
Adaptivity in Entity Subscription Services

George Giannakopoulos, Themis Palpanas
DISI

University of Trento
Trento, Italy

ggianna@disi.unitn.it, themis@disi.unitn.eu

Abstract—Real-word entities can be mapped to unique
entity identifiers through an Entity Name System (ENS),
to systematically support the re-use of these identifiers and
disambiguate references to real world entities in the Web. An
entity subscription service informs subscribed users of changes
in the descriptive data of an entity, which is a set of attribute
name-value pairs. We study the design, implementation and
application of an adaptable push-policy subscription service,
within a large-scale ENS. The subscription system aims to
deliver ranked descriptions of the changes on entities, following
user preferences through a feedback-driven adaptation process.
The adaptation is based on both the content and the type
of each entity change. We evaluate the learning curve of
the system and the utility of the content-type discrimination.
The experiments demonstrate good results, especially in the
system’s content-aware adaptation aspect.

Keywords-Adaptive systems; Artificial intelligence; User
modeling

I. INTRODUCTION

An Entity Name System (ENS) [1], [2], [3] is a system
that aims to handle the process of assigning and managing
identifiers for entities (e.g., people, locations) in the World
Wide Web (WWW). These identifiers are global, with the
purpose of consistently identifying a specific entity across
system boundaries, regardless of the place in which refer-
ences to this entity may appear.

The ENS has a repository for storing entity identifiers
along with some small amount of descriptive information for
each entity. Entities are described by a number of attribute-
value pairs, where the attribute names and the potential
values are user-defined (arbitrary) strings.

The ENS supports, through an Access Services layer, the
search for an entity or the update of entities. The search
allows the ENS clients to identify an entity based on cross-
validated and updated data. Updates on the entities of the
ENS repository can be performed either by inserting a new
entity in the system or by changing some of the attributes
of an existing entity. System administrators can even merge,
split or delete entities.

The administration and checking of entity information
is a difficult task in itself, considering the scalability of
an ENS. To alleviate the burden of such a task and to
handle the information need of non-administration clients,
we propose the use of a change subscription system, that

helps clients follow the changes of entities in the ENS
in the time they occur. The subscription system informs
users through asynchronous messages (e.g., via e-mail) on
sets of changes concerning entities the users have selected.
Examples of subscription include subscribing to changes of
the “current population” attribute of one’s home town, or of
the “phone” attribute of a former colleague.

The system we propose ranks the information on changes
in the sent message according to user preferences on what is
important, and is able to adapt to the individual use-patterns
of each client. This ranking is based on a user model,
which is created through machine learning and a feedback-
based user modeling methodology. The experimental results
show that the proposed approach can successfully adapt to
usage patterns, delivering to each user the most relevant
and interesting change notifications first. Note that we use
ENS as a concrete example for ease of exposition, but our
techniques can be applied to any similar subscription service,
where there are changes of various types and there is some
string representation identifying the content of a change.

In the following sections, we define the problem (Section
II) and elaborate on our proposed methodology (Section
II-A). Then, we present the performed experiments (Section
IV), followed by related work (Section V). We then conclude
and present future work (Section VI).

II. ADAPTIVE SUBSCRIPTION SERVICE

The subscription service is a supplement to the usability
of the ENS, tackling the problem of keeping consumers of
information concerning specific entities updated. The system
disseminates information to consumers1 about changes on
entities to which the consumers have subscribed.

It is clear that a subscription service for changes on enti-
ties is not very different from any other kind of subscription
service. Nevertheless, the attributes of the information on
changes partially define the adaptive approach we present
within this work (see Section III-A). As we elaborate later in
this article, changes can have various degrees of importance,
based on their type. For example, a “delete” change can be
more important than an “insert” change (also see Section

1The terms client, user and consumer will be used interchangeably
throughout the text.

