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ABSTRACT
Individuals contribute content on the Web at an unprece-
dented rate, accumulating immense quantities of (semi-)
structured data. Wisdom of the Crowds theory advocates
that such information (or parts of it) is constantly overwrit-
ten, updated, or even deleted by other users, with the goal
of rendering it more accurate, or up-to-date. This is par-
ticularly true for the collaboratively edited, semi-structured
data of entity repositories, whose entity profiles are consis-
tently kept fresh. Therefore, their core information that re-
main stable with the passage of time, despite being reviewed
by numerous users, are particularly useful for the description
of an entity.

Based on the above hypothesis, we introduce a classifica-
tion scheme that predicts, on the basis of statistical and con-
tent patterns, whether an attribute (i.e., name-value pair)
is going to be modified in the future. We apply our scheme
on a large, real-world, versioned dataset and verify its ef-
fectiveness. Our thorough experimental study also suggests
that reducing entity profiles to their stable parts conveys sig-
nificant benefits to two common tasks in computer science:
information retrieval and information integration.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms
Algorithms, Experimentation, Performance

Keywords
Entity Evolution, Stability Detection, N-gram graphs

1. INTRODUCTION
Over the last few years, Web 2.0 applications have revolu-

tionized the Web and the way people interact with it. User-
generated and community-mediated knowledge collections,
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as well as entity repositories, such as Wikipedia1 and Free-
base2, are among the most popular and useful applications
of Web 2.0. Their reactivity, ease of use and self-organizing
nature, enable and encourage users to contribute new and to
modify existing content. As a result, this content comprises
nowadays a constantly increasing portion of the information
available on the Web.

User-generated content possesses three important proper-
ties: (a) very high level of heterogeneity, which results from
its distributed, self-organized creation, (b) high growth rates
in terms of volume, and (c) fast evolution, which implies re-
activity as well as volatility. This fickleness, in particular,
constitutes a salient aspect of user-generated data: the com-
munity of users tends to update and extend the information
shared on the Web, by continuously adding new content and
modifying the existing one. However, not all this informa-
tion are of the same importance; some parts reflect reality,
but others comprise wrong, obsolete or slightly irrelevant
content. As more and more users of Web 2.0 systems exam-
ine these profiles, they gradually identify the false pieces of
information and remove or replace them with more relevant
ones (Wisdom of the Crowds [25]).

In this context, user-generated content can be roughly
split into two parts: stable content that remains unchanged
over a certain period of time, and unstable content, that is
eventually deleted or corrected by the community. It would
be beneficial to identify the former in advance (i.e., predict-
ing stability), because it is more useful for the description
of an entity and, thus, of higher value for tasks leveraging
on user-generated content.

In this paper, we present an approach for predicting the
stability of entity profiles (i.e., sets of name-value pairs de-
scribing entity properties) in highly heterogeneous user-ge
nerated content collections, based on statistical and content
patterns. In doing so, we can reduce the volume of these
collections by ignoring pieces of data that are volatile. This
study demonstrates that the proposed approach allows us to
execute complex operations on these data collections (e.g.,
entity resolution) with increased efficiency, without sacrific-
ing effectiveness.

The prediction of future behavior based on past and present
dynamics (as well as usage patterns) is a common prac-
tice in various areas, such as operating system functionality,
caching for Web search and recommendation systems. More

1See http://www.wikipedia.org.
2See http://www.freebase.com.
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Figure 1: Evolution of DBPedia in-

fobox entities (in millions).
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Figure 2: Evolution of DBPedia in-

fobox triples (in millions).
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Figure 3: Evolution of DBPedia in-

fobox entities’s profile size.
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related to our work are approaches that look into content
dynamics and content volatility to decide for its processing.
For instance, in [22] the authors introduce a method for de-
ciding whether data found on the Web, over a certain period
of time, pertain to a particular object or not. Additionally,
relevant works can be found in Web crawling [21], improving
term weighting for retrieval indexing [2] and for ranking in
Web search [9]. None of these works, though, focuses in the
dynamics of entity profiles. In this work, we introduce meth-
ods for reducing an entity description to its stable part, and
demonstrate the benefits that it conveys to common tasks:
information retrieval and integration.

The challenge of identifying the stable content in advance
is amplified by the high level of heterogeneity of user-genera
ted content. Indeed, there is little limitation in the way
users can contribute content: every individual is free to add
information in her own proprietary format, bringing about
unprecedented levels of heterogeneity. In the case of user-
generated entity repositories, this situation affects not only
the schemata describing the same entity types, but also the
different descriptions (profiles) of the same entity. Google
Base3, for instance, encompasses 100,000 distinct schemata
corresponding to 10,000 entity types [19]. Therefore, effec-
tively identifying stable content becomes very challenging.

User-generated content is also prone to accumulate to im-
mense volumes, even over relatively short periods of time [19]:
Wikipedia’s user base is rapidly increasing, thus fueling an
exponential growth in its content [3]; Blogosphere is steadily
expanding by 175,00 new blogs and 1.6 million new blog
posts per day [5, 24]; micro-blogging emerged only recently
to become one of the most popular Web applications, with
Twitter4 being its most prominent instantiation [18]. Last
but not least, video-sharing web sites, such as Youtube5,
amass content at such a fast pace that its manipulation and
maintenance poses significant challenges [4]. This makes ap-

3See www.google.com/base.
4See http://twitter.com.
5See http://www.youtube.com.

plications that want to leverage on this content very chal-
lenging. The early identification of stable content within
such collections effectively reduces the amount of the useful
data that needs to be considered, enabling the development
of more efficient applications on top of user generated con-
tent.

To illustrate the phenomenon of stable and unstable con-
tent over a certain period of time, we briefly examine the
evolution of Wikipedia entities, before sketching our ap-
proach.

