
1

Spring 2007 Data Mining for Knowledge Management 37

Distributed Stream Querying Space
“One-shot” vs. Continuous Querying

One-shot queries: On-demand “pull” query
answer from network

One or few rounds of communication
Nodes may prepare for a class of queries

Continuous queries: Track/monitor answer at
query site at all times

Detect anomalous/outlier behavior in (near) real-
time, i.e., “Distributed triggers”
Challenge is to minimize communication Use

“push-based” techniques
May use one-shot algs as subroutines

Querying
Model

Communication
Model

Class of
Queries

Spring 2007 Data Mining for Knowledge Management 38

Distributed Stream Querying Space
Minimizing communication often needs approximation

and randomization
E.g., Continuously monitor average value

Must send every change for exact answer
Only need ‘significant’ changes for approx (def. of
“significant” specifies an algorithm)

Probability sometimes vital to reduce
communication

count distinct in one shot model needs
randomness
Else must send complete data

Querying
Model

Communication
Model

Class of
Queries

2

Spring 2007 Data Mining for Knowledge Management 39

Distributed Stream Querying Space
Class of Queries of Interest

Simple algebraic vs. holistic aggregates
E.g., count/max vs. quantiles/top-k

Duplicate-sensitive vs. duplicate-insensitive
“Bag” vs. “set” semantics

Complex correlation queries
E.g., distributed joins, set expressions, …

Querying
Model

Communication
Model

Class of
Queries 1S

0 11

1 1

0
0

1

1 0

2S

0
1

1

0
1

1

0

1
1

0

1
1

3S
6S

5S
4S

Query
|(S1 ∪ S2) ⋈ (S5 ∪ S6)|

Spring 2007 Data Mining for Knowledge Management 40

Distributed Stream Querying Space
Communication Network Characteristics

Topology: “Flat” vs. Hierarchical
vs. Fully-distributed (e.g., P2P DHT)

Querying
Model

Communication
Model

Class of
Queries

Coordinator

Fully DistributedHierarchical“Flat”

Other network characteristics:
– Unicast (traditional wired), multicast, broadcast (radio nets)
– Node failures, loss, intermittent connectivity, …

3

Spring 2007 Data Mining for Knowledge Management 41

Unrestricted Window

One model of stream processing is when queries refer
to all the data in a window that starts at the “beginning
of time”, extends up to the current time, and continuous
expanding with time (potentially infinite length).

Spring 2007 Data Mining for Knowledge Management 42

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

Unrestricted Window

…

4

Spring 2007 Data Mining for Knowledge Management 45

Unrestricted Window

One model of stream processing is when queries refer
to all the data in a window that starts at the “beginning
of time”, extends up to the current time, and continuous
expanding with time (potentially infinite length).

What happens when we try to compute joins in this
model?

Join results involving some piece of data may appear at any
time in the future

In order to correctly compute the result, we need to store all
values that have appeared in the past!

Spring 2007 Data Mining for Knowledge Management 46

Shifting Window

Another model of stream processing is that queries are
about a window of length N, and this window advances
by N, where N are the most recent elements received,
or the most recent time units.

5

Spring 2007 Data Mining for Knowledge Management 47

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

Shifting Window

Spring 2007 Data Mining for Knowledge Management 48

Shifting Window

Another model of stream processing is that queries are
about a window of length N, and this window advances
by N, where N are the most recent elements received,
or the most recent time units.

Useful queries within this model:
average number of calls every day
std deviation of packet losses every 10 minutes
etc.

6

Spring 2007 Data Mining for Knowledge Management 49

Sliding Window

A useful model of stream processing is that queries are
about a window of length N, where N are the most
recent elements received, or the most recent time units.

Interesting case: N is so large it cannot be stored in
memory, or even on disk.

Or, there are so many streams that windows for all cannot be
stored.

Spring 2007 Data Mining for Knowledge Management 50

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

Sliding Window

7

Spring 2007 Data Mining for Knowledge Management 51

Counting Bits --- (1)

Problem: given a stream of 0’s and 1’s, be prepared to
answer queries of the form “how many 1’s in the last k
bits?” where k ≤ N.

Obvious solution: store the most recent N bits.
When new bit comes in, discard the N +1st bit.

