Association Rules

Themis Palpanas University of Trento http://disi.unitn.eu/~themis

Data Mining for Knowledge Management

Thanks for slides to:

- Jiawei Han
- George Kollios
- Zhenyu Lu
- Osmar R. Zaïane
- Mohammad El-Hajj
- Yu-ting Kung

Frequent Pattern Mining

Given a transaction database DB and a minimum support threshold ξ , find all frequent patterns (item sets) with support no less than ξ .

Input	DB∙	TID	Items bought
mput.	DD.	100	$\{f, a, c, d, g, i, m, p\}$
		200	$\{a, b, c, f, l, m, o\}$
		300	$\{b, f, h, j, o\}$
		400	$\{b, c, k, s, p\}$
		500	$\{a, f, c, e, l, p, m, n\}$
	Minir	num s	upport: ξ =3
Output:	all frequent patterns, i.e., f, a,, fa, fac, fam,		

Problem: How to efficiently find all frequent patterns?

Data Mining for Knowledge Management

3

Apriori

- The core of the Apriori algorithm:
 - Use frequent (k 1)-itemsets (L_{k-1}) to generate candidates of frequent k-itemsets C_k
 - Scan database and count each pattern in C_k , get frequent *k*-itemsets (L_k).
- E.g.,

TID	Items bought	<u>Aprio</u>	<u>ori iteration</u>
100	$\{f, a, c, d, g, i, m, p\}$	C1	f,a,c,d,g,i,m,p,l,o,h,j,k,s,b,e,n
200	{ <i>a</i> , <i>b</i> , <i>c</i> , <i>f</i> , <i>l</i> , <i>m</i> , <i>o</i> }	L1	f, a, c, m, b, p
300	$\{b, f, h, j, o\}$	C2	fa fc fm fn ac am bn
400	$\{b, c, k, s, p\}$	L2	fa, fc, fm,
500	$\{a, f, c, e, l, p, m, n\}$		

Performance Bottlenecks of Apriori

- The bottleneck of *Apriori*: candidate generation
 - Huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., {a₁, a₂, ..., a₁₀₀}, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Multiple scans of database: each candidate

Data Mining for Knowledge Management

5

Ideas

- Compress a large database into a compact, *Frequent-Pattern tree* (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method (FP-growth)
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only.

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Data Mining for Knowledge Management

Mining Frequent Patterns Without Candidate Generation

Data Mining for Knowledge Management

FP-tree Construction from a Transactional DB

min_support = 3

TID	Items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

Steps:

Data Mining for Knowledge Management

10

FP-tree Construction from a Transactional DB

min_support = 3

TID	Items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

Steps:

1. Scan DB once, find frequent 1-itemsets (single item patterns)

FP-tree Construction from a Transactional DB

		min_support = 3
TID	Items bought	Item frequency
100 200 300 400 500	{f, a, c, d, g, i, m, p} {a, b, c, f, l, m, o} {b, f, h, j, o} {b, c, k, s, p} {a, f, c, e, l, p, m, n}	r 4 c 4 a 3 b 3 m 3 p 3

Steps:

1. Scan DB once, find frequent 1-itemsets (single item patterns)

Data Mining for Knowledge Management

FP-tree Construction from a Transactional DB

TID	Items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

min_support = 3			
Item	frequency		
f	4		
С	4		
а	3		
b	3		
т	3		
p	3		

Steps:

- 1. Scan DB once, find frequent 1-itemsets (single item patterns)
- 2. Order frequent items in descending order of their frequency

FP-tree Construction from a Transactional DB

			mm_support = 5
TID	Items bought	(ordered) frequent items	<u>Item frequency</u>
100 200 300 400 500	{f, a, c, d, g, i, m, p} {a, b, c, f, l, m, o} {b, f, h, j, o} {b, c, k, s, p} {a, f, c, e, l, p, m, n}	{f, c, a, m, p} {f, c, a, b, m} {f, b} {c, b, p} {f, c, a, m, p}	r 4 c 4 a 3 b 3 m 3 p 3

Steps:

- 1. Scan DB once, find frequent 1-itemsets (single item patterns)
- 2. Order frequent items in descending order of their frequency