Case Study: Content Evolution in DBPedia. DB-
Pedia6 has made available 6 versions of the English Wikipedia
infoboxes, spanning 2 years, from October 2007 (version
3.0RC) to October 2009 (version 3.4). The figures discussed
below were created by comparing the content of each DB-
Pedia version with all its subsequent versions. We consider
as stable those items that remained unchanged for all subse-
quent versions. Consequently, we cannot identify the stable
items of the last version, namely 3.4. We also excluded ver-
sion 3.3 due to lack of sufficient history, as explained in Sec-
tion 4.1. Thus, the last two versions of DBPedia were only
considered in the estimation of the evolution of the earlier
versions.

Figures 1 and 2 are indicative of the immense growth
rate of Wikipedia content. In the two years covered by our
dataset, 1, 400 entities and 27, 500 triples were added every
day (on average) to its repository. Among them, 1, 300 enti-
ties and 25, 000 triples remained unmodified in the following
versions.

From these numbers, we can also notice the volatility of
the Wikipedia content. A considerable portion of the new
entities appearing in each DBPedia version are not stable;
their entire profile may have been modified, deleted as noise,
or merged with some other entity (duplicate entries). In
fact, the portion of stable entities ranges from 70% for ver-
sion 3.0RC to 73% for 3.2. The same applies to the triples
of DBPedia infoboxes (Figure 2): 81% of those contained

6See http://dbpedia.org.



in version 3.0RC are stable, raising gradually to 87% for
3.2. Similarly, the portion of unstable attribute names (Fig-
ure 4), attribute values (Figure 5) as well as name-value
pairs (Figure 6) declines in the later versions of DBPedia.
Thus, the longer is the period of time that user-generated
content is exposed to the eyes of the community, the larger
is the extend of its revision. In this context, we can consider
those pieces of information that remain stable across all sub-
sequent versions to be more valuable and more descriptive
of an entity.

Figure 3 also advocates the argument about higher use-
fulness of stable information items. The average profile size
of stable entities (i.e., number of triples describing them)
is consistently higher than that of all entities. Moreover,
the former increases slightly, but steadily with the passage
of time, whereas the latter fluctuates extensively. This is
a strong evidence that unstable entities tend to have small
profiles, thus lowering the overall average profile size; on
the other hand, the description of stable ones is gradually
enriched with more relevant information.

The high heterogeneity of Wikipedia entities is demon-
strated in Figure 4 along with its evolution. From 30, 000
distinct attribute names in the first version, it raises to
42, 000 in version 3.2.

On the whole, Figures 1 to 6 are indicative of Wikipedia’s
content volatility. They strongly support the argument that
only a portion of it remains stable after it has been added to
the repository. Stable content, though, is more useful than
unstable one, comprising the cornerstone of entity profiles.
Therefore, it should suffice to exclusively consider stable con-
tent when leveraging user-generated data.

Approach. In this paper, we focus on the evolution
of collaboratively edited, heterogeneous information spaces,
like Wikipedia. We advocate the idea that information con-
tained in the profile of an entity at time t1, but is missing
at time t2 > t1, tends to be less useful (it can be even
incorrect, irrelevant or simply updated). Information that
remains stable should be correct, thus, comprising the most
valuable part of an entity profile. Therefore, reducing user-
generated information spaces to their stable parts, should
have a positive impact on the efficiency of applications op-
erating on them, at a negligible cost on effectiveness.

In more detail, we present a novel approach for extracting
evolution patterns from heterogeneous information spaces,
on the basis of statistical and content features. Our method
works on the level of an attribute-value pair, predicting
whether it will be modified in the future or not. We ap-
ply our method on a voluminous, real-world, versioned data
set and demonstrate the benefits of employing only their
stable part in two common tasks: information retrieval and
information integration.

The contributions of our paper can be summarized as fol-
lows:

• We formalize the problem of “entity evolution”, and
develop a novel approach to deal with it, using es-
tablished machine learning algorithms in combination
with natural language processing ones.

• We demonstrate how to exploit the concept of stable
entity profiles in practice, by applying it to two com-
mon tasks: keyword queries over structured data and
entity resolution.

• Finally, we evaluate our approach, as well as its ap-

plication on the above tasks through an extensive ex-
perimental study on a large, versioned, real-world data
set.

The rest of the paper is structured as follows: Section 2
formalizes the problem and the notions we are handling,
whereas Section 3 introduces our approach to entity evo-
lution prediction. We present the thorough experimental
study of our approach in Section 4, and discuss the results
of applying it to our use cases in Section 5. Finally, Section 6
discusses relevant works, and Section 7 concludes the paper
and presents ideas for future work.

2. PROBLEM FORMULATION
The prediction of the stable parts of an information space

in the context of fast evolution is an issue in most user-
created data collections. However, we focus our work on en-
tity repositories, i.e., information spaces that comprise state-
ments about real-world entities, such as persons, places, and
products. The reason is twofold: the availability of large
data sets and the growing popularity of the entity-centric
approach.

We distinguish two types of evolution in the context of en-
tity repositories: the macroscopic and the microscopic one.
The former pertains to modifications in an information space
as a whole (e.g., new entities added in Wikipedia), while the
latter refers to changes in individual entities (e.g., some val-
ues are updated, and/or some others are deleted from the
entity description).

Assuming an infinite set of attribute names N , along with
an infinite set of possible values V, and an infinite set of iden-
tifiers ID, an information space I can be formally defined
as follows:

Definition 1. An information space I is a tuple
〈NI , VI , IDI , PI〉, where NI ⊆ N is the set of attribute names
appearing in it, VI ⊆ V is the set of values used in it,
IDI ⊆ ID is the set of local identifiers contained in it, and
PI ⊆ IDI × P(AI × VI) is the set of entity profiles that it
comprises. We call NI schema space and VI value space
of I.

In the following, we focus on evolution on the microscopic
(entity) level. Therefore, at the core of our approach lies the
notion of an entity profile over time.

Definition 2. An entity profile pi of an information
space I at time ti is a tuple 〈id, Ap〉 that corresponds to a
real-world entity, where Ap is a set of attributes ai, and id ∈
ID is a local identifier for the profile. Each attribute ai ∈
Ap is a tuple 〈ni, vi〉, consisting of an optional attribute
name ni ∈ N and an attribute value vi ∈ V ∪ ID. We
call the set ni ⊆ N schema space and the set vi ⊆ (V∪ID)
value space of pi.

