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Roadmap

= What is classification? What is
prediction? —
= Issues regarding classification

and prediction

= Classification by decision tree

induction
= Bayesian classification
= Rule-based classification

= Classification by back

propagation

Support Vector Machines (SVM)
Associative classification

Lazy learners (or learning from

your neighbors)

Other classification methods
Prediction

Accuracy and error measures
Ensemble methods

Model selection

Summary
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Classification vs. Prediction

s Classification

= predicts categorical class labels (discrete or nominal)

= classifies data (constructs a model) based on the training set and
the values (class labels) in a classifying attribute and uses it in

classifying new data
= Prediction

= models continuous-valued functions, i.e., predicts unknown or

missing values

= Typical applications
= Credit approval
= Target marketing
= Medical diagnosis
» Fraud detection
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Classification—A Two-Step Process

= Model construction: describing a set of predetermined classes

= Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute

= The set of tuples used for model construction is training set

= The model is represented as classification rules, decision trees, or
mathematical formulae

= Model usage: for classifying future or unknown objects
= Estimate accuracy of the model

« The known label of test sample is compared with the
classified result from the model

» Accuracy rate is the percentage of test set samples that are
correctly classified by the model

» Test set is independent of training set, otherwise over-fitting
will occur

= If the accuracy is acceptable, use the model to classify data tuples
whose class labels are not known

Data Mining for Knowledge Management

Process (1): Model Construction

Training
Data

/

Mike |Assistant Prof 3 no
Mary |Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave [|Assistant Prof 6 no
Anne |Associate Prof 3 no
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Process (1): Model Construction
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Process (1): Model Construction

\

Data

Training

Classification
Algorithms

Classifier
(Model)

Mike |Assistant Prof 3 no
Mary |Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave [|Assistant Prof 6 no
Anne |Associate Prof 3 no

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Data Mining for Knowledge Management




Process (2): Using the Model in Prediction

Assistant Prof 2
Merllsa Associate Prof 7 no
George |Professor 5 yes
Joseph |Assistant Prof 7 yes
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Process (2): Using the Model in Prediction

< 0y
/ \ (Jeff, Professor, 4)

Tom Assistant Prof 2 no Tenured?
Merlisa |Associate Prof 7 no
George |Professor 5 yes
Joseph |Assistant Prof 7 yes
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Process (2): Using the Model in Prediction
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/ \ (Jeff, Professor, 4)

Tom Assistant Prof 2 no Tenured? 1
Merlisa |Associate Prof 7 no |
George |Professor 5 yes Y(&_ISJ
Joseph |Assistant Prof 7 yes 99
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Supervised vs. Unsupervised Learning

= Supervised learning (classification)

= Supervision: The training data (observations, measurements,
etc.) are accompanied by labels indicating the class of the
observations

= New data is classified based on the training set
» Unsupervised learning (clustering)
= The class labels of training data is unknown

= Given a set of measurements, observations, etc. with the aim of
establishing the existence of classes or clusters in the data
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Issues: Data Preparation

= Data cleaning

= Preprocess data in order to reduce noise and handle missing

values

= Relevance analysis (feature selection)
= Remove the irrelevant or redundant attributes

» Data transformation

= Generalize and/or normalize data
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Issues: Evaluating Classification Methods

Accuracy

= classifier accuracy: predicting class label
= predictor accuracy: guessing value of predicted attributes

Speed

= time to construct the model (training time)
= time to use the model (classification/prediction time)

Robustness: handling noise and missing values
Scalability: efficiency in disk-resident databases

Interpretability

= understanding and insight provided by the model

Other measures, e.g., goodness of rules, such as decision
tree size or compactness of classification rules
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Decision Tree Induction: Training Dataset

income [student| credit rating |buys computer
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Output: A Decision Tree for “buys computer”

>40

credit rating?

no yes excellent fair

/
no
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Algorithm for Decision Tree Induction

Basic algorithm (a greedy algorithm)
= Tree is constructed in a top-down recursive divide-and-conquer manner
= At start, all the training examples are at the root

= Attributes are categorical (if continuous-valued, they are discretized in
advance)

= Examples are partitioned recursively based on selected attributes

= Test attributes are selected on the basis of a heuristic or statistical
measure (e.g., information gain)

= Conditions for stopping partitioning
= All samples for a given node belong to the same class

= There are no remaining attributes for further partitioning — majority
voting is employed for classifying the leaf

= There are no samples left
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Attribute Selection Measure:
Information Gain (ID3/CA4.5)

Select the attribute with the highest information gain

Let p, be the probability that an arbitrary tuple in D
belongs to class G, estimated by |C, 5|/|D|

Expected information (entropy) needed to classify a tuple

nb: Info(D) =3 p, Iog, (p,)

Information needed (after using attributzlA to split D into
v partitions) to classify D: Info, (D) = i%x D)
Information gained by branching on attribjjte A

Gain(A) = Info(D)— Info,(D)

Data Mining for Knowledge Management
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Attribute Selection: Information Gain