III-A). Then, the content of a change is a completely
different aspect from its type. We consider the content of
the change to be the difference between the attributes of the
original state of an entity and the attributes of the new state.
We argue that this content can provide more information
than the type of the change alone (also see Section IV).

A. Subscription Feedback and Adaptive Content Ranking

The problem we tackle within this work is bringing the
information on changes to consumers, in such a way that will
best suit individual consumers’ needs. The main scenario
we face wants a user-consumer to have subscribed to a
set of entities from the ENS, in order to get informed
about changes in these entities. However, each user may
be interested in different kinds of changes. This problem
needs an adaptable system to support the modeling and
application of user needs and preferences. The system we
propose is aware of user feedback in order to improve the
users’ experience and optimize the flow of information to
each individual user.

The problem can be formalized as follows:
Given
• a set of users, i.e., user models U
• a set of change descriptions D = {< T,C >, T ∈

T, C ∈ C} of type T and content C, where T is the
set of possible types and C the set of possible contents

• a set of feedback indications F = {< U,D, I >
,U ∈ U, D ∈ D, I ∈ I}, where I a set of importance
indicators, either categorical (nominal-scale) or real

we need the system to optimize the estimation function
of importance for a new description of a change Dn,
f(U,Dn|F) : U × D → I, for our criterion J (described
below) that aims at minimizing the following absolute dif-
ference: |f(U,Dn|F)− I0(U,Dn)|, where I0(U,Dn) ∈ I is
the user assigned interest value.

In this work the I set will be considered to be the set
of real numbers, i.e., I ≡ R. This way we can provide a
partial ordering of descriptions Di ∈ D. Our criterion J
is based on whether the ordering of the set of descriptions
a user is entitled to get (due to a subscription) is the one
expected by the user. We do not consider that there is a
unique ordering that will suit the user’s needs. Instead, we
measure the performance of the system based on a devised
measure, called Ratio of Acceptable Errors (RAE), defined
in Section IV.

III. ADAPTIVE SUBSCRIPTION-BASED UPDATES

The architecture we have devised consists of the Change
Queue, the User Profile Database, the Subscription Infor-
mation Broker and the Adaptive Information Control (see
Figure 1).

The Change Queue is a change log or repository of
changes retaining information on the time stamp of a change.

Figure 1. Schematic of the Subscription Service and its interactions.

The User Profile Database, matches a user-consumer to its
profile and holds such information as the time stamp of the
last update the user has received.

The Subscription Information Broker takes change in-
formation and stores them into the Change Queue. The
broker is also the component that sends the information to
the consumers. To do that, the broker requests from the
Adaptive Information Control component the set of data
that need to be sent to active users, on a per user basis.
Furthermore, the Subscription Information Broker reports
the consumer feedback to the Adaptive Information Control
when the consumer uses the feedback mechanism, to allow
for adaptation to consumer needs.

The Adaptive Information Control matches each consumer
to a user profile, requests from the Change Queue the
changes that have occurred since the user’s last update and
ranks and groups the information that will be sent to the
user. This information is then passed on to the Subscription
Information Broker to be disseminated. The Adaptive In-
formation Control also uses user feedback provided by the
Subscription Information Broker to recompute and update
the user profiles in the User Profile Database.

The asynchronous nature of the overall process, as well as
the fact that only Subscription Information Broker interacts
with external messages, allows for offline and distributed
processing, facilitating scalability. This is why no external
access is granted to the subscription service database di-
rectly. Furthermore, the Adaptive Information Control mod-
ule is a required medium between the feedback mechanism
and the user model database, because of the required calcu-
lations for the update of the user model, especially as far as
it concerns the content of a change (see Section III-A2).

The adaptation of the aforementioned architecture to user
needs relies on two main aspects of the Adaptive Infor-
mation Control: the first is how changes’ descriptions are
represented to form a user model and the second is how the
system adapts to user feedback.