As real-world entities evolve and change over time, their
corresponding profiles should be modified appropriately.
Thus, a single entity is described over time by a sequence
of profiles, pi, at distinct points in time ti. This is, for
example, the case with Wikipedia entities, where numerous
users collaboratively update and improve the entity profiles
according to real-life events. However, some core properties
of an entity - such as the name of a person or her id number
- tend to remain unmodified (possibly after an initial phase,



where errors are corrected). The set of these name-value
pairs comprises the stable profile of an entity, ps. More
formally:

Definition 3. A stable entity profile ps is an entity
profile that will retain its tuple 〈id, Ap〉 unmodified in all
points of time t′ following a point in time t: t > t′.

Of course, stability in infinity can be neither observed
(verified) nor expected in most cases. In this work, we focus
on predicting stability for relevant observation time frames
and verify our prediction based on available versions of in-
formation spaces.

Wisdom of the Crowds Theory advocates the principle
that noisy information are gradually removed from collabo-
rative environments. As a result, their content tends to re-
flect the shared notion of reality, which is typically the true
state of affairs, as long as users are allowed to contribute
information without any restriction. Thus, the content of
information spaces is likely to converge to a stable represen-
tation, that will remain unchanged in the future. In the case
of entity profiles, this can be interpreted as the convergence
of individual profiles towards their stable representation. To
describe this phenomenon formally, we introduce the notion
of profile distance:

Definition 4. Profile Distance d(pi,pk) between two
profiles of the same real-world entity at times tk, ti (tk > ti)
is defined as the ratio of the different name-value pairs over
the common ones.

d(pi, pk) =
Api 	Apk

Api ∩Apk

=
(Api

⋃
Apk) \ (Api ∩Apk )

Api ∩Apk

The higher the value of d(pi, pk), the fewer the content that
these two profiles have in common.

Based on the notion of profile distance, we can define
evolving entity descriptions in an information space.

Definition 5. An evolving entity description ed is a
sequence of entity profiles p1, p2, ..., pk with ti > ti−1 for
the same entity that converges towards the stable profile, ps,
i.e. from some point in time the distance to the stable profile
reduces over time: ∀ed∃Ked ≥ 0 : (∀ti, tk ≥ Ked : ti ≤ tk ⇒
d(pi, p

s) ≥ d(pk, p
s))

On the basis of the above definitions, the problem we want
to solve can be formalized as follows:

Problem 1. Given two snapshots of an information space
I at times t1 and t2 (t1 < t2), identify the part ps2 of each
entity profile p2 ∈ PI that is highly likely to remain stable in
the future points in time t > t2.

In other words, the goal is to develop an effective method
that predicts for each entity profile pi its stable part psi with
the following properties:

1. psi describes the same real-world entity as pi (i.e., they
share the same id).

2. The schema and the value space of psi is a subset of
the schema and value space of pi, respectively.

3. d(psi , p
s)<d(pi, p

s).

4. The name-value pairs space of psi will remain unmod-
ified in the future (psi ⊆ psk ∀ti < tk).

Apparently, the challenge here is that the stable profile
is not known in advance. Instead, it has to be predicted
from the evolution patterns identified over time in the given
information space.

3. APPROACH
To solve the aforementioned stability prediction problem,

we cast it as a binary classification problem: each informa-
tion item — i.e., an attribute name or an attribute value —
will be classified as either stable or unstable.

The most crucial aspect of our approach is the set of fea-
tures that will form the basis for this classification. In our
approach we use a combination of: (i) statistical features,
which are numerical values representing measurable dimen-
sions of the data at hand (e.g., the length of an attribute
value), and (ii) content-based features, which encapsulate
patterns in the content (i.e., string representation) of entity
profiles.

For ensuring the applicability of the features in a wider
range of settings, we restrict our approach to features that
can be extracted from a single snapshot of the given infor-
mation space I (i.e., features that do not involve multiple
versions of I, like the longevity - active versions - of an item).
There is no restriction, though, in the number of entities, to
which a feature can pertain: the feature can be extracted
either from one or from many profiles. The actual features
we used are discussed later in this section.

Based on the selected features, we train a state-of-the art
classification algorithm using a large versioned information
space. We use the earliest version of I for training the classi-
fiers. In fact, we train one classifier for attribute names and
another one for attribute values, independently from each
other. The reason for not considering a joint classifier for
the schema and value space is twofold: first, this approach
suffers from lower efficiency, due to the larger number of fea-
tures and instances (compare Figures 4 and 5 with Figure 6).
Second, a classifier for name-value pairs involves higher lev-
els of noise, since the name of an attribute can be the value
of another one and vice versa. In case they differ in stabil-
ity, content features will be seriously distorted, affecting the
judgment of the classifier [12]. We, thus, distinguish: (i)
Schema Space stability, which refers exclusively to attribute
names, and (ii) Value Space stability, which pertains solely
to attribute values.

To classify PI (i.e., the set of entities contained in I),
we iterate over its elements examining each profile p sepa-
rately. The attribute name, ni, and attribute value, vi, of
each attribute ai ∈ Ap are tested against the corresponding
classifiers. If at least one of them matches the instability
patterns encapsulated in the respective classifier, the whole
name-value pair is considered unstable. Otherwise, it is clas-
sified as stable. Thus, the set of attributes consisting of both
a stable name and a stable value, compose the stable profile
of the entity.

In the following, we analyze the features selected for each
of the aforementioned levels of stability. Before elaborat-
ing on these features, though, we provide some background
knowledge on the n-gram graphs, necessary for the discus-
sion that follows.

