Data Mining for Knowledge Management

Clustering

Themis Palpanas University of Trento http://disi.unitn.eu/~themis

Data Mining for Knowledge Management 1

Thanks for slides to:

- **Jiawei Han**
- Eamonn Keogh
- **Jeff Ullman**

Roadmap

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Data Mining for Knowledge Management 3

What is Cluster Analysis?

- Cluster: a collection of data objects
	- Similar to one another within the same cluster
	- Dissimilar to the objects in other clusters
- **Cluster analysis**
	- Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters

Example: Clusters

Data Mining for Knowledge Management 5

Example: Clusters

What is Cluster Analysis?

- Cluster: a collection of data objects
	- **Similar to one another within the same cluster**
	- Dissimilar to the objects in other clusters
- **Cluster analysis**
	- Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- **Unsupervised learning: no predefined classes**
- **Typical applications**
	- As a stand-alone tool to get insight into data distribution
	- As a preprocessing step for other algorithms

Data Mining for Knowledge Management 7

Clustering: Rich Applications and Multidisciplinary Efforts

- **Pattern Recognition**
- **Spatial Data Analysis**
	- **Create thematic maps in GIS by clustering feature spaces**
	- Detect spatial clusters or for other spatial mining tasks
- **Image Processing**
- **Economic Science (especially market research)**
- WWW
	- Document classification
	- Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- **Insurance:** Identifying groups of motor insurance policy holders with a high average claim cost
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- **Earth-quake studies: Observed earth quake epicenters should be** clustered along continent faults

Data Mining for Knowledge Management 9

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
	- high intra-class similarity
	- low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation
- The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: $d(i, j)$
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, vector, and string variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
	- the answer is typically highly subjective.

Data Mining for Knowledge Management 11

Problems With Clustering

- **Clustering in two dimensions looks easy.**
- **Clustering small amounts of data looks easy.**
- And in most cases, looks are *not* deceiving.

The Curse of Dimensionality

- Many applications involve not 2, but 10 or 10,000 dimensions.
- High-dimensional spaces look different: almost all pairs of points are at about the same distance.
	- Example: assume random points within a bounding box, e.g., values between 0 and 1 in each dimension.

Data Mining for Knowledge Management 13

Example: SkyCat

- A catalog of 2 billion "sky objects" represents objects by their radiation in 9 dimensions (frequency bands).
- Problem: cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Sky Survey is a newer, better version.

Example: Clustering CD's (Collaborative Filtering)

- **Intuitively: music divides into categories, and** customers prefer a few categories.
	- But what are categories really?
- Represent a CD by the customers who bought it.
- Similar CD's have similar sets of customers, and viceversa.

Data Mining for Knowledge Management 15

The Space of CD's

- Think of a space with one dimension for each customer.
	- Values in a dimension may be 0 or 1 only.
- A CD's point in this space is $(x_1, x_2, ..., x_k)$, where $x_i =$ 1 iff the ith customer bought the CD.
	- Compare with the "shingle/signature" matrix: rows $=$ customers; cols. = CD's.
- For Amazon, the dimension count is tens of millions.

Example: Clustering Documents

- Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the *i*th word (in some order) appears in the document.
	- It actually doesn't matter if k is infinite; i.e., we don't limit the set of words.
- Documents with similar sets of words may be about the same topic.

Data Mining for Knowledge Management 17

Example: Gene Sequences

- Objects are sequences of ${C, A, T, G}$.
- Distance between sequences is *edit distance*, the minimum number of inserts and deletes needed to turn one into the other.
- Note there is a "distance," but no convenient space in which points "live."

Requirements of Clustering in Data Mining

- **Scalability**
- **Ability to deal with different types of attributes**
- **Ability to handle dynamic data**
- Discovery of clusters with arbitrary shape
- **Minimal requirements for domain knowledge to** determine input parameters
- **Able to deal with noise and outliers**
- **Insensitive to order of input records**
- **High dimensionality**
- **Incorporation of user-specified constraints**
- **Interpretability and usability**

Data Mining for Knowledge Management 19

Roadmap

1. What is Cluster Analysis?

- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Type of data in clustering analysis

- **Interval-scaled variables**
- **Binary variables**
- Categorical (or Nominal), ordinal, and ratio variables
- Variables of mixed types

Data Mining for Knowledge Management 21

Interval-valued variables

- Standardize data
	- Calculate the mean absolute deviation: $S_f = \frac{1}{n} (|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$

where $m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$

Calculate the standardized measurement $(z\text{-}score)$

$$
z_{if} = \frac{x_{if} - m_f}{s_f}
$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- Distances are normally used to measure the similarity or dissimilarity between two data objects
- Some popular ones include: Minkowski distance:

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p dimensional data objects, and q is a positive integer q *(* $(x, -x, |^{q} + |x, -x, |^{q} + ... + |x, -x, |^{q})$ *p p* $d(i, j) = q \Big(\Big| x_{i1} - x_{j1} \Big|^q + \Big| x_{i2} - x_{j2} \Big|^q + \dots + \Big| x_{i_p} - x_{j_p} \Big|^q \Big)$

Also, one can use weighted distance, parametric Pearson product moment correlation, or other dissimilarity measures

Data Mining for Knowledge Management 23

Similarity and Dissimilarity Between Objects (Cont.)