Spring 2007 Data Mining for Knowledge Management 52

Counting Bits --- (2)

You can’t get an exact answer without storing the entire
window.

Real Problem: what if we cannot afford to store N bits?
E.g., we are processing 1 trillion streams and N = 1 trillion, but
we’re happy with an approximate answer.

8

Spring 2007 Data Mining for Knowledge Management 53

Something That
Doesn’t (Quite) Work

Summarize exponentially increasing regions of the
stream, looking backward.

Drop small regions if they begin at the same point as
a larger region.

Spring 2007 Data Mining for Knowledge Management 54

Example

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
01

12
23

4
10

N

We can construct the count of
the last N bits, except we’re
Not sure how many of the last
6 are included.

?

6

9

Spring 2007 Data Mining for Knowledge Management 55

What’s Good?

Stores only O(log2N) bits.
O(log N) counts of log2N bits each.

Easy update as more bits enter.

Error in count no greater than the number of 1’s in the
“unknown” area.

Spring 2007 Data Mining for Knowledge Management 56

What’s Not So Good?

As long as the 1’s are fairly evenly distributed, the error
due to the unknown region is small --- no more than 50%.

But it could be that all the 1’s are in the unknown area at
the end.

In that case, the error is unbounded.

10

Spring 2007 Data Mining for Knowledge Management 57

Fixup

Instead of summarizing fixed-length blocks,
summarize blocks with specific numbers of 1’s.

Let the block “sizes” (number of 1’s) increase exponentially.

When there are few 1’s in the window, block sizes
stay small, so errors are small.

Spring 2007 Data Mining for Knowledge Management 58

DGIM* Method

Store O(log2N) bits per stream.

Gives approximate answer, never off by more than 50%.
Error factor can be reduced to any fraction > 0, with more
complicated algorithm and proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani

11

Spring 2007 Data Mining for Knowledge Management 59

Timestamps

Each bit in the stream has a timestamp, starting 1, 2, …

Record timestamps modulo N (the window size), so we
can represent any relevant timestamp in O(log2N) bits.

Spring 2007 Data Mining for Knowledge Management 60

Buckets

A bucket in the DGIM method is a record consisting
of:

1. The timestamp of its end [O(log N) bits].
2. The number of 1’s between its beginning and end [O(log

log N) bits].

Constraint on buckets: number of 1’s must be a
power of 2.

That explains the log log N in (2).

12

Spring 2007 Data Mining for Knowledge Management 61

Representing a Stream by Buckets

Either one or two buckets with the same power-of-2
number of 1’s.

Buckets do not overlap in timestamps.

Buckets are sorted by size (# of 1’s).
Earlier buckets are not smaller than later buckets.

Buckets disappear when their end-time is > N time
units in the past.

Spring 2007 Data Mining for Knowledge Management 62

Example

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

13

Spring 2007 Data Mining for Knowledge Management 63

Updating Buckets --- (1)

When a new bit comes in, drop the last (oldest) bucket if
its end-time is prior to N time units before the current
time.

If the current bit is 0, no other changes are needed.

Spring 2007 Data Mining for Knowledge Management 64

Updating Buckets --- (2)

If the current bit is 1:
1. Create a new bucket of size 1, for just this bit.

End timestamp = current time.
2. If there are now three buckets of size 1, combine the oldest two

into a bucket of size 2.
3. If there are now three buckets of size 2, combine the oldest two

into a bucket of size 4.
4. And so on…

14

Spring 2007 Data Mining for Knowledge Management 76

Example

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Spring 2007 Data Mining for Knowledge Management 77

Querying

To estimate the number of 1’s in the most recent N
bits:

1. Sum the sizes of all buckets but the last.
2. Add in half the size of the last bucket.

Remember, we don’t know how many 1’s of the last
bucket are still within the window.

15

Spring 2007 Data Mining for Knowledge Management 78

Error Bound

Suppose the last bucket has size 2k.

Then by assuming 2k -1 of its 1’s are still within the
window, we make an error of at most 2k -1.

Since there is at least one bucket of each of the sizes
less than 2k, the true sum is no less than 2k -1.

Thus, error at most 50%.