N-Gram Graphs Background. At the core of our



Figure 7: Sample tri-gram graph representing the string

“home phone”. Every node of the graph tri-gram corre-

sponds to a tri-gram of the string, and the edges con-

nect tri-grams, whose distance is less than three letters,

regardless of their relative position (i.e., they are undi-

rected edges).

content-based features lies the n-gram graphs framework [11].
We chose this method over other string similarity techniques
for a number of reasons: apart from representation of in-
stances, it also provides a comprehensive representation of
sets of instances (classes) under a unique perspective (the
graph), which is the required functionality in our case. Fur-
ther, this representation allows for subword matching and
graded matching between strings, with bounded values of
similarity that facilitates the functionality of the classifiers.

In essence, this framework allows to represent a text as a
graph (see Figure 7 for an example), keeping more informa-
tion than a bag-of-words and supporting expressive repre-
sentation of sets of text using a single graph [12]. Assuming
that each attribute name constitutes a small text T , we can
combine all stable names of the training set into a common
graph and all its unstable names into another graph. The
same applies to attribute values. The corresponding graphs
capture patterns common in the content of stable and un-
stable items, such as recurring and neighboring character
sequences, special characters, and digits. Thus, they can
be employed to measure the similarity of an information
item (of the testing set) with the stable and the unstable
class. The similarity is calculated between the correspond-
ing graph representation Gi of the information item and a
class representative graph Gj . The following three kinds of
similarity between the n-gram graphs are used in the scope
of this work:

Containment Similarity (CS), which expresses the pro-
portion of edges of a graph Gi that are shared with a second
graph Gj . Assuming that G is an n-gram graph, e is an
n-gram graph edge and that for function µ(e,G) it stands
that µ(e,G) = 1, if and only if e ∈ G, and 0 otherwise, then:

CS(Gi, Gj) =

∑
e∈Gi

µ(e,Gj)

min(|Gi|, |Gj |) , (1)

where |G| denotes the size (i.e., the number of edges) of a
graph G.

Size Similarity (SS), which denotes the ratio of sizes of

two graphs:

SS(Gi, Gj) =
min(|Gi|, |Gj |)
max(|Gi|, |Gj |) . (2)

Value Similarity (VS), which indicates how many of
the edges contained in graph Gi are contained in graph Gj ,
considering also the weights of the matching edges. In this
measure, each matching edge e having weight wi

e in graph

Gi contributes VR(e)

max(|Gi|,|Gj |) to the sum, while not-matching

edges do not contribute (i.e., for an edge e /∈ Gi we define
wi

e = 0). The ValueRatio (VR) scaling factor is defined as:

VR(e) =
min(wi

e, w
j
e)

max(wi
e, w

j
e)
. (3)

The equation indicates that the ValueRatio takes values in
the interval [0, 1], and that it is symmetric. Thus, the full
equation for VS is:

VS(Gi, Gj) =

∑
e∈Gi

VR(e)

max(|Gi|, |Gj |) . (4)

VS converges to 1 for graphs that share both the edges and
their weights, with a value of VS = 1 indicating perfect
match between the compared graphs.

A derived, important measure is the Normalized Value
Similarity (NVS), which is computed as:

NVS(Gi, Gj) =
VS(Gi, Gj)

SS(Gi, Gj)
. (5)

The NVS is a measure of similarity where the ratio of sizes
of the two compared graphs does not play a role.

An n-gram graph is characterized by three parameters: (a)
the minimum n-gram rank Lmin, (b) the maximum n-gram
rank LMAX, and (c) the maximum neighborhood distance
Dwin [11]. In the following, we exclusively consider tri-gram
graphs, i.e., Lmin = LMAX = 3 with a neighborhood distance
of Dwin = 3, which were experimentally shown to provide
a good trade-off between effectiveness and efficiency for the
English language [11].

The next two subsections discuss our prediction methods
in more detail. The features we present were selected among
several candidates based on a preliminary Information Gain
analysis on the versioned data set of DBPedia Infoboxes. In
the future, we plan to investigate whether this set of features
exhibits similar performance in other information spaces, as
well.

3.1 Schema Space Classification
To categorize attributes names into stable and unstable

ones, we conducted a preliminary statistical analysis. The
following statistical features were identified as most promis-
ing (the average values accompanying each feature for both
categories pertain to DBPedia, version 3.0RC):

Entity Frequency (EFA) represents the total number of
entities that contain the given attribute name in their profile.
The higher this number, the more stable the attribute name
is expected to be; names existing in few entities are more
likely to be replaced by other ones. Indeed, stable names are
associated with 494.17 entities, on average, whereas unstable
ones with just 14.74 entities.

Statement Frequency (SFA) denotes the total number
of name-value pairs that involve the given attribute name.



It differs from EFA in that it considers the cases where
the same attribute name can be assigned to multiple val-
ues within a single entity profile. Similar to EFA, though,
higher values are expected to correspond to more stable at-
tribute names. Unstable names have a mean SFA of 18.06,
while for stable ones the average is 718.79.

Name Length (NL) expresses the number of characters
comprising the given attribute name. The longer a name is,
the more likely it is to be replaced by a synonymous, but
more concise one (i.e., the less stable the attribute is). For
this reason, stable names consist of 14.22, while unstable
ones of 35.96 characters, on average.

Value Distinctiveness (V D) represents the total num-
ber of distinct values associated with the given attribute in I.
The larger and more diverse the set of values of an attribute
name, the more stable it is. For example, in case an exces-
sive number of DBPedia entities share the same value for a
specific attribute name, this name-value pair is apparently
stemming from a template; thus, it is by no means repre-
sentative of these entities and very likely to be removed in
the future. Stable attribute names receive a mean of 300.29
distinct values, whereas unstable ones are associated with
just 10.47.

As mentioned above, we use the n-gram graph framework
for modeling and capturing the patterns in the string repre-
sentation of the attribute names classes. Considering the
similarity measures CS and NVS, which were introduced
above, we additionally introduce the following four content-
based features for schema classification: (a) CS with the
stable graph, (b) NVS with the stable graph, (c) CS with
the unstable graph, and (d) NVS with the unstable graph.
They are calculated by comparing the n-gram graph repre-
sentation of an attribute name of the testing set with the
class-representative graphs (derived from the instances of
the training set).