B (Class P: buys_computer = “yes” Info,,, (D) = 3 1(2,3) +i 1(4,0)
B Class N: buys_computer = “no” 14 14
Info(D) =1(9,5) = —%Iogz(l%)—ﬁlogz(%) =0.940 + % 1(3,2) =0.694

I(pi’ ni)

k) 1(2,3) Mmeans “age <=30"has 5
out of 14 samples, with 2 yes’es
and 3 no’s. Hence

[—age [ income [student| credit rating |buys_computer] Gain(age) = Info(D) — Info

age

(D) =0.246
Similarly,

Gain(income) = 0.029
Gain(student) =0.151
Gain(credit _rating) = 0.048

owledge Management 21

Computing Information-Gain for
Continuous-Value Attributes

= Let attribute A be a continuous-valued attribute

= Must determine the best split point for A
= Sort the value A in increasing order

= Typically, the midpoint between each pair of adjacent values is
considered as a possible split point

= (a+a;,1)/2 is the midpoint between the values of a; and a;,

= The point with the minimum expected information requirement for
A is selected as the split-point for A

= D1 is the set of tuples in D satisfying A < split-point, and D2 is the
set of tuples in D satisfying A > split-point
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Gain Ratio for Attribute Selection (C4.5)

= Information gain measure is biased towards attributes
with a large number of values

= C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)

. - | D | |D; |
Splitinfo, (D) = xlog, ( )
§ leol “ID|
= GainRatio(A) = Gain(A)/SplltInfo(A)
= EXx. Splitinfo, (D) =— 4>< 09,(—)—— gz( )—— log,( 4)=0.926

414" 4
= gain_ ratlo(lncome) = O 029/10 92(;L 0. 031’L

= The attribute with the maximum gain ratio is selected as
the splitting attribute
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Gini index (CART, IBM
IntelligentMiner)

= If a data set D contains examples from nclasses gini index, gin{ D) is

defined as
gini(D)=1- Z IOJ
j=1
where p;is the relative frequency of class jin D
= If a data set D is split on A into two subsets D, and D,, the giniindex
ginf D) is defined as

giniA(D)—ll 1||g' (D1)+|| ||gm|(D2)

= Reduction in Impurity:
Agini(A)=gini(D)-gini, (D)
= The attribute provides the smallest gin/,,;{ D) (or the largest reduction

in impurity) is chosen to split the node (need to enumerate all the
possible splitting points for each attribute)
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Gini index (CART, IBM
IntelligentMiner)

= Ex. D has 9 tuples in buys_computer = “yes” and 5 in “*no”
. 9y (5Y
inilD)=1-| — | —-| — | =0.459
gini(b) [14) [14)
= Suppose the attribute income partitions D into 10 in D;: {low,

medlum} and 4 in D2 gini‘ncomee{luw.medium}(D) :[gJGInI(Dl)'F(%ijI(Dl)

_lo, 8
14 10
= 0.450
= Gininwmrw S {hmh}(D)
but giniymegium,nigny iS 0.30 and thus the best since it is the lowest

= All attributes are assumed continuous-valued
= May need other tools, e.g., clustering, to get the possible split values
= Can be madified for categorical attributes

4.
)+

27 —_— —_—
) (10“ 141 4
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Comparing Attribute Selection Measures

= The three measures, in general, return good results but
= Information gain:

= biased towards multivalued attributes
= Gain ratio:
=« tends to prefer unbalanced splits in which one
partition is much smaller than the others
= Gini index:
= biased to multivalued attributes
=« has difficulty when # of classes is large

=« tends to favor tests that result in equal-sized
partitions and purity in both partitions

Data Mining for Knowledge Management
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Other Attribute Selection Measures

= CHAID: a popular decision tree algorithm, measure based on 2 test
for independence

C-SEP: performs better than info. gain and gini index in certain cases

G-statistics: has a close approximation to x? distribution
= MDL (Minimal Description Length) principle (i.e., the simplest solution
is preferred):

= The best tree as the one that requires the fewest # of bits to both (1)
encode the tree, and (2) encode the exceptions to the tree

Multivariate splits (partition based on multiple variable combinations)

= CART: finds multivariate splits based on a linear comb. of attrs.
Which attribute selection measure is the best?

= Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

= Overfitting: An induced tree may overfit the training data
= Too many branches, some may reflect anomalies due to noise or outliers
= Poor accuracy for unseen samples

= Two approaches to avoid overfitting

= Prepruning: Halt tree construction early—do not split a node if this would
result in the goodness measure falling below a threshold

=« Difficult to choose an appropriate threshold

= Postpruning: Remove branches from a “fully grown” tree—get a sequence
of progressively pruned trees

= Use a set of data different from the training data to decide
which is the “best pruned tree”

Data Mining for Knowledge Management
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Enhancements to Basic Decision Tree Induction

= Allow for continuous-valued attributes
= Dynamically define new discrete-valued attributes that partition the
continuous attribute value into a discrete set of intervals
= Handle missing attribute values
= Assign the most common value of the attribute
= Assign probability to each of the possible values

= Attribute construction

= Create new attributes based on existing ones that are sparsely
represented

= This reduces fragmentation, repetition, and replication

Data Mining for Knowledge Management
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