bk) ∧ (b j � bk).

Thus, only a block of the input set can be dominated by the merge
of two other blocks. Apparently, it is not efficient to apply the Block
Mining method after each iteration of Block Merging. Dominated
blocks are, therefore, removed after the completion of the merging
process, by comparing the original, non-merged blocks with the set
of merges.

6. EVALUATION
In this section we present a series of experiments that investi-

gate the higher efficiency conveyed by our techniques, when incor-
porated into existing, redundancy-bearing blocking methods. Our
techniques were fully implemented in Java 1.6, and the experiments
were performed on a server with Intel Xeon 3.0GHz.

Metrics. Given that our techniques aim at eliminating redun-
dant comparisons, we evaluate them on the basis of an established
metric for measuring the efficiency of blocking methods, namely
the Reduction Ratio (RR) [1, 3, 18]. It expresses the reduc-
tion in the number of pair-wise comparisons required by a method
with respect to the baseline one. Thus, it is defined as follows:
RR = 1 − mc/bc, where mc stands for the number of comparisons
entailed by our technique, and bc expresses the number of compar-
isons entailed by the baseline (in our case, this is the original block-
ing method). RR takes values in the interval [0, 1] (for mc ≤ bc),
with higher values denoting higher efficiency.

Recall (named Pair Completeness in the context of block-
ing [21]) is not reported, since our techniques do not affect the du-
plicates identified by a blocking method - their goal is exclusively
to detect and avoid the superfluous and repeated comparisons.

Data Sets. To evaluate the impact of our techniques on existing
blocking methods, we employ two real-world data sets; one for the
Clean-Clean, and one for the Dirty-Dirty and Dirty-Clean cases of
ER. They are DBPedia and the BTC09 data set, respectively, which
are described in more detail in the following paragraphs.

DBPedia Infobox Dataset (DBPedia). This data collection con-
sists of two different versions of the DBPedia Infobox Data Set3.
They have been collected by extracting all name-value pairs from
the infoboxes of the articles in Wikipedia’s English version, at spe-
cific points in time. Although it may seem simple to resolve two
versions of the same data set, this is not the case. More specifically,
the older version (DBPedia1) is a snapshot of Wikipedia Infoboxes
in October 2007, whereas the latest one (DBPedia2) dates from
October 2009. During the two years that intervene between these
two versions, Wikipedia Infoboxes were so heavily modified that
there is only a small overlap between their profiles, even for dupli-
cate entities: just 25% of all name-value pairs are shared among
the entities common in both versions. As matches, we consider
those entities that have exactly the same URL in both versions. The
attribute-agnostic blocking method introduced in [21] was applied
on this data set to produce the set of bilateral blocks we employ in
our experiments. The blocks we consider are those resulting from
the Block Purging step [21], involving 3.98×1010 comparisons and
PC = 99.89%. The technical characteristics of DBPedia are pre-
sented in Table 1.

3See http://wiki.DBPedia.org/Datasets.

DBPedia

DBPedia1 Entities 1, 190, 734
DBPedia1 Name-Value Pairs 17, 453, 516
DBPedia2 Entities 2, 164, 058
DBPedia2 Name-Value Pairs 36, 653, 387
Bilateral Blocks 1, 210, 262
Comparisons 3.98 × 1010

Av. Comparisons Per Block 32, 893
Av. Blocks Per Entity 15.38

BTC09

Entities 1.82 × 108

Name-Value Pairs 1.15 × 109

Unilateral Blocks 8.04 × 107

Comparisons 4.05 × 109

Av. Comparisons Per Block 50.37
Av. Blocks Per Entity 2.61

Table 1: Technical characteristics for both data sets.