Data Mining for Knowledge Management

14

min cunnort – 2

min support = 3

FP-tree Construction from a Transactional DB

TID	Items bought	(ordered) frequent items	<u>Item</u>	frequency
100 200 200	{f, a, c, d, g, i, m, p} {a, b, c, f, l, m, o}	{f, c, a, m, p} {f, c, a, b, m}	r C a	4 4 3
400 500	{b, i, ii, j, 0} {b, c, k, s, p} {a, f, c, e, l, p, m, n}	{i, b} {c, b, p} {f, c, a, m, p}	b m	3 3
500			p	3

Steps:

- 1. Scan DB once, find frequent 1-itemsets (single item patterns)
- 2. Order frequent items in descending order of their frequency
- 3. Scan DB again, construct FP-tree

FP-tree Construction

Data Mining for Knowledge Management

16

FP-tree Construction

Data Mining for Knowledge Management

18

FP-tree Construction

FP-tree Construction

Data Mining for Knowledge Management

20

FP-Tree Definition

- FP-tree is a frequent pattern tree, defined below:
 - It consists of one root labeled as "null"
 - a set of *item prefix subtrees* as the children of the root, and a *frequent-item header table*.

FP-Tree Definition

- FP-tree is a frequent pattern tree, defined below:
 - It consists of one root labeled as "null"
 - a set of *item prefix subtrees* as the children of the root, and a *frequent-item header table*.
- Each node in the *item prefix subtrees* has three fields:
 - item-name to register which item this node represents,
 - count, the number of transactions represented by the portion of the path reaching this node, and
 - node-link that links to the next node in the FP-tree carrying the same item-name, or null if there is none.

Data Mining for Knowledge Management

FP-Tree Definition

- FP-tree is a frequent pattern tree, defined below:
 - It consists of one root labeled as "null"
 - a set of *item prefix subtrees* as the children of the root, and a *frequent-item header table*.
- Each node in the *item prefix subtrees* has three fields:
 - item-name to register which item this node represents,
 - count, the number of transactions represented by the portion of the path reaching this node, and
 - node-link that links to the next node in the FP-tree carrying the same item-name, or null if there is none.
- Each entry in the *frequent-item header table* has two fields,
 - item-name, and
 - head of node-link that points to the first node in the FP-tree carrying the item-name.

Data Mining for Knowledge Management

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the *count* field)
 - For Connect-4 DB, compression ratio could be over 100

Data Mining for Knowledge Management

24

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

FP-Tree Design Choice

Why items in FP-Tree in ordered descending order?

Data Mining for Knowledge Management

FP-Tree Design Choice

Why items in FP-Tree in ordered descending order?

Data Mining for Knowledge Management

FP-Tree Design Choice

Data Mining for Knowledge Management

Mining Frequent Patterns Using FP-tree: FP-Growth

- General idea (divide-and-conquer) Recursively grow frequent patterns using the FP-tree: looking for shorter ones recursively and then concatenating the suffix:
- Method
 - For each frequent item, construct its
 - conditional pattern base
 - then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree until
 - the resulting FP-tree is empty
 - or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

Principles of FP-Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, *CPB* be α 's conditional pattern base, and β be an itemset in *CPB*. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in *CPB*.
- Is "*fcabm* " a frequent pattern?
 - "fcab" is a branch of m's conditional pattern base
 - "b" is NOT frequent in transactions containing "fcab "
 - "bm" is **NOT** a frequent itemset.

Data Mining for Knowledge Management

3 Major Steps

Starting the processing from the end of list L:

Step 1:

Construct conditional pattern base for each item in the header table

Step 2

Construct conditional FP-tree from each conditional pattern base

Step 3

Recursively mine conditional FP-trees and grow frequent patterns obtained so far. If the conditional FP-tree contains a single path, simply enumerate all the patterns

Step 1: Construct Conditional Pattern Base

- Starting at the bottom of frequent-item header table in the FPtree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Data Mining for Knowledge Management

32

Properties of Step 1

- Node-link property
 - For any frequent item a_j, all the possible frequent patterns that contain a_j can be obtained by following a_j's node-links, starting from a_j's head in the FP-tree header.
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i.