In total, we, rely on a limited number of features, thus
allowing for high efficiency; both the training and the ap-
plication of the classifiers are practical and scalable to large
datasets.

3.2 Value Space Classification
In line with schema space classification, our preliminary

statistical analysis indicated the following features as more
suitable for predicting the stability of values in the given
information space I (the mean values are again derived from
DBPedia, version 3.0RC):

Entity Frequency (EFV ) denotes the number of distinct
entities that encompass the given value in their profiles. Fre-
quently used values are expected to be more stable. In fact,
stable values are associated with 3.57 entities, while unstable
ones only with 1.25.

Statement Frequency (SFV ) expresses the number of
name-value pairs that contain the given value. The higher
this number, the more stable the value is. Stable values are
found in 4.09 statements, on average, while unstable ones in
1.29.

Value Length (V L) corresponds to the number of char-
acters in the string representation of the value. The longer
a value, the more prone to change it is. Indeed, stable val-
ues comprise a mean of 27.89 characters, much less than the
unstable ones (42.37 characters).

Attribute Distinctiveness (AD) is equal to the number
of distinct attribute names associated with the given value.

The higher this frequency, the more stable the value is (1.44
on average for stable values and 1.05 for unstable ones).

For creating adequate content-based features, we use again
the n-gram graphs, in this case to model and capture the
patterns in the string representation of the attribute value
classes. Similar to schema space classification, four content-
based features are created for value space classification: (a)
CS with stable graph, (b) NVS with stable graph, (c) CS
with unstable graph, and (d) NVS with unstable graph. In
total, we consider again a limited set of eight features that
makes our approach applicable to the magnitude of millions
of distinct values.

4. CLASSIFICATION EVALUATION

4.1 Evaluation Methodology
In the context of our experimental study, we employed

an established, versioned data set that is freely available
on the Web: the DBPedia Infobox Dataset. Every version
of it comprises all attribute-value pairs of all infoboxes and
templates within all Wikipedia articles, recorded exactly as
they appear in it (i.e., without any pre-processing) at specific
points in time. In total, we used six snapshots, spanning a
time period of two years (from October, 2007 to October,
2009).

To derive the ground-truth of each version (i.e., the labels
of the attribute names and values, indicating them as stable
or unstable), we compared each version with all its subse-
quent versions. An item (i.e., attribute name or attribute
value) is considered unstable if it is missing from at least
one of the following versions. Items that are persistent in
all versions are marked as stable. Apparently, this procedure
does not apply in the case of the last two snapshots (versions
3.3 and 3.4), since there are not enough versions following
them chronologically7. Both of them are, thus, considered
solely in the process of estimating the evolution of the other
versions.

It should be noted at this point that the degree of evo-
lution varies substantially between the separate versions of
DBPedia. In fact, the earlier a version is, the higher its ob-
servable degree of evolution, and vice versa. The reason is
that it is compared against more subsequent versions, which
increases the likelihood of change in its content. As a re-
sult, the class imbalance problem, inherent in all versions,
becomes more intense for later versions; although all ver-
sions contain a majority of stable items, the skew increases
in proportion to the recency of the data (as shown in Fig-
ures 1 to 6).

To overcome this problem and its impact on measuring
the actual performance of our classification scheme, we con-
ducted our tests on samples with equal distribution of classes
(i.e., 50% stable and 50% unstable items). To this end, we
extracted from each version 10 random, possibly overlapping
samples for each category. In the case of attribute names the
sample size was set to 1, 600 instances, while for attribute
values it was set to 600, 000 instances. The cardinality of the

7Theoretically, we can identify the stable items of DBPedia
3.3 by comparing it to DBPedia 3.4. In practice, though, we
cannot derive safe conclusions by considering solely one sub-
sequent version. In fact, the unstable items of the first four
DBPedia versions were found to have an average “lifetime”
(i.e., number of versions in which they are present) well over
2. This applies both to attribute names and attribute values.



Accuracy (%)

version 3.0 version 3.1 version 3.2

Naive Bayes 54.51± 1.24 54.25± 1.28 53.78± 1.01
Bayes Net 79.90± 1.44 78.93± 1.29 78.74± 1.40
NB Tree 84.16± 3.32 79.75± 2.66 78.87± 2.56
J48 82.54± 2.37 76.85± 2.44 75.78± 2.64
JRip 82.84± 1.65 77.61± 1.24 77.07± 1.12
Random Forest 82.32± 2.04 75.58± 2.83 74.43± 3.19
SVM 81.59± 0.92 68.23± 1.14 65.95± 1.11

Table 1: Comparison of the performance of seven classi-

fication algorithms on samples of the schema space (i.e.,

attribute names) of three versions of the DBPedia In-

fobox Dataset.

Accuracy (%)

version 3.0 version 3.1 version 3.2

Naive Bayes 52.80± 0.37 52.63± 0.32 52.48± 0.29
Bayes Net 75.25± 0.08 73.88± 0.06 73.61± 0.05
NB Tree 81.39± 1.47 79.07± 0.99 78.63± 0.95
J48 82.02± 0.32 79.30± 0.28 78.84± 0.26
JRip 80.70± 2.67 78.10± 1.87 77.80± 1.39
Random Forest 77.89± 0.24 75.91± 0.15 75.59± 0.14
SVM 80.25± 0.84 76.35± 0.77 75.99± 0.74

Table 2: Comparison of the performance of seven clas-

sification algorithms on samples of the value space (i.e.,

attribute values) of three versions of the DBPedia In-

fobox Dataset.

samples was chosen on the basis of the size of the smaller
class (unstable items) across all versions: larger cardinal-
ities would result in samples of unstable items that share
the majority of their elements, thus distorting the experi-
mental outcomes. Smaller cardinalities, on the other hand,
cannot guarantee representative results (i.e., they involve a
high variation in the performance of the samples).