A. Modeling Change and Information Importance

We define the description D of a change in a dual way,
concerning the type and the content of the change. For each
of these aspects we use a different kind of representation to
address their individuality.

1) Type of a Change: The type T of a description can be
viewed as a point in a multi-dimensional space, where the
dimensions are:
• One dimension for each alternative of entity change:

deletion, splitting of an an entity into two, merging
of two entities in one, and entity update. The value
for each dimension can be either 1.0, indicating the
corresponding type of change, or 0.0 otherwise.

• One dimension for each alternative of attribute change,
which is the result of an entity update change: deletion,
insertion, update.

• The normality of a type of change should indicate, in
a quantitative manner, whether a given update appears
to be expected. This normality can be judged by such
processes as type checking for new values, or by
whether a value holds similar qualities to other values
for the same attribute. For example a grammar model
for a given attribute can indicate whether the new value
is normal or not. We use normality as a real value,
normalized between 0.0 and 1.0, where 0.0 indicates
maximum abnormality and 1.0 perfect normality.

We can now represent a type T of change in a vector
space, but the content C of the change is a completely
different challenge. In an ENS system, the state of an entity
can be described as a set of attribute name-value pairs. Thus,
C is determined as the difference between the two states.

Ideally, we want to be able to identify such preferences as
“I am interested in changes that have to do with my entities’
name or telephone number”, or “I am interested about when
the inProduction field of proteins has a value of true”. To
identify such preferences one must act on the string level and
create a model for attribute names and attribute values that
are of interest for the consumer. The string representation of
the content is the attribute-value pair that was changed, in its
changed version if such a pair is applicable to the change.
Otherwise, the representation is an empty string.

2) Content of a Change: To model interesting attribute
name-value pairs, we use the paradigm of character n-gram
graphs[4], which can take into account substring matches
and offer a set of operators that allow for an updatable
model [5].

A character n-gram Sn contained in a text T can be any
substring of length n of the original text. The n-gram graph
is a graph G = {V G, EG, L,W}, where V G is the set of
vertexes, EG is the set of edges, L is a function assigning a
label to each vertex and edge, and W is a function assigning
a weight to every edge. N-grams label the vertexes vG ∈
V G of the graph. The (directed) edges are labeled by the

concatenation of the labels of the vertexes they connect in
the direction of the connection.

The graph is simply constructed by a running window
over a given string, that analyzes the string into overlapping
character n-grams and records information about which n-
grams are neighbours within the window. The edges eG ∈
EG (the superscript G will be omitted where easily assumed)
connecting the n-grams indicate proximity of these n-grams
in the text within a given window Dwin of the original text
[4]. The edges are weighted by measuring the number of
co-occurrences of the vertexes’ n-grams within Dwin.

We use the n-gram graphs within this work due to several
of their traits like language neutrality and the fact that, when
used for matching between strings, they offer a graded nor-
malized indication of similarity. We also use the updatability
of n-gram graphs, when applied as language models [5]. In
other words, if we judge a set of attribute names-values as
indicative of importance, we can create an n-gram graph
that models the whole set and, thus, avoid keeping all the
attribute names-values for matching. Furthermore, the model
offers fuzzy matching and substring matching which helps
in open domains of attribute names and values, as is the case
of an ENS.

To model the content C of changes a user is interested
in, we create for each training instance Ci, given by the
feedback process, a corresponding n-gram graph GCi . The
graph is based on the string representation of the change.

The model graph construction process for each set of
changes (e.g., of the uninteresting/interesting/critical classes
of changes) comprises the initialization of a corresponding
graph with the first string representation of content, and the
subsequent update of this initial graph with the graphs of
the other content instances in the class.

Specifically, given two graphs, G1 and G2, the first
representing the training set of changes and the second a
new instance, we create a single graph that represents the
updated model graph G1 with the graph of new evidence
G2: update(G1, G2) ≡ Gu = (Eu, V u, L,Wu), such that
Eu = EG

1 ∪EG
2 , where EG

1 , E
G
2 are the edge sets of G1, G2,

respectively. In our implementation two edges are equal
e1 = e2 when they have the same label, i.e., L(e1) = L(e2).

