Roadmap

- **Frequent Patterns**
- **A-Priori Algorithm**
- **Improvements to A-Priori**
	- **Park-Chen-Yu Algorithm**
	- **Multistage Algorithm**
	- **Approximate Algorithms**
	- **Compacting Results**

Data Mining for Knowledge Management 50

PCY Algorithm

- Hash-based improvement to A-Priori.
- During Pass 1 of A-priori, most memory is idle.
- Use that memory to keep counts of buckets into which pairs of items are hashed.
	- **Just the count, not the pairs themselves.**
- Gives extra condition that candidate pairs must satisfy on Pass 2.
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD'95

PCY Algorithm --- Before Pass 1 Organize Main Memory

- **Space to count each item.**
	- One (typically) 4-byte integer per item.
- **Use the rest of the space for as many integers,** representing buckets, as we can.

Data Mining for Knowledge Management 62

PCY Algorithm --- Pass 1

```
FOR (each basket) {
   FOR (each item)
     add 1 to item's count;
   FOR (each pair of items) {
     hash the pair to a bucket;
     add 1 to the count for that 
   bucket
   }
}
```
Data Mining for Knowledge Management 63

Observations About Buckets

- $1.$ If a bucket contains a frequent pair, then the bucket is surely frequent.
	- We cannot use the hash table to eliminate any member of this bucket.
- 2. Even without any frequent pair, a bucket can be frequent.
	- Again, nothing in the bucket can be eliminated.
- 3. But in the best case, the count for a bucket is less than the support s.
	- Now, all pairs that hash to this bucket can be eliminated as candidates, even if the pair consists of two frequent items.

Data Mining for Knowledge Management 54

PCY Algorithm --- Between Passes

- \blacksquare Replace the buckets by a bit-vector:
	- \blacksquare 1 means the bucket count exceeds the support s (frequent bucket); 0 means it did not.
- Integers are replaced by bits, so the bit-vector requires little second-pass space.
- **Also, decide which items are frequent and list** them for the second pass.

Picture of PCY

Data Mining for Knowledge Management 56

PCY Algorithm --- Pass 2

- Count all pairs $\{i,j\}$ that meet the conditions: $1.$ Both *i* and *j* are frequent items.
	- 2. The pair $\{i,j\}$, hashes to a bucket number whose bit in the bit vector is 1.
- Notice all these conditions are necessary for the pair to have a chance of being frequent.

Memory Details

- Hash table requires buckets of 2-4 bytes.
	- Number of buckets thus almost $1/4-1/2$ of the number of bytes of main memory.
- **On second pass, a table of (item, item, count)** triples is essential.
	- Thus, hash table must eliminate $2/3$ of the candidate pairs to beat a-priori.

Data Mining for Knowledge Management 58

Multistage Algorithm

- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY.
- On middle pass, fewer pairs contribute to buckets, so fewer *false positives* --- frequent buckets with no frequent pair.

Data Mining for Knowledge Management 60

Multistage --- Pass 3

- Count only those pairs $\{i,j\}$ that satisfy:
	- $1.$ Both *i* and *j* are frequent items.
	- $2.$ Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1.
	- 3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1.

Important Points

- $1.$ The two hash functions have to be independent.
- 2. We need to check both hashes on the third pass.
	- If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket.

Data Mining for Knowledge Management 62

Multihash

- Key idea: use several independent hash tables on the first pass.
- Risk: halving the number of buckets doubles the average count. We have to be sure most buckets will still not reach count s.
- If so, we can get a benefit like multistage, but in only 2 passes.

Multihash Picture

Data Mining for Knowledge Management 64

Extensions

- **Either multistage or multihash can use more than** two hash functions.
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.
- For multihash, the bit-vectors total exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$.

All (Or Most) Frequent Itemsets In < 2 Passes

- **Simple algorithm.**
- SON (Savasere, Omiecinski, and Navathe).
- **Toivonen.**

Data Mining for Knowledge Management 66

Simple Algorithm --- (1)

- Take a main-memory-sized random sample of the market baskets.
- Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don't pay for disk I/O each time you increase the size of itemsets.
	- Be sure you leave enough space for counts.

The Picture

Data Mining for Knowledge Management 68

Simple Algorithm --- (2)

- Use as your support threshold a suitable, scaled-back number.
	- E.g., if your sample is $1/100$ of the baskets, use s /100 as your support threshold instead of \overline{s} .

Simple Algorithm --- Option

- **Department Optionally, verify that your guesses are truly** frequent in the entire data set by a second pass.
- But you don't catch sets frequent in the whole but not in the sample.
	- Smaller threshold, e.g., $s/125$, helps.