The training set for the classification algorithms encom-
passed the 10 samples of the first snapshot, namely DBPedia
3.0 RC. The resulting 10 classifiers were evaluated against
the 10 random samples of the remaining versions (i.e., the
testing sets were the samples of the versions 3.0 to 3.2).
In total, we conducted 100 tests per version and classifier
and considered the average accuracy as the metric for esti-
mating the performance of each algorithm. More formally,
accuracy α is defined as follows: α = TP

TP+FP
, where TP

(i.e., true positive) stands for the items that are marked as
stable in the ground-truth and are identified as such by the
classifier, and FP (i.e., false positive) denotes the unstable
items that were falsely identified as stable by the classifier.
The outcomes of attribute names and values classification
are presented in the following subsections, 4.2 to 4.4.

Regarding the classification algorithms we employed, we
tested several of them, in order to have a better under-
standing of the problem we are tackling. In more detail,
we considered: (i) Naive Bayes, (ii) Bayes Net, (iii) the op-
timized version of the propositional rule learner RIPPER,
(iv) SVM, and three tree-based classifiers, namely (v) NB
Tree, (vi) J48, and (vii) Random Forests (for a comprehen-
sive overview of these methods, see [28]). Naive Bayes is
the simplest of them, serving as an estimate of the diffi-
culty of the problem: low performance advocates the need
for more effective and elaborate (thus, less efficient) meth-
ods, whereas high performance suggests that simple methods
should suffice. The rest are state-of-the-art methods, which
are expected to exhibit comparable performances.

Note that we conducted our experiments employing three
sets of features: pure statistical features, pure content-based
features and the combination of them, as presented in Sec-
tion 3. Due to lack of space and for the sake of read-
ability, we exclusively analyze the results of their combi-
nation. Considering one set of features independently of
the other leads to substantially lower performance across all
versions (accuracy is lower by approximately 10% for both
cases and for both tasks). This implies that statistical and
content-based features constitute complementary sources of
evidence, which are indispensable for the optimal classifica-
tion scheme. These results are in accordance with previous
related research [12].

Our experiments were fully implemented in Java 1.6 and
performed on a server with Intel Xeon 3.0GHz. For the
implementations of the classification algorithms, we used the
open source library Weka8, version 3.6, documented in [14].
The functionality of the n-gram graphs was provided by the
open source library JInsect9.

4.2 Schema Space Classification
The performance of the seven algorithms on the classifica-

tion of attribute names is summarized in Table 1. The poor
performance of Naive Bayes is easily noticeable, since it lies
close to the performance of the random classifier (α = 50%)
across all versions. This is indicative of the difficulty of the
binary classification problem at hand. The rest of the algo-
rithms achieve much higher effectiveness, with small varia-
tions between most of them.

It is interesting to notice that NBTree achieves the high-
est performance across all snapshots. However, its perfor-
mance is coupled with one of the highest standard deviations
in each case, thus suggesting that it significantly fluctuates
around the mean value. JRip, on the other hand, has sim-
ilarly high performance (especially in the case of DBPedia
3.0), while its standard deviation is among the lowest. Con-
sequently, we consider it to be the optimal choice for at-
tribute names classification.

Quite interesting is also the monotonic decrease in the per-
formance of all classification algorithms for later versions:
the more recent a versions is, the lower the performance of
a classifier. In other words, the longer the lifetime of an at-
tribute name, the more accurate the prediction. This can be
explained by the fact that recent versions may contain actu-
ally unstable items that have been labeled as stable in the
ground-truth, due to the lack of more recent data snapshots.

4.3 Value Space Classification
The outcomes of attribute value classification are depicted

in Table 2. Similar to the schema space evolution, the perfor-
mance of Naive Bayes exceeds that of the random classifier
to a minor extent. The rest of the algorithms exhibit high
effectiveness, with their average accuracy lying around 80%.
There is a clear winner, though, that not only achieves the
highest accuracy, but also has the (second) lowest standard
deviation across all versions: J48. Last but not least, we can
identify the pattern of monotonic decrease once again in the
performance of all algorithms for later versions of DBPedia.

8See http://www.cs.waikato.ac.nz/ml/weka.
9See http://sourceforge.net/projects/jinsect.



version 3.0 version 3.1 version 3.2

Total Accuracy 94.22% 89.55% 89.08%
Stable Class 80.54% 85.40% 87.95%
False Negatives 1.65% 4.46% 5.47%
False Positives 4.13% 5.99% 5.45%

Table 3: Performance of JRip on the schema space (i.e.,

attribute names) classification of three versions of the

DBPedia Infoboxes Dataset.

version 3.0 version 3.1 version 3.2

Total Accuracy 87.11% 86.04% 85.94%
Stable Class 68.91% 74.81% 77.63%
False Negatives 3.67% 6.22% 7.34%
False Positives 9.22% 7.74% 6.72%

Table 4: Performance of J48 on the value space (i.e.,

attribute values) classification of three versions of the

DBPedia Infoboxes Dataset.

4.4 Classification on the whole dataset
Based on our experiments, the optimal classification scheme

consists of JRip for attribute names classification and J48
for the attribute values one. To estimate their performance
on all instances of each version, we trained them on the
whole training set (i.e., all attribute names and all attribute
values) and applied them on the entire testing sets. In each
case, the baseline performance is equal to the percentage of
the stable class10.

Table 3 presents the performance of JRip on the tasks of
schema space classification. We can see that it exceeds that
of the baseline labeled as Stable Class for all versions. How-
ever, their difference drops from 14% in version 3.0 to 5%
and 1.2% for versions 3.1 and 3.2, respectively. This reduc-
tion can be partially attributed to the increase in the skew
of the testing set. Most crucial, though, is the increase of
the portion of False Negatives FN11 for later versions, while
FP remain almost stable. This means, that the more recent
the data are, the higher the number of stable names that
are classified as unstable, probably due to the shortcoming
of the ground-truth (as explained in subsection 4.1).

Table 4 analyses the performance of J48 on the task of
value space classification. Similar to the schema space one,
we can identify a strong pattern in the evolution of effective-
ness across all versions: initially, J48 performs substantially
better than the baseline, but for later versions, the skew and
the percentage of FN increases.