The weights of the resulting graph’s edges are calculated
as follows: W i(e) = W 1(e) + (W 2(e) − W 1(e)) × l.
The factor l ∈ [0, 1] is called the learning factor: the
higher the value of learning factor, the higher the impact
of the second graph to the first graph. As we need the
model of a class to hold the average weights of all the
individual graphs contributing to this model, the i-th graph
that updates the class graph (model) uses a learning factor
of l = (1− i−1

i), i > 1. This creates a class model that acts
as a representative graph for the class content instances.

As already indicated, we need to create more than one
model graphs: one per feedback alternative of the user.
Within this work we give the user three alternatives for

feedback: unimportant information, important information
and critical information. Therefore, we create three corre-
sponding model graphs. These graphs represent their corre-
sponding content instances in the user model.

In our system the set of I, which stands for importance, is
the set of real numbers R. We set three qualitatively mapped
thresholds of importance: -1.0, which indicates unnecessary
information, 1.0, which indicates useful information and
2.0, which indicates critical information. Of course, the set
of importance alternatives could have as many elements
as desired, keeping in mind that, if I ≡ R, using higher
values for higher importance will probably provide better
distinction. Given this kind of mapping, we need to be able
to judge the importance i ∈ I of a new instance of changes,
for a particular user.

B. Ranking Using User Feedback

Having reported on the representation of changes, we
can now describe the methodology for assigning importance
values to entity changes, based on a user model.

The algorithm we use to learn the user model is actually
that of Support Vector Machine Regression (SVR). SVMs
have already been successfully used in a variety of applica-
tions and settings [6]. Within this work we use the LibSVM
library[7] and especially its ε-SVR implementation of the
algorithm found in [8].

The basic idea behind the ε-SVR is that, given a set of
training data {(x1, y1), ..., (xl, yl)} ∈ X×R,where X is the
space of the input patterns we need to “find a function f(x)
that has at most” ε “deviation from the actually obtained
targets yi for all the training data, and at the same time is as
flat as possible. In other words, we do not care about errors
as long as they are less than” ε, ” but will not accept any
deviation larger than this” [9]. In our case, of change types
T , X ≡ Rd which is the vector space we defined for the
representation of types T ∈ T, and yi ∈ I.

For the content C of changes, on the other hand, we
first calculate the size-normalized value similarity[5] be-
tween the n-gram graph GC of a judged C, with re-
spect to each of the n-gram graphs of the user model
Gimportant

U , Gunimportant
U , Gcritical

U . This similarity value, which
lies between 0.0 and 1.0, indicates what part of the
graph of C can be found in the corresponding graphs
of the model of the user. This set of similarities S =
Sunimportant, Simportant, Scritical is the second constituent of the
representation of a description D =< T,C > of a change
with respect to a user model. To use this set of similarities,
we integrate them within the vectors of the type as new
dimensions-features. Therefore, when n-gram graphs are
used, the overall importance of a change is estimated based
on the combined vector for type and content in an extended
input vector space X ′.

Table I
ENS USER BEHAVIOUR: PROBABILITY DISTRIBUTION OF CHANGE

EMISSION

User type (Prob.) Change type Probability

Benevolent (0.95) Attribute change (normal) 0.60
Attribute insertion 0.30
Attribute deletion 0.10

Sys.admin.(0.03) Entity merge 0.45
Entity split 0.45

Entity deletion 0.10
Malevolent (0.02) Attribute change (abnormal) 0.70

Attribute deletion 0.30

IV. EXPERIMENTS AND EVALUATION

In order to evaluate our methodology, we had to generate
a synthetic set of entity changes, much like other works
on adaptive systems (e.g., [10], [11]). The information
concerning user behaviour is twofold in our case. We try to
replicate the behaviour of the users of the ENS who change
entity data. Then, we create profiles for the behaviour of
subscribers using the adaptive subscription service.