Step 2: Construct Conditional FP-tree

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the conditional FP-tree for the frequent items of the pattern base

Data Mining for Knowledge Management

Conditional Pattern Bases and Conditional FP-Tree

Conditional pattern base **Conditional FP-tree** Item {(fcam:2), (cb:1)} {(c:3)}|p р {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m m {(fca:1), (f:1), (c:1)} Empty b {(fc:3)} {(f:3, c:3)}|a а {(f:3)} {(f:3)}|c С f Empty Empty

order of L

Single FP-tree Path Generation

 Suppose an FP-tree T has a single path P. The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P

A Special Case: Single Prefix Path in FP-tree

FP-growth -- E

40

FP-growth -- DE

42

FP-growth -- CDE

min support = 2

Build Conditional pattern base for C within D within E: P = {(A:1,C:1)}

Count for C is 1: {C,D,E} is NOT frequent itemset

44

FP-growth -- ADE

46

Scaling FP-growth by DB Projection

- FP-tree cannot fit in memory?—DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. Partition projection techniques
 - Parallel projection is space costly

Partition-based Projection

FP-Growth vs. Apriori: Scalability With the Support Threshold

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - decompose both the mining task and DB according to the frequent patterns obtained so far
 - leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Implications of the Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00), CLOSET+ (KDD'03)
- Mining sequential patterns
 - FreeSpan (KDD'00), PrefixSpan (ICDE'01)
- Constraint-based mining of frequent patterns
 - Convertible constraints (KDD'00, ICDE'01)
- Computing iceberg data cubes with complex measures
 - H-tree and H-cubing algorithm (SIGMOD'01)

Data Mining for Knowledge Management

52

Implications of the Methodology

• Mining closed frequent itemsets

CLOSET+ (KDD'03)

Frequent Closed Itemsets

Definition

- An itemset Y is a **frequent closed itemset** if it is <u>frequent</u> and there exists no proper superset
 Y' ⊃ Y such that sup(Y) = sup(Y)
- Ex: min_sup = 2, f_list = <f:4, c:4, a:3, b:3, m:3, p:3>

Tid	Set of items	ordered frequent item list
100	a,c,f,m,p	f,c,a,m,p
200	a,c,d,f,m,p	f,c,a,m,p
300	a,b,c,f,g,m	f,c,a,b,m
400	b, f, i	f, b
500	b,c,n,p	c, b, p

fc -> frequent closed pattern? **correct answer: superset** *fcam*

Data Mining for Knowledge Management

54

Pruning techniques (for closed itemsets)

Item merging

Definition:

Let X be a <u>frequent itemset</u>. If every transaction containing itemset X also **contains** itemset Y, but **not** any <u>proper superset</u> of Y, then " $X \cup Y$ " forms a **frequent closed itemset** and there is no need to search any itemset containing X but no Y

Pruning techniques (Cont.)

Item merging
 Ex:

Tid	Set of items	ordered frequent item list
100	a,c,f,m,p	f,c,a,m,p
200	a,c,d,f,m,p	f,c,a,m,p
300	a,b,c,f,g,m	f,c,a,b,m
400	b, f, i	f, b
500	b,c,n,p	c, b, p

Projected conditional database for prefix itemset fc.3: {(a,m,p), (a,m,p), (a,b,m)} $\rightarrow am:3$

am is merged with $fc \rightarrow$ a frequent closed itemset fcam:3

Data Mining for Knowledge Management

56

Pruning techniques (Cont.)

Sub-itemset pruning

Definition

Let X be the frequent itemset currently under consideration. If X is a *proper subset* of an already found frequent closed itemset Y and sup(X) =sup(Y), then X and all of X's descendants in the tree cannot be frequent closed itemsets

Pruning techniques (Cont.)

Sub-itemset pruning
 Ex:

Data Mining for Knowledge Management

58

CLOSET+

- In CLOSET+,
 - A *hybrid tree-projection* method is developed, which builds conditional projected databases in two ways:
 - Dense datasets → bottom-up physical treeprojection
 - Sparse datasets → top-down pseudo treeprojection