Billion Triple Challenge 2009 (BTC09). This data set consti-
tutes a publicly available4, large snapshot of the Semantic Web,
aggregating RDF statements from a variety of sources. In total,
it comprises 182 million distinct entities, described by 1.15 bil-
lion triples. The ground-truth set of duplicate entities is derived
from the explicit as well as implicit equivalence relationships (i.e.,
the owl:sameAs statements and the Inverse Functional Proper-
ties, respectively). BTC09 was employed as a test bed for the
attribute-agnostic blocking method presented in [22], which is the
source of our experimental set of unilateral blocks. well. Similar
to DBPedia, the blocks we employ in our experiments are those
stemming from the Block Purging method of [22]. They entail
4.05 × 109 comparisons, exhibiting a PC very close to 90%. A
more detailed overview of this data set is presented in Table 1.

6.1 Block Mapping
In this section, we compare Algorithm 1 with the Random Map-

ping (RM) of blocks to the Cartesian space. As mentioned in
Section 4.2, the higher the performance of a mapping method, the
lower the sum of Formula 1 should be. Table 2 shows the outcome
for both algorithms and for both data sets. In each case, we consid-
ered 100 iterations with RM in order to get a safe estimation of its
performance. The sums in Table 2 is equal to the average value. It
is remarkable that standard deviation is equal with ±4.16×1016 and
±3.97 × 1012 for DBPedia and BTC09, respectively, thus being 4
orders of magnitude lower than the mean value in both cases. This
indicates that the performance of RM is relatively stable.

We can see that Algorithm 1 substantially outperforms RM
in both cases; for bilateral blocks, it improves RM by 30.34%,
whereas for unilateral blocks the enhancement is 25.28%. The
reason for the slightly lower improvement in the second case is
twofold. First, redundancy is much higher in DBPedia than in
BTC09, as documented in Table 1; in the former data set, an entity
is associated with more than 15 blocks, in comparison with the less
than 3 blocks for the latter. Thus, mapping an entity to a suboptimal
(random) coordinate affects the spatial deviation of more blocks in
DBPedia than in BTC09. Second, suboptimal mappings have a
larger impact in the two-dimensional space than in the unidimen-
sional one. Consider for example Figure 1. Assigning entity id4

to point 5 of the X-axis instead of 4, increases the spatial deviation
of b2 by 1. However, assigning entity id1,4 to point 5 of the Y-axis
instead of 4 increments the spatial deviation of b3,3 by 4. For these

4See http://vmlion25.deri.ie.

Method DBPedia Sum BTC09 Sum
Algorithm 1 0.81 × 1020 1.33 × 1016

Random Mapping 1.16 × 1020 1.78 × 1016

Table 2: Comparison of the Block Mapping technique with re-
spect to the sum of Formula 1 for both data sets.

Method DBPedia Comp. BTC09Comp.
Cartesian Product 5.11 × 1011 3.23 × 1019

LSH + Algorithm 3 1.27 × 108 4.52 × 109

Table 3: Performance of the Block Mining algorithm.

DBPedia BTC09
Method Comp. RR Comp. RR

Input Set 3.98 × 1010 - 4.01 × 109 -
Comp. Prop. 2.59 × 109 93.49% 3.08 × 109 23.19%

Table 4: Effect of Comparisons Propagation on the efficiency of
both data sets.

reasons, the performance of RM is slightly closer to Algorithm 1
for unilateral blocks.

6.2 Block Mining
We now present the performance of our Block Mining algorithm

(i.e., LSH and Algorithm 3) with respect to the number of block
comparisons it requires in order to examine the blocks inside each
bucket. In general, to determine the structure of LSH, two param-
eters have to be specified: L and k; the former denotes the total
number of hash tables that will be employed, while the latter spec-
ifies the number of hash functions that are merged to compose the
hash signature for each entity, for a particular hash table. In our
implementation, we followed [23] and used exclusive or for effi-
ciently merging the k hash functions into the composite signature.
In more detail, L was set to 10, and k to 12, while the probabilities
p1 and p2 (see Section 5.2.2) were set to 0.9 and 0.1, respectively.