As behaviour of the users that change the entities’ data,
we generate a number of changes’ descriptions D — 10000
instances split into sets of 1000 instances to provide for
10-fold validation. To generate this kind of dataset, we
randomly create changes based on a selection from the
following user behaviours: benevolent user changes, system
administration changes and malevolent user changes. The
probabilities of emission per user profile and change type
are elaborated on in Table I.

The second part of the evaluation dataset consists of
subscriber feedback. We consider a few representative cases
of subscribers to minimize the evaluation overhead, while
providing useful insight on the adaptivity of the system. A
more detailed description of what each user finds interesting
and critical can be found in Table II. All changes not noted
within a profile are considered uninteresting for the profile.
The profiles have been chosen so that they are require
different kinds of information to be determined, concerning
either the type or the content of the change.

Before the actual evaluation, we use the learning method-
ology and produce corresponding results, also supplying
feedback for every step. This process is reiterated for every
subscriber scenario for the whole set of change data. The
information supposedly sent to the user is annotated with the
iteration number, simulating the timestamp of the change.

To evaluate the system learning effectiveness, as well as
whether the addition of content-related features is useful, we
experiment on different aspects of the system response.

We determine how quickly the system learns, by “emit-
ting” changes to the supposed user in groups of ten and
measuring how well the systems adapts to the feedback. We
consider that the user feeds back the system after every new
emission, by indicating the importance of all the items in the
last group. The performance of the system for every emission

Table II
PROFILE DESCRIPTIONS. Note: ALL CHANGES NOT NOTED WITHIN A PROFILE

ARE CONSIDERED UNINTERESTING FOR THE PROFILE.

Subscriber Importance Description
Type-based Critical Attribute deletion.

Interesting Entity deletion.
Attribute
name-based

Critical Any change concerning an attribute that
contains the string “name”.

Interesting (None)
Attribute
name-value
pair-based

Critical Attribute change or insertion on “isDe-
ceased” attribute, with a new value of
“true”.

Interesting Attribute change or insertion on “isDe-
ceased” attribute, with a new value of
“false”.

Complex Critical Default attribute (some attributes in the
ENS are considered default — e.g., the
name of a person entity — while all the
others non-default) update or insertion with
an abnormal value.

Interesting Default attribute deletion or normal update.

Table III
CORRELATION BETWEEN EMISSION-ITERATION NUMBER AND MEAN

ABSOLUTE ERROR PER SUBSCRIBER PROFILE AND METHOD. Note: HIGH

STATISTICAL CONFIDENCE IS INDICATED USING BOLD WRITING.

Subscriber Graphs Correlation (p-value)
Type-based X -0.3398559 (< 10−2)

-0.2993715 (< 10−2)
Attribute name-based X -0.3734062 (< 10−2)

-0.03564642 (0.2601)
Attribute name-value pair-based X -0.08581718 (< 10−2)

-0.02968072 (0.3484)
Complex X -0.5989662 (< 10−2)

-0.03393356 (0.2837)

is based on the mean absolute error of the importance
estimation. To judge the learning curve of the system, we
study the magnitude of the mean absolute error as a function
of the current number of emissions.

To determine whether the content aspect of the system is
a valuable resource, we trying two alternatives. One uses
the graph similarities as a feature, while the other does
not. When we use content, we expect that the system will
perform better for subscriber profiles that indeed use content
criteria For other profiles, we expect no loss in performance.

Table III indicates the Pearson correlation [12] between
the number of emission, i.e., the training iteration, and the
mean absolute error. A negative correlation indicates that,
after performing more training the error is diminished. We
see that in all cases, when using graphs, the system learns,
with statistical support. In all the cases where we expected
that the content should be used, indeed the system cannot
learn when the content-sensitive methodology is not applied.