On the whole, the classification of instances into stable
and unstable has been shown to be feasible and effective,
surpassing significantly the baseline performance. This al-
lows us to go one step further and exploit the stability label-
ing to improve the performance of data-volume dependent
tasks.

5. IMPACT STUDY
In this section, we demonstrate the benefits of employing

exclusively the stable parts of entity profiles in two common
tasks of computer science: keyword queries over structured
data, and entity resolution among large-scale, heterogeneous
information spaces. In both cases, we consider an attribute-
agnostic approach, that disregards attribute names and re-
lies exclusively on attribute values12.

10In the context of skewed data, a biased classifier, that as-
signs each instance to the largest class of the training set,
outperforms the random, binary classifier.

11False Negative are the stable items that are classified as
unstable.

12The attribute-agnostic approaches we adopt do not turn
schema space classification superfluous. The reason is that
an unstable attribute name renders the whole attribute-
value pair unstable, and, thus, unnecessary. Schema space
classification is, thus, useful in discarding attribute-value
pairs.

We compare our optimal classification algorithm (i.e., JRip
classifier for attribute names coupled with J48 for attribute
values, labeled Classification Scheme from now on) with the
following methods: (i) the Full Version, which constitutes
our baseline, representing the original performance of a task,
when considering the entire data set, (ii) the Stable Ver-
sion, which represents the performance of the ideal classi-
fication method13, setting the upper limit for improvement
over Full Version, and (iii) the Random Classifier, which
exhibits the performance of a plain, biased classifier that
assigns all instances to the largest class.

For each task, we consider two kinds of metrics: those
measuring efficiency and those estimating effectiveness. They
are specialized to each application, and explained in the fol-
lowing subsections. The only metric that is common to both
use cases is the Index Size (IS); that is, the space occupied
on the disk by the corresponding inverted indices14. The
lower its value, the higher the efficiency of the method.

5.1 Keyword Queries over Structured Data
In the context of this use case, we employed the dataset

used in [8], comprising 4,000 keyword queries extracted from
a query log of the MSN search engine. Each query was
matched to an entity of DBPedia, version 3.0. As men-
tioned above, only the attribute values of the entity profiles
in version 3.0 were indexed. The searching method we em-
ployed was the default ranking mechanism of the Lucene
library (i.e., TF/IDF [20]). To evaluate the performance of
this task, we measure the following metrics (in addition to
IS):

(i) Success at 1 (S@1) and at 10 (S@10). They represent
the percentage of queries that received the correct response
at the first and the tenth place of the returned ranking list,
respectively. The higher their value, the more effective the
method is.

(ii) Average Ranking Position (ARP). It stands for the
place a sought entity is found on average in the ranking list
produced by the search system. Thus, ARP provides an
estimation of the overall performance of the system, con-
sidering the ranking position of the correct result over all
queries. The lower its value, the higher the effectiveness of
the system.

(iii) Average Response Time (ART). It amounts to the
time (in miliseconds) that intervenes between posing a query
and receiving the relevant entities. The lower its value, the
more efficient is the system is. To acquire a more reliable
estimation of this measure (i.e., independent of the external
factors, like the use of disk at the query time), we repeated

13As the ideal classification method we consider an oracle
that, given a name-value pair, decides whether it is stable
or not with an accuracy of 100%.

14For this functionality we used the Lucene library, version
2.9. See http://lucene.apache.org.



Full Version Stable Version Classification Scheme Random Classification

S@1 (%) 29.30 33.20 (+13.31%) 32.18 (+9.83%) 21.19 (−27.68%)
S@10 (%) 80.90 85.42 (+5.59%) 83.68 (+3.45%) 70.24 (−13.18%)
ARP 7.83 4.46 (−43.04%) 5.02 (−35.89%) 10.74 (+37.16%)
ART (ms) 3.89 3.35 (−13.88%) 3.49 (−10.28%) 3.23 (−16.97%)
IS (MB) 622 531 (−14.63%) 548 (−11.90%) 412 (−33.76%)

Table 5: Performance comparison on keyword queries over the DBPedia Infoboxes dataset, version 3.0. In parenthesis,

we present the relative improvement each method conveys in comparison with the Full Version. For S@1 and S@10

the higher a value is, the better. For ARP, ART and IS, the lower a value is, the better.

Full Version Stable Version Classification Scheme Random Classification

Duplicates 1, 044, 099 1, 005, 481 1, 003, 390 868, 987
Comparisons (×108) 2.31 0.62 1.21 2.04
PC (%) 93.30 89.85 89.66 77.66
RR (%) - 73.38 47.62 11.69
IS (GB) 2.2 1.9 (−13.63%) 1.8 (−18.18%) 1.3 (−40.90%)

Table 6: Performance comparison in the task of entity resolution between the versions 3.0 and 3.3 of the DBPedia

Infoboxes dataset.

the corresponding measurements 100 times and took their
average value.

The performance of all the methods is summarized in Ta-
ble 5. We can notice that Stable Version outperforms Full
Version in all metrics; it improves the time and the space
required by 14% and by 15%, respectively, while enhancing
significantly its effectiveness (especially ARP). The same ap-
plies to our Classification Scheme, though to a lesser extent
(10% improvement in time and 12% in space). This means
that its performance is very close to the ideal one, although
there is still some potential for improvement. Random Clas-
sification apparently deletes important parts of entity pro-
files, impairing its effectiveness to a large extent. Thus, we
can safely deduce that stable entity profiles enhance not only
the efficiency, but also the effectiveness of this application.

5.2 Entity Resolution
For this use case, we applied our classification scheme on

the method presented in [23]; it constitutes a blocking tech-
nique that is able to efficiently resolve two voluminous, het-
erogeneous, individually clean but overlapping data sets by
sacrificing effectiveness to a limited extend.