If $q = 1$, d is Manhattan distance

 $d(i, j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$

Similarity and Dissimilarity Between Objects (Cont.)

If $q = 1$, d is Manhattan distance

$$
d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|
$$

If $q = 2$, d is Euclidean distance:

$$
d(i, j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{i_p} - x_{j_p}|^2)}
$$

Is distance $d(i,j)$ **a metric (or distance measure)?**

Data Mining for Knowledge Management 27

Metric Distances

- Is distance $d(i,j)$ a metric (or distance measure)?
- **Axioms of a distance measure**
	- \overline{d} d is a distance measure if it is a function from pairs of points to real numbers such that:
		- $d(i,j) \ge 0$
		- $d(i, i) = 0$
		- $d(i,j) = d(j,i)$
		- $d(i,j) \leq d(i,k) + d(k,j)$ (triangle inequality)

Binary Variables

Data Mining for Knowledge Management 29

Binary Variables

Distance measure for symmetric binary variables:

$$
d(i,j) = \frac{b+c}{a+b+c+d}
$$

Binary Variables

Distance measure for symmetric binary variables:

 Distance measure for asymmetric binary variables:

$$
d(i,j) = \frac{b+c}{a+b+c+d}
$$

$$
d(i,j) = \frac{b+c}{a+b+c}
$$

Data Mining for Knowledge Management 31

Binary Variables

ror symmetric bi variables:

$$
d(i,j) = \frac{b+c}{a+b+c+d}
$$

 \mathbf{L}

Object *j*

Distance measure for asymmetric binary variables:

$$
d(i,j) = \frac{b+c}{a+b+c}
$$

- Jaccard coefficient (similarity measure for *asymmetric* binary variables):
	- equals to: size of intersection over size of $\sin^2 \theta$ *sim jaccard* $(i, j) = \frac{a}{a+b+c}$ union
	- $(1\text{-sim}_{\text{Jaccard}})$ is a distance measure

Dissimilarity between Binary Variables

Example

gender is a symmetric attribute

- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0
	- then, if we only take into account the asymmetric variables:

$$
d(jack,mary) = \frac{0+1}{2+0+1} = 0.33
$$

$$
d(jack, jim) = \frac{1+1}{1+1+1} = 0.67
$$

$$
d(jim,mary) = \frac{1+2}{1+1+2} = 0.75
$$

Data Mining for Knowledge Management 33

Categorical (Nominal) Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
	- $m: #$ of matches, $p:$ total $#$ of variables

$$
d(i, j) = \frac{p - m}{p}
$$

- **Method 2: use a large number of binary variables**
	- \blacksquare creating a new binary variable for each of the M nominal states
- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
	- replace x_{if} by their rank ${r_{if}} \in \{1,..., M_{f}\}$
	- map the range of each variable onto $[0, 1]$ by replacing *i*-th object in the f -th variable by

$$
z_{if} = \frac{r_{if} - 1}{M_f - 1}
$$

 compute the dissimilarity using methods for interval-scaled variables

Data Mining for Knowledge Management 35

Ratio-Scaled Variables

- Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as *Ae^{bt}* or *Ae^{-Bt}*
- **Methods:**
	- \blacksquare treat them like interval-scaled variables—*not a good choice!* (why?—the scale can be distorted)
	- **a** apply logarithmic transformation

$$
y_{if} = log(x_{if})
$$

 treat them as continuous ordinal data treat their rank as intervalscaled

Variables of Mixed Types

- A database may contain all the six types of variables
	- symmetric binary, asymmetric binary, categorical, ordinal, interval and ratio
- **One may use a weighted formula to combine their effects**

$$
d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}
$$

- f is binary or nominal:
- $d_{ij}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ij}^{(f)} = 1$ otherwise
- f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
	- compute ranks r_{if} and

Example 14 Find a standard normal
and treat
$$
z_{if}
$$
 as interval-scaled $z_{if} = \frac{r_{if}}{M}$

Data Mining for Knowledge Management

$$
37\quad
$$

1 1 *f* $\frac{r_{\scriptscriptstyle{if}}}{M}$

Vector Objects

- Vector objects: keywords in documents, gene features in microarrays, etc.
- **Broad applications: information retrieval, biologic taxonomy, etc.**
- Cosine distance $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$

 \vec{X}^t is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

- cosine distance is a distance measure
- A variant: Tanimoto coefficient $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{V}^t \cdot \vec{V} \vec{V}^t \cdot \vec{V}},$
	- expresses the ration of number of attributes shared by x and y to the number of total attributes of x and y

String Objects

- **string objects: words of a document, genes, etc.**
- **Edit distance**
	- number of inserts and deletes to change one string into another.
	- edit distance is a distance measure
- **example:**
	- $x = abcde$; $y = bcduve$.
	- Turn x into y by deleting a, then inserting u and v after d.
		- \blacksquare Edit-distance = 3.