To further understand how quickly the system learns, we
define the system performance for a given change emission
to be the number of times a ranking error has exceeded
0.5. Given our I values, errors beyond this 0.5 margin may
cause an error. Errors below this margin cannot cause an
error by themselves. So the performance is the percentage
of the importance estimation in a given set that have
their absolute error below 0.5. Thus, a value of 1.0 in

(a) Type-based (b) Attribute Name-based

(c) Attribute Name-Value-based (d) Complex

Figure 2. The learning curve for different profiles.

performance indicates a ranking that is ideal, while a value
of 0.0 indicates a ranking that will have several errors. We
call this measure Ratio of Acceptable Errors (RAE). The
formula, for a given set D0 of descriptions, their corre-
sponding sequence of importance estimations Ĩ0 = {yl|yl =
f(Dl, U |F), Dl ∈ D0} and actual importance values I0,

is RAE(Ĩ, I0) = 1.0 −
∑

i∈(1,...,|I|)
bmin(|̃I(i)−I(i)|,0.5)+0.5c

|I| ,
where Ĩ(i), I(i) is the i-th element of the corresponding
sequence, bxc is the floor operator, |X|, gives the number
of elements of a sequence X, |x| is the absolute value of a
number x and min(x, y) is the minimum function.

RAE as a function of time, as illustrated in Figure 2,
indicates the learning curve of the system. The points in the
graphs indicate the RAE for a given iteration. We note that
there can be several RAE for a given iteration, since we have
applied 10-fold validation of the results. The lines represent
an approximation (LOWESS smoothing [13]) of RAE over
iterations. Dark lines refer to the RAE when using graphs,
while gray lines represent the performance without them.

It appears that, when the content methodology is used,
all profiles are feasible to learn. The most difficult case
appears to be the attribute name-value-based one, probably
because we represent the name-value pair as a single string
and, therefore, generate features of similarity for them

in common, inducing noise in the n-gram graph pattern
matching. In other cases very few iterations (< 10) are
enough for the profile to be learned. Even the complex
profile is learned in about 20 iterations. This shows that
the presented methodology is very promising in learning
subscriber profiles on changes.

V. RELATED WORK

We have proposed an adaptive system, related to the
definition of adaptive user interfaces: “an adaptive user
interface is a software artifact that improves its ability to
interact with a user by constructing a user model based
on partial experience with that user” [14]. Our system is
based on individual user needs and not on “canonical” user
needs [15], i.e., group or community needs.

Within this system we use a feedback mechanism, much
like the feedback mechanisms proposed in information re-
trieval since the 1970’s [16]. These feedback mechanisms
have relied both on the vector space model [14] or Bayesian
modeling [17] to represent user needs. The adaptivity pro-
vided is, however, mostly applied on filtering tasks [18], [19]
or recommendations [20] even through active learning [21].

In this work, the information retrieved is defined a priori
and is always sent to the user without any filtering. We use a
hybrid approach for the representation of the user model, dis-
criminating between type and content of change. The type of
change is identified by vector features engineered for entity
change subscription, while an n-gram graph representation
is used for the content of changes. A function of similarity
then allows to add the content as a set of new dimensions
to the feature space describing a change.

VI. CONCLUSION AND FUTURE WORK

We propose an adaptive subscription service architecture,
concerning the update of clients of an ENS with information
on entity changes. The subscription service uses information
from user feedback to model user needs, taking into account
both the type and the content of changes. The system appears
to learn even complex user preferences in a low number of
feedback iterations and offers very promising results in the
way it ranks changes for the user.

In the future, we need to study the representation of
attribute names and attribute values into different graphs.
We further need to determine how the system will be able
to cope with interest shifts of a client.

