
1

Spring 2007 Data Mining for Knowledge Management 37

Distributed Stream Querying Space
“One-shot” vs. Continuous Querying

One-shot queries:  On-demand “pull” query 
answer from network

One or few rounds of communication
Nodes may prepare for a class of queries

Continuous queries: Track/monitor answer at 
query site at all times 

Detect anomalous/outlier behavior in (near) real-
time, i.e., “Distributed triggers”
Challenge is to minimize communication Use 

“push-based” techniques
May use one-shot algs as subroutines

Querying 
Model

Communication
Model

Class of
Queries
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Distributed Stream Querying Space
Minimizing communication often needs approximation

and randomization
E.g., Continuously monitor average value

Must send every change for exact answer
Only need ‘significant’ changes for approx (def. of 
“significant” specifies an algorithm)

Probability sometimes vital to reduce 
communication

count distinct in one shot model needs 
randomness
Else must send complete data

Querying 
Model

Communication
Model

Class of
Queries
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Distributed Stream Querying Space
Class of Queries of Interest

Simple algebraic vs. holistic aggregates
E.g., count/max vs. quantiles/top-k

Duplicate-sensitive vs. duplicate-insensitive
“Bag” vs.  “set” semantics

Complex correlation queries
E.g., distributed joins, set expressions, …

Querying 
Model

Communication
Model

Class of
Queries 1S

0 11

1 1

0
0

1

1 0

2S

0
1

1

0
1

1

0

1
1

0

1
1

3S
6S

5S
4S

Query
|(S1 ∪ S2) ⋈ (S5 ∪ S6)|
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Distributed Stream Querying Space
Communication Network Characteristics

Topology:  “Flat” vs. Hierarchical 
vs. Fully-distributed (e.g., P2P DHT)

Querying 
Model

Communication
Model

Class of
Queries

Coordinator

Fully DistributedHierarchical“Flat”

Other network characteristics:  
– Unicast (traditional wired), multicast, broadcast (radio nets)
– Node failures, loss, intermittent connectivity, …
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Unrestricted Window

One model of stream processing is when queries refer 
to all the data in a window that starts at the “beginning 
of time”, extends up to the current time, and continuous 
expanding with time (potentially infinite length).
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q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past                         Future

Unrestricted Window

…



4

Spring 2007 Data Mining for Knowledge Management 45

Unrestricted Window

One model of stream processing is when queries refer 
to all the data in a window that starts at the “beginning 
of time”, extends up to the current time, and continuous 
expanding with time (potentially infinite length).

What happens when we try to compute joins in this 
model?

Join results involving some piece of data may appear at any 
time in the future

In order to correctly compute the result, we need to store all
values that have appeared in the past!
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Shifting Window

Another model of stream processing is that queries are 
about a window of length N, and this window advances 
by N, where N are the most recent elements received, 
or the most recent time units.
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q w e r t y u i o p a s d f g h j k l z x c v b n m
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Shifting Window

Another model of stream processing is that queries are 
about a window of length N, and this window advances 
by N, where N are the most recent elements received, 
or the most recent time units.

Useful queries within this model:
average number of calls every day
std deviation of packet losses every 10 minutes
etc.
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Sliding Window

A useful model of stream processing is that queries are 
about a window of length N, where N are the most 
recent elements received, or the most recent time units.

Interesting case: N is so large it cannot be stored in 
memory, or even on disk.

Or, there are so many streams that windows for all cannot be 
stored.
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Counting Bits --- (1)

Problem: given a stream of 0’s and 1’s, be prepared to 
answer queries of the form “how many 1’s in the last k 
bits?” where k ≤ N.

Obvious solution: store the most recent N bits.
When new bit comes in, discard the N +1st bit.
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Counting Bits --- (2)

You can’t get an exact answer without storing the entire 
window.

Real Problem: what if we cannot afford to store N bits?
E.g., we are processing 1 trillion streams and N = 1 trillion, but 
we’re happy with an approximate answer.
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Something That 
Doesn’t (Quite) Work

Summarize exponentially increasing regions of the 
stream, looking backward.

Drop small regions if they begin at the same point as 
a larger region.
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Example

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
01

12
23

4
10

N

We can construct the count of
the last N bits, except we’re
Not sure how many of the last
6 are included.

?

6
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What’s Good?

Stores only O(log2N ) bits.
O(log N ) counts of log2N bits each.

Easy update as more bits enter.

Error in count no greater than the number of 1’s in the 
“unknown” area.
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What’s Not So Good?

As long as the 1’s are fairly evenly distributed, the error 
due to the unknown region is small --- no more than 50%.

But it could be that all the 1’s are in the unknown area at 
the end.

In that case, the error is unbounded.
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Fixup

Instead of summarizing fixed-length blocks, 
summarize blocks with specific numbers of 1’s.

Let the block “sizes” (number of 1’s) increase exponentially.

When there are few 1’s in the window, block sizes 
stay small, so errors are small.
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DGIM* Method

Store O(log2N ) bits per stream.

Gives approximate answer, never off by more than 50%.
Error factor can be reduced to any fraction > 0, with more 
complicated algorithm and proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani
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Timestamps

Each bit in the stream has a timestamp, starting 1, 2, …

Record timestamps modulo N (the window size), so we 
can represent any relevant timestamp in O(log2N ) bits.
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Buckets

A bucket in the DGIM method is a record consisting 
of:

1. The timestamp of its end [O(log N ) bits].
2. The number of 1’s between its beginning and end [O(log 

log N ) bits].

Constraint on buckets: number of 1’s must be a 
power of 2.

That explains the log log N in (2).
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Representing a Stream by Buckets

Either one or two buckets with the same power-of-2 
number of 1’s.

Buckets do not overlap in timestamps.

Buckets are sorted by size (# of 1’s).
Earlier buckets are not smaller than later buckets.

Buckets disappear when their end-time is > N time 
units in the past.
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Example

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16.  Partially
beyond window.

2 of
size 1
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Updating Buckets --- (1)

When a new bit comes in, drop the last (oldest) bucket if 
its end-time is prior to N time units before the current 
time.

If the current bit is 0, no other changes are needed.
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Updating Buckets --- (2)

If the current bit is 1:
1. Create a new bucket of size 1, for just this bit.

End timestamp = current time.
2. If there are now three buckets of size 1, combine the oldest two

into a bucket of size 2.
3. If there are now three buckets of size 2, combine the oldest two

into a bucket of size 4.
4. And so on…
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Example

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101
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Querying

To estimate the number of 1’s in the most recent N
bits:

1. Sum the sizes of all buckets but the last.
2. Add in half the size of the last bucket.

Remember, we don’t know how many 1’s of the last 
bucket are still within the window.
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Error Bound

Suppose the last bucket has size 2k.

Then by assuming 2k -1 of its 1’s are still within the 
window, we make an error of at most 2k -1.

Since there is at least one bucket of each of the sizes 
less than 2k, the true sum is no less than 2k -1.

Thus, error at most 50%.


