Data Mining for Knowledge Management

Clustering

Themis Palpanas University of Trento http://disi.unitn.eu/~themis

Data Mining for Knowledge Management

Thanks for slides to:

- Jiawei Han
- Eamonn Keogh
- Jeff Ullman

Data Mining for Knowledge Management

1

Roadmap

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Data Mining for Knowledge Management

3

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters

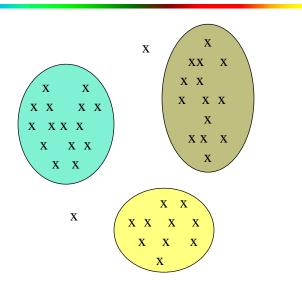
Example: Clusters

	x X xx x
X X X X X X X X X X X X X X X X	X X X X X X X X X X X
Х	X X X X X X X X X X

Data Mining for Knowledge Management

5

Example: Clusters



Data Mining for Knowledge Management

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Data Mining for Knowledge Management

7

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- <u>Marketing</u>: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

Data Mining for Knowledge Management

9

Quality: What Is Good Clustering?

- A <u>good clustering</u> method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, vector, and string variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Data Mining for Knowledge Management

11

Problems With Clustering

- Clustering in two dimensions looks easy.
- Clustering small amounts of data looks easy.
- And in most cases, looks are *not* deceiving.

The Curse of Dimensionality

- Many applications involve not 2, but 10 or 10,000 dimensions.
- High-dimensional spaces look different: almost all pairs of points are at about the same distance.
 - Example: assume random points within a bounding box, e.g., values between 0 and 1 in each dimension.

Data Mining for Knowledge Management

13

Example: SkyCat

- A catalog of 2 billion "sky objects" represents objects by their radiation in 9 dimensions (frequency bands).
- Problem: cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Sky Survey is a newer, better version.

Example: Clustering CD's (Collaborative Filtering)

- Intuitively: music divides into categories, and customers prefer a few categories.
 - But what are categories really?
- Represent a CD by the customers who bought it.
- Similar CD's have similar sets of customers, and viceversa.

Data Mining for Knowledge Management

15

The Space of CD's

- Think of a space with one dimension for each customer.
 - Values in a dimension may be 0 or 1 only.
- A CD's point in this space is $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the *i*th customer bought the CD.
 - Compare with the "shingle/signature" matrix: rows = customers; cols. = CD's.
- For Amazon, the dimension count is tens of millions.

Example: Clustering Documents

- Represent a document by a vector (x₁, x₂,..., x_k), where x_i = 1 iff the *i*th word (in some order) appears in the document.
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words.
- Documents with similar sets of words may be about the same topic.

Data Mining for Knowledge Management

17

Example: Gene Sequences

- Objects are sequences of {C,A,T,G}.
- Distance between sequences is *edit distance*, the minimum number of inserts and deletes needed to turn one into the other.
- Note there is a "distance," but no convenient space in which points "live."

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Data Mining for Knowledge Management

19

Roadmap

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- <u>Categorical (or Nominal), ordinal, and ratio variables</u>
- Variables of mixed types

Data Mining for Knowledge Management

21

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation: $s_f = \frac{1}{n}(|x_{1f}-m_f|+|x_{2f}-m_f|+...+|x_{nf}-m_f|)$

where $m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$

• Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

 $d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$ where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two *p*-dimensional data objects, and *q* is a positive integer

 Also, one can use weighted distance, parametric Pearson product moment correlation, or other dissimilarity measures

Data Mining for Knowledge Management

23

Similarity and Dissimilarity Between Objects (Cont.)

If q = 1, d is Manhattan distance

 $d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

Data Mining for Knowledge Management

• Is distance *d(i,j)* a metric (or distance measure)?

Data Mining for Knowledge Management

Metric Distances

- Is distance d(i,j) a metric (or distance measure)?
- Axioms of a distance measure
 - *d* is a distance measure if it is a function from pairs of points to real numbers such that:
 - *d(i,j)* ≥ 0
 - d(i,i) = 0
 - $\bullet d(i,j) = d(j,i)$
 - $d(i,j) \le d(i,k) + d(k,j)$ (triangle inequality)

Data Mining for Knowledge Management

27

Binary Variables

	Object <i>j</i> 1 0			
		1	0	sum
 A contingency table for binary data 	1	а	b	a+b
	Object i_0	с	d	c+d
	Object <i>i</i> $\begin{array}{c} 1\\ 0\\ sum \end{array}$	a+c	b+d	p

Data Mining for Knowledge Management

29

Binary Variables

	Object <i>j</i> 1 0 sum			
		1	0	sum
 A contingency table for binary data 	1 Object i	а	b	a+b
	0 0 0 0 0	С	d	c+d
	Object <i>i</i> $\begin{pmatrix} 1 \\ 0 \\ sum \end{pmatrix}$	a+c	b+d	р

 Distance measure for symmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Binary Variables