Table 3 shows the performance of our method in comparison
with the naive method of examining all possible pairs of blocks.
The aim is not to examine the optimal configuration of LSH.
Rather, the main conclusion to be drawn from these numbers is
that it is a scalable approach, whose performance depends on the
level of redundancy of the underlying blocking method: the higher
the redundancy, the more similar the blocks are between them,
and the larger the corresponding buckets get; this results in more
comparisons and lower efficiency. This explains why the perfor-
mance of our method is 10 orders of magnitude better than the
Cartesian Product for BTC09, which has low redundancy, while
for DBPedia, which has high redundancy, it is reduced to 3 orders
of magnitude.

6.3 Effect on Blocking Methods
Comparisons Propagation. Table 4 presents the improvement

in efficiency conveyed by Comparisons Propagation to both block-
ing techniques. For DBPedia, the number of required comparisons
drops by a whole order of magnitude, while for BTC09 almost a
quarter of all comparisons are saved. Apparently, the reason for the
lower improvement in the latter case is the difference in the degree
of redundancy: in DBPedia it is almost 5 times higher, with each
block placed into 15 blocks, on average, in contrast with the less
than 3 for BTC09. This clearly demonstrates that the higher the
redundancy of a blocking method, the higher the enhancement in
the efficiency that Comparisons Propagation brings about.

DBPedia BTC09
Method Comp. RR Comp. RR

Input Set 3.98 × 1010 - 4.05 × 109 -
Block Cleaning 3.96 × 1010 0.05% 3.97 × 109 1.98%
Block Mining 3.88 × 1010 2.51% 3.80 × 109 6.17%
Block Merging 2.58 × 1010 35.18% 3.48 × 109 14.08%

Table 5: Effect of each step of the Block Manipulation method
on the efficiency of both data sets.

Block DBPedia BTC09
Category #Blocks Perc. #Blocks Perc.

Input Set 1,210,262 100.00% 80.39 × 106 100.00%
Identical 199,204 16.46% 1.99 × 106 2.48%
Dominated 495,356 40.93% 4.90 × 106 6.10%
Merged 15,407 1.25% 0.78 × 106 0.98%

Table 6: Categorization of the blocks of both data sets.

Block Manipulation. In this section, we individually analyze
the contribution of each step of Block Manipulation to its the over-
all performance. To this end, Table 5 analytically presents the RR
of each method, while Table 6 displays the relative size of all block
categories for both data sets. We can see that the portion of com-
parisons discarded by Block Cleaning is negligible in both cases,
although a large part of the input sets (especially in DBPedia) are
identical blocks. This is because such blocks are typically of very
small size; the larger a block is, the lower the likelihood that there
is another one in the input set with exactly the same entities. This
principle applies to the dominated blocks, as well. Consequently,
the contribution of Block Mining is also minor, though higher than
that of Block Cleaning. However, as seen in Table 6, both steps are
necessary for discarding a large portion of blocks that are superflu-
ous for Block Merging. Thus, they considerably reduce its compu-
tation cost. Note also that the higher the level of redundancy, the
more blocks are removed by these two steps.

Regarding Block Merging, it is clear that it constitutes the most
crucial method of Block Manipulation. As demonstrated in Ta-
bles 5 and 6, it is responsible for the most significant reduction
in superfluous comparisons, although it involves much less blocks.
The reason is that the majority of blocks that are merged are large,
containing most of the redundant comparisons. It is worth noting,
though, that there is plenty of space for improvement, since its per-
formance deviates significantly from that of Comparisons Propaga-
tion. To bridge this gap, we plan to develop more efficient Block
Merging algorithms in the future.

7. CONCLUSIONS
In this paper, we presented a series of generic methods for elimi-

nating the superfluous comparisons in a redundancy-bearing block-
ing method. We introduced Comparisons Propagation that provides
the optimal solution to this problem at the cost of quadratic space
complexity. In addition, we proposed an alternative solution with
less space requirements that manipulates blocks as abstract sets of
integers, which are mapped to the Cartesian space. It can iden-
tify blocks that are subsets of other ones, as well as blocks that are
highly overlapping. By discarding the former and merging the lat-
ter, we can save a significant amount of comparisons. In the future,
we intend to investigate more effective methods for Block Merg-
ing, so that their performance gets closer to Comparisons Prop-
agation. We also plan to integrate techniques for parallelization,
namely MapReduce, in order to further enhance the efficiency of
our methods.