Data Mining for Knowledge Management 70

SON Algorithm --- (1)

- Repeatedly read small subsets of the baskets into main memory and perform the first pass of the simple algorithm on each subset.
- An itemset becomes a candidate if it is found to be frequent in $\frac{\partial n y}{\partial x}$ one or more subsets of the baskets.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB'95

SON Algorithm --- (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

Data Mining for Knowledge Management 72

Toivonen's Algorithm --- (1)

- **Start as in the simple algorithm, but lower the** threshold slightly for the sample.
	- Example: if the sample is 1% of the baskets, use s /125 as the support threshold rather than $s/100$.
	- Goal is to avoid missing any itemset that is frequent in the full set of baskets.
- **H. Toivonen. Sampling large databases for** association rules. In VLDB'96

Toivonen's Algorithm --- (2)

- Add to the itemsets that are frequent in the sample the *negative border* of these itemsets.
- An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are.

Data Mining for Knowledge Management 24

Example: Negative Border

ABCD is in the negative border if and only if it is not frequent, but all of ABC, BCD, ACD, and ABD are.

Toivonen's Algorithm --- (3)

- In a second pass, count all candidate frequent itemsets from the first pass, and also count the negative border.
- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are $\frac{exactly}{}$ the frequent itemsets.

Data Mining for Knowledge Management 76

Toivonen's Algorithm --- (4)

- What if we find something in the negative border is actually frequent?
- We must start over again!
- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in mainmemory.

Theorem:

If there is an itemset frequent in the whole, but not frequent in the sample, then there is a member of the negative border frequent in the whole.

Data Mining for Knowledge Management 78

Proof:

- Suppose not; i.e., there is an itemset S frequent in the whole, but not frequent or in the negative border in the sample.
- Let T be a smallest subset of S that is not frequent in the sample.
- $\overline{}$ $\overline{}$ $\overline{}$ is frequent in the whole (monotonicity).
- $\overline{}$ $\overline{}$ $\overline{}$ is in the negative border (else not "smallest").

Compacting the Output

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $(^{100}{}_{1}) + (^{100}{}_{2}) + ...$ + $({}^{1}_{1} {}^{0}_{0} {}^{0}_{0})$ = 2¹⁰⁰ - 1 = 1.27*10³⁰ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- 1. Maximal Frequent itemsets : no immediate superset is frequent.
- 2. Closed itemsets : no immediate superset has the same count.
	- Stores not only frequent information, but exact counts.

Data Mining for Knowledge Management 80

Closed Patterns and Max-Patterns

- An itemset X is closed if X is *frequent* and there exists no super-pattern $Y \times X$, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern $Y \times ($ proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
	- Reducing the $#$ of patterns and rules

Data Mining for Knowledge Management 81

Data Mining for Knowledge Management 82

Closed Patterns and Max-Patterns

- **Exercise.** DB = { $1, ..., a₁₀₀$ }, < $a₁, ..., a₅₀$ }
	- Min_sup = 1.
- What is the set of closed itemsets?

Closed Patterns and Max-Patterns

- **Exercise.** DB = { $1, ..., a₁₀₀$ }, < $a₁, ..., a₅₀$ } Min_sup = 1.
- What is the set of closed itemsets?
	- \blacksquare <a $_{1}$, ..., a $_{100}$ >: 1
	- \blacksquare < a₁, ..., a₅₀>: 2

Data Mining for Knowledge Management 84

Closed Patterns and Max-Patterns

- **Exercise.** DB = { $1, ..., a₁₀₀$ }, < $a₁, ..., a₅₀$ }
	- . Min_sup = 1.
- What is the set of closed itemsets?
	- \blacksquare <a $_{1}$, ..., a $_{100}$ >: 1
	- \blacksquare < a₁, ..., a₅₀>: 2
- What is the set of max-patterns?

Closed Patterns and Max-Patterns

- **Exercise.** DB = { $1, ..., a₁₀₀$ }, < $a₁, ..., a₅₀$ } . Min sup = 1.
- What is the set of closed itemsets?
	- \blacksquare <a $_{1}$, ..., a $_{100}$ >: 1
	- \blacksquare < a₁, ..., a₅₀>: 2
- What is the set of max-patterns?
	- \blacksquare <a $_{1}$, ..., a $_{100}$ >: 1

Data Mining for Knowledge Management 86

Closed Patterns and Max-Patterns

- **Exercise.** DB = { $1, ..., a₁₀₀$ }, < $a₁, ..., a₅₀$ }
	- \blacksquare Min sup = 1.
- What is the set of closed itemsets?
	- \blacksquare <a $_{1}$, ..., a $_{100}$ >: 1
	- \blacksquare < a₁, ..., a₅₀>: 2
- What is the set of max-patterns?
	- \blacksquare <a $_{1}$, ..., a $_{100}$ >: 1
- What is the set of all patterns?

Ref: Basic Concepts of Frequent Pattern Mining

- **EX. (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining** association rules between sets of items in large databases. SIGMOD'93.
- **Max-pattern) R. J. Bayardo. Efficiently mining long patterns from** databases. SIGMOD'98.
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99.
- **Sequential pattern) R. Agrawal and R. Srikant. Mining sequential** patterns. ICDE'95

Data Mining for Knowledge Management

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98.