		Obj 1	ect j 0	sum
 A contingency table for binary data 	1	а	b	a+b
	Object <i>i</i> 0	С	d	c+d
	Object i $\begin{array}{c} 1\\ 0\\ sum \end{array}$	a+c	b+d	p

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

$$d(i,j) = \frac{b+c}{a+b+c}$$

Data Mining for Knowledge Management

31

Binary Variables

			1	Ő	sum
		Object <i>i</i> $\begin{pmatrix} 1 \\ 0 \\ sum \end{pmatrix}$	а	b	a+b
	A contingency table for binary data	Object i_0	С	d	c+d
		sum	a+c	b+d	р
•	Distance measure for symmetric binary	I			
	variables:	d(i, j) =	$\frac{b}{a+b}$	$\frac{+c}{+c+a}$	Ī

$$d(i,j) = \frac{b+c}{a+b+c}$$

I.

Object j

- Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):
 - equals to: size of intersection over size of $sim_{Jaccard}(i, j) = \frac{a}{a+b+c}$ union
 - (1-sim_{Jaccard}) is a distance measure

Data Mining for Knowledge Management

32

Dissimilarity between Binary Variables

• Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Y	N	Р	Ν	N	Ν
Mary	F	Y	Ν	Р	Ν	Р	Ν
Jim	М	Y	Р	N	N	N	N

• gender is a symmetric attribute

- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0
 - then, if we only take into account the asymmetric variables:

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

33

Data Mining for Knowledge Management

Categorical (Nominal) Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the *M* nominal states

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, \dots, M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Data Mining for Knowledge Management

35

Ratio-Scaled Variables

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as *Ae^{Bt}* or *Ae^{-Bt}*
- Methods:
 - treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as intervalscaled

Data Mining for Knowledge Management

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, categorical, ordinal, interval and ratio
- One may use a weighted formula to combine their effects

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal:
 - $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise
- *f* is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks r_{if} and

and treat
$$z_{if}$$
 as interval-scaled $Z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$

Data Mining for Knowledge Management

37

Vector Objects

- Vector objects: keywords in documents, gene features in microarrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.

• Cosine distance
$$s(\vec{X}, \vec{Y}) = \frac{X^t \cdot Y}{|\vec{X}||\vec{Y}|}$$

 \vec{X}^t is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

- cosine distance is a distance measure
- A variant: Tanimoto coefficient $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} \vec{X}^t \cdot \vec{Y}},$
 - expresses the ration of number of attributes shared by x and y to the number of total attributes of x and y

Data Mining for Knowledge Management

String Objects

- string objects: words of a document, genes, etc.
- Edit distance
 - number of inserts and deletes to change one string into another.
 - edit distance is a distance measure
- example:
 - *x* = *abcde* ; *y* = *bcduve*.
 - Turn x into y by deleting a, then inserting u and v after d.
 - Edit-distance = 3.

Data Mining for Knowledge Management

39

Roadmap

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Major Clustering Approaches (I)

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue

Data Mining for Knowledge Management

41

Major Clustering Approaches (II)

- <u>Grid-based approach</u>:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = min(t_{ip}, t_{jq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_i) = max(t_{ip}, t_{ig})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dis(K_i, K_i) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_j)
 - Medoid: one chosen, centrally located object in the cluster

Data Mining for Knowledge Management

43

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

• Radius: square root of average distance from any point of the cluster to its centroid $\sqrt{\frac{N}{2}}$

$$R_m = \sqrt{\frac{\sum_{i=1}^N (t_{ip} - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Data Mining for Knowledge Management

Roadmap

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Summary

Data Mining for Knowledge Management

45

Partitioning Algorithms: Basic Concept

<u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters, s.t., min sum of squared distance

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

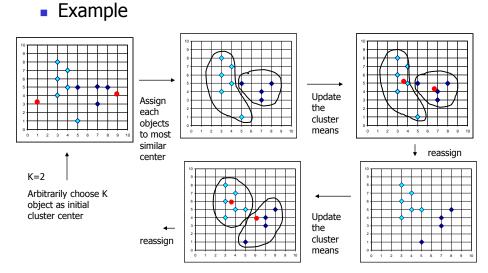
- Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

- 1. Decide on a value for *k*.
- 2. Initialize the *k* cluster centers (randomly, if necessary).
- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster center.
- 4. Re-estimate the *k* cluster centers, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise goto 3.

Data Mining for Knowledge Management

47

The K-Means Clustering Method



Data Mining for Knowledge Management

48

Comments on the K-Means Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
- <u>Comment</u>: Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and outliers
 - Not suitable to discover clusters with *non-convex shapes*

Data Mining for Knowledge Management

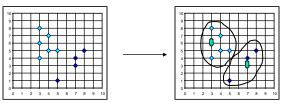
55

Variations of the K-Means Method

- A few variants of the *k-means* which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.



Data Mining for Knowledge Management

57

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- *CLARA* (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)