Acknowledgments. This work is partly funded by the Euro-

pean Commission under the FP7 EU Projects Glocal (Contract No.
248984) and LivingKnowledge (Contract No. 231126).

References
[1] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learn-

ing to scale up record linkage. In ICDM, 2006.
[2] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of

string distance metrics for name-matching tasks. In IIWeb, 2003.
[3] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage

blocking using suffix arrays. In CIKM, 2009.
[4] A. Doan and A. Y. Halevy. Semantic integration research in the

database community: A brief survey. AI Magazine, 2005.
[5] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in

complex information spaces. In SIGMOD, 2005.
[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate

record detection: A survey. IEEE Trans. Knowl. Data Eng., 2007.
[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen-

sions via hashing. In VLDB, 1999.
[8] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukr-

ishnan, and D. Srivastava. Approximate string joins in a database
(almost) for free. In VLDB, 2001.

[9] H. Han, C. L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis. Two
supervised learning approaches for name disambiguation in author ci-
tations. In JCDL, 2004.

[10] H. Han, H. Zha, and C. L. Giles. Name disambiguation in author
citations using a k-way spectral clustering method. In JCDL, 2005.

[11] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large
databases. In SIGMOD Conference, 1995.

[12] D. V. Kalashnikov and S. Mehrotra. Domain-independent data clean-
ing via analysis of entity-relationship graph. TODS, 2006.

[13] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity
measures and algorithms. In SIGMOD, 2006.

[14] D. Lee, B.-W. On, J. Kang, and S. Park. Effective and scalable solu-
tions for mixed and split citation problems in digital libraries. In IQIS,
2005.

[15] C. Li, L. Jin, and S. Mehrotra. Supporting efficient record linkage for
large data sets using mapping techniques. WWW J., 9(4), 2006.

[16] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
and C. Yu. Web-scale data integration: You can afford to pay as you
go. In CIDR, 2007.

[17] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In
KDD, pages 169–178, 2000.

[18] M. Michelson and C. A. Knoblock. Learning blocking schemes for
record linkage. In AAAI, 2006.

[19] B.-W. On, N. Koudas, D. Lee, and D. Srivastava. Group linkage. In
ICDE, 2007.

[20] B.-W. On, D. Lee, J. Kang, and P. Mitra. Comparative study of name
disambiguation problem using a scalable blocking-based framework.
In JCDL, 2005.

[21] G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Effi-
cient entity resolution for large heterogeneous information spaces. In
WSDM, 2011.

[22] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl.
Improving the efficiency of entity resolution for large-scale seman-
tic data. In Technical Report, available at: http://www.l3s.de/ pa-
padakis/papers/infixBlocking.pdf, 2011.

[23] O. Papapetrou and L. Chen. Xstreamcluster: an efficient algorithm for
streaming xml data clustering. In DASFAA (to appear), 2011.

[24] H. sik Kim and D. Lee. Harra: fast iterative hashed record linkage for
large-scale data collections. In EDBT, 2010.

[25] Y. Song, J. H. 0002, I. G. Councill, J. Li, and C. L. Giles. Efficient
topic-based unsupervised name disambiguation. In JCDL, 2007.

[26] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-
independent string transformation weights for high accuracy object
identification. In KDD, 2002.

[27] P. Treeratpituk and C. L. Giles. Disambiguating authors in academic
publications using random forests. In JCDL, 2009.

[28] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In SIG-
MOD Conference, 2009.

[29] S. Yan, D. Lee, M.-Y. Kan, and C. L. Giles. Adaptive sorted neigh-
borhood methods for efficient record linkage. In JCDL, 2007.