Data Mining for Knowledge Management 39

Roadmap

 $\sqrt{2}$

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Major Clustering Approaches (I)

- Partitioning approach:
	- **Construct various partitions and then evaluate them by some criterion, e.g.,** minimizing the sum of square errors
	- Typical methods: k-means, k-medoids, CLARANS
- **Hierarchical approach:**
	- Create a hierarchical decomposition of the set of data (or objects) using some criterion
	- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- Density-based approach:
	- **Based on connectivity and density functions**
	- Typical methods: DBSACN, OPTICS, DenClue

Data Mining for Knowledge Management 41

Major Clustering Approaches (II)

- Grid-based approach:
	- **based on a multiple-level granularity structure**
	- Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
	- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
	- Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
	- **Based on the analysis of frequent patterns**
	- **Typical methods: pCluster**
- **User-quided or constraint-based:**
	- **Clustering by considering user-specified or application-specific constraints**
	- Typical methods: COD (obstacles), constrained clustering

Typical Alternatives to Calculate the Distance between Clusters

- **Single link:** smallest distance between an element in one cluster and an element in the other, i.e., $\text{dis}(K_{i}, K_{i}) = \text{min}(t_{ip}, t_{iq})$
- **Complete link: largest distance between an element in one cluster** and an element in the other, i.e., $\text{ dis}(K_{i}, K_{j}) = \text{max}(t_{ip}, t_{jq})$
- **Average:** avg distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = avg(t_{ip}, t_{jq})$
- **Centroid:** distance between the centroids of two clusters, i.e., $dis(K_i, K_j) = dis(C_i, C_j)$
- **Medoid:** distance between the medoids of two clusters, i.e., dis(K_i , K_i) = dis(M_i , M_i)
	- Medoid: one chosen, centrally located object in the cluster

Data Mining for Knowledge Management 43

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$
C_m = \frac{\sum_{i=1}^N (t_{ip})}{N}
$$

Radius: square root of average distance from any point of the cluster to its centroid 2

$$
R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}
$$

Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$
D_m = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^2}{N(N-1)}}
$$

Data Mining for Knowledge Management **1988** 2012 12:38

Roadmap

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Data Mining for Knowledge Management 45

Partitioning Algorithms: Basic Concept

Partitioning method: Construct a partition of a database **D** of **n** objects into a set of **k** clusters, s.t., min sum of squared distance

$$
\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2
$$

- Given a k , find a partition of k clusters that optimizes the chosen partitioning criterion
	- Global optimal: exhaustively enumerate all partitions
	- **Heuristic methods:** k -means and k -medoids algorithms
	- k -means (MacQueen'67): Each cluster is represented by the center of the cluster
	- k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster
- \blacksquare 1. Decide on a value for k.
- 2. Initialize the k cluster centers (randomly, if necessary).
- 3. Decide the class memberships of the N objects by assigning them to the nearest cluster center.
- 4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
- \blacksquare 5. If none of the N objects changed membership in the last iteration, exit. Otherwise goto 3.

Data Mining for Knowledge Management 47

The K-Means Clustering Method

Data Mining for Knowledge Management 2012 12:30 12:30 12:30 12:30 13:30 148

Comments on the K-Means Method

- Strength: Relatively efficient: O (tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k , $t \ll n$.
	- Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
- Comment: Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and genetic algorithms
- **Neakness**
	- **Applicable only when** *mean* is defined, then what about categorical data?
	- Need to specify k , the *number* of clusters, in advance
	- Unable to handle noisy data and *outliers*
	- Not suitable to discover clusters with non-convex shapes

Data Mining for Knowledge Management

Variations of the K-Means Method

- \blacksquare A few variants of the *k-means* which differ in
	- Selection of the initial k means
	- **Dissimilarity calculations**
	- **Strategies to calculate cluster means**
- Handling categorical data: k-modes (Huang'98)
	- **Replacing means of clusters with modes**
	- Using new dissimilarity measures to deal with categorical objects
	- **Using a frequency-based method to update modes of clusters**
	- A mixture of categorical and numerical data: k -prototype method

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
	- Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the **mean** value of the object in a cluster as a reference point, **medoids** can be used, which is the **most centrally located** object in a cluster.

Data Mining for Knowledge Management 57

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- **PAM** (Partitioning Around Medoids, 1987)
	- starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
	- **PAM** works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)