In essence, it completely disregards the attribute-names of
entity profiles, and relies exclusively on their attribute val-
ues, tokenizing them on their special characters (this applies
even to URLs). Blocks are then defined on the equivalence
of tokens: each block corresponds to a single token, and
each entity is associated with multiple blocks. To process
the resulting, overlapping blocks efficiently (i.e., with as few
comparisons as possible), it orders blocks according to their
utility ; that is, the estimated trade-off between the gain of
detecting new duplicates in them against the cost of the
comparisons. Additional strategies, like duplicate propaga-
tion and block pruning, are also devised in order to further
reduce the number of required comparisons.

Similar to the experimental study of [23], we apply the
attribute-agnostic blocking method on the two DBPedia ver-
sions with the least overlap in their content: versions 3.0 and
3.3. In fact, they share only 46.26% of their content and
47.36% of their entities. The ground-truth (i.e., the set of
duplicate entities that have to be detected) consists of those
entities that have exactly the same URL in both versions of
DBPedia. This procedure yielded 1,119,133 matching enti-
ties, in total.

To measure the performance of our method, we consider
the following, established metrics for blocking techniques [23]:

(i) Pair Completeness (PC) expresses the ratio between
the matches identified by our method and the matches exist-
ing in the data set. It is computed as follows: PC = dm/gm,
where dm denotes the number of detected matches, and gm
represents the number of ground-truth matches. PC is com-
parable to the Recall metric of Information Retrieval and
takes values in the interval [0, 1]. Higher values indicate
higher effectiveness of the blocking method.

(ii) Reduction Ratio (RR) expresses the reduction in the
number of pair-wise comparisons required by our method
with respect to the baseline one. It is defined as follows:
RR = 1 −mc/bc, where mc stands for the number of com-
parisons entailed by the considered method, and bc expresses
the number of comparisons required by the baseline method.
In our case, we employ the original methods as our baseline.
RR takes values in the interval [0, 1] (for mc ≤ bc), with
higher values denoting higher efficiency.

The performance achieved by each method is presented in
Table 6. Similar to the previous application, Stable Version
significantly surpasses Full Version in efficiency, both with
respect to the required comparisons (by a whole order of
magnitude), and the required space (by 13%). In this case,
though, its effectiveness is a bit lower, as it detects slightly
fewer duplicates. Our Classification Scheme performs sim-
ilarly, requiring almost the half of the initial comparisons,
while occupying 18% less disk space. Effectiveness is also
lower, but very close to that of the Stable Version. Ran-
dom Classification, on the other hand, suffers from poor PC
and RR. On the whole, we can see that the stable parts of
entity profiles significantly improve the efficiency of this ap-
plication, sacrificing its effectiveness to a minor and, thus,
acceptable extent.

6. RELATED WORK
Web Content Dynamics. The most similar work to

ours is [22]; it explores the evolution of entities with the
aim of improving object identification. To this end, it intro-
duces a method for estimating whether observed data were
generated from the same entity (due to updates in its pro-
file) or they stem from different entities. The vast majority
of the remaining works on Web Dynamics focuses on the
evolution of Web Pages. [21], for example, investigates in-
formation longevity as a means of specifying the optimal



recrawl scheduling policy for each page. It estimates the
actual freshness of a page, by identifying its ephemeral and
persistent content fragments. Similarly, [1] detects the sta-
ble and the dynamic part of Web Pages through the staying
power of their terms. A hypothesis similar to ours is in-
troduced in [2]: relevant terms for a web document appear
in most of its revisions and are rarely deleted. Based on
this, the authors try to identify the optimal term weighting
model, taking into account the history of documents in the
context of social, versioned content.

Keyword Queries over Structured Data. To fa-
cilitate keyword search over structured data, recent works
like [6, 26] have proposed the disambiguation of queries be-
fore the retrieval of relevant entities: each keyword query
is translated into a structured query, which tries to express
as accurately as possible the user’s intention. To this end,
the likelihood of different possible interpretations has to be
assessed. Statistics pertaining to keywords, database and
query logs, such as TF/IDF scores and keyword frequencies,
are typically employed in this effort. Exhaustive tuning of a
large number of such parameters is typically required in or-
der to come up with the optimal estimation function [8]. As
a result, we opted for an attribute-agnostic approach that
disregards the attribute names, considering exclusively the
values of entity profiles. Though trivial and potentially of
lower performance, this approach suits better our goal: es-
timating the influence of stable and unstable content over
this task.

Entity Resolution. Entity resolution (ER)—also known
as record linkage or duplicate detection— aims at identifying
those entity profiles or records that refer to the same real-
world entity. A comprehensive overview of the existing ER
work can be found in [10, 17]. The prevalent method of mak-
ing ER more efficient and scalable is data blocking: data are
organized into blocks of matching candidates and detailed
comparisons are only performed within blocks. Blocking
techniques include the Sorted Neighborhood approach [15],
the StringMap method [16], q-grams-based blocking [13],
Suffix Arrays approach [7] and iterative blocking [27]. How-
ever, these approaches are not applicable in the context of
heterogeneous information spaces, since they require a pre-
defined, restricted schema. Therefore, we evaluated our sta-
bility prediction approach on the attribute-agnostic blocking
approach proposed in [23].

7. CONCLUSIONS
In this paper, we presented an approach for predicting sta-

ble parts of content in user-maintained information spaces,
and entity repositories, in particular. The central idea is
that considering exclusively the stable content of such large,
heterogeneous information spaces is sufficient for many tasks.
Based on statistical and content-based features, we trained
an algorithm that effectively predicts the stable parts of en-
tity profiles. We verified the effectiveness of our approach
using a large, versioned data set (several versions of DBPe-
dia). In addition, the approach was evaluated in two use
cases that can profit from the prediction of and restriction
to the stable part of an information space: keyword search
and entity resolution. In both applications, efficiency is sig-
nificantly enhanced, while effectiveness is more or less sta-
ble. In the future we plan to gain further insights into the
topic by investigating whether a classifier trained on a user-
generated repository (DBPedia in our case) is applicable to
other repositories.
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