ACKNOWLEDGMENT

This work is partially supported by the by the FP7 EU
Large-scale Integrating Project OKKAM “Enabling a Web of
Entities” (contract no. ICT-215032). See http://www.okkam.
org.

REFERENCES

[1] P. Bouquet, H. Stoermer, and B. Bazzanella, “An entity name system
(ENS) for the semantic web,” in ESWC, 2008, pp. 258–272.

[2] T. Palpanas, J. A. Chaudhry, P. Andritsos, and Y. Velegrakis, “Entity
data management in OKKAM,” in DEXA Workshops, 2008, pp. 729–
733.

[3] B. Bazzanella, J. A. Chaudhry, T. Palpanas, and H. Stoermer, “To-
wards a general entity representation model,” in SWAP, 2008.

[4] G. Giannakopoulos, V. Karkaletsis, G. Vouros, and P. Stamatopoulos,
“Summarization system evaluation revisited: N-gram graphs,” ACM
Trans. Speech Lang. Process., vol. 5, no. 3, pp. 1–39, 2008.

[5] G. Giannakopoulos, “Automatic summarization from multiple doc-
uments,” Ph.D. dissertation, Department of Information and Com-
munication Systems Engineering, University of the Aegean, Samos,
Greece, http://www.iit.demokritos.gr/˜ggianna/thesis.pdf, April 2009.

[6] M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent systems, vol. 13, no. 4, pp. 18–28,
1998.

[7] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

[8] V. Vapnik, “Structure of statistical learning theory,” Computational
Learning and Probabilistic Reasoning, p. 3, 1998.

[9] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

[10] U. Cetintemel, M. Franklin, and C. Giles, “Self-adaptive user profiles
for large-scale data delivery,” in Data Engineering, 2000. Proc. of
16th Int. Conf. on, 2000, pp. 622–633.

[11] J. Allan, “Incremental relevance feedback for information filtering,”
in Proc. of the 19th annual Int. ACM SIGIR Conf. on Research and
development in information retrieval. ACM New York, NY, USA,
1996, pp. 270–278.

[12] M. Hollander and D. Wolfe, “Nonparametric statistical methods,” New
York, p. 518, 1973.

[13] W. Cleveland, “LOWESS: A program for smoothing scatterplots by
robust locally weighted regression,” American Statistician, pp. 54–54,
1981.

[14] P. Langley, “Machine learning for adaptive user interfaces,” Lecture
notes in computer science, pp. 53–62, 1997.

[15] M. McTear, “User modelling for adaptive computer systems: a survey
of recent developments,” Artificial intelligence review, vol. 7, no. 3,
pp. 157–184, 1993.

[16] J. Rocchio et al., “Relevance feedback in information retrieval,”
The SMART retrieval system: experiments in automatic document
processing, pp. 313–323, 1971.

[17] P. Zigoris and Y. Zhang, “Bayesian adaptive user profiling with
explicit & implicit feedback,” in Proc. of the 15th ACM Int. Conf.
on Information and knowledge management. ACM New York, NY,
USA, 2006, pp. 397–404.

[18] M. Shepherd, C. Watters, and A. Marath, “Adaptive user modeling
for filtering electronic news,” in System Sciences, 2002. HICSS. Proc.
of the 35th Annual Hawaii Int. Conf. on, 2002, pp. 1180–1188.

[19] X. Zhou and T. Huang, “Relevance feedback in image retrieval: A
comprehensive review,” Multimedia systems, vol. 8, no. 6, pp. 536–
544, 2003.

[20] D. Bonnefoy, M. Bouzid, N. Lhuillier, and K. Mercer, ““More like
this” or “Not for me”: Delivering personalised recommendations in
multi-user environments,” in User Modeling 2007, 2007, pp. 87–96.

[21] M.-F. Balcan, A. Beygelzimer, and J. Langford, “Agnostic active
learning,” Journal of Computer and System Sciences, vol. 75, no. 1,
pp. 78 – 89, 2009.

