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Roadmap

 Frequent Patterns
 Frequent Pattern Analysis

 Applications

 Market-Basket Model

 Association Rules

 A-Priori Algorithm

 Improvements to A-Priori
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What Is Frequent Pattern Analysis?

 Frequent pattern: a pattern (a set of items, subsequences, substructures, 

etc.) that occurs frequently in a data set 

 First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context 

of frequent itemsets and association rule mining

 Motivation: Finding inherent regularities in data

 What products were often purchased together?— Beer and diapers?!

 What are the subsequent purchases after buying a PC?

 What kinds of DNA are sensitive to this new drug?

 Can we automatically classify web documents?

 Applications

 Basket data analysis, cross-marketing, catalog design, sale campaign analysis, 

Web log (click stream) analysis, and DNA sequence analysis.
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Why Is Freq. Pattern Mining 
Important?

 Discloses an intrinsic and important property of data sets

 Forms the foundation for many essential data mining tasks

 Association, correlation, and causality analysis

 Sequential, structural (e.g., sub-graph) patterns

 Pattern analysis in spatiotemporal, multimedia, time-series, and 

stream data 

 Classification: associative classification

 Cluster analysis: frequent pattern-based clustering

 Data warehousing: iceberg cube and cube-gradient 

 Semantic data compression: fascicles

 Broad applications
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Basic Concepts: Frequent Patterns 
and Association Rules

 Itemset X = {x1, …, xk}

 Find all the rules X  Y with minimum 
support and confidence
 support, s, probability that a 

transaction contains X Y

 confidence, c, conditional 
probability that a transaction 
having X also contains Y

Let  supmin = 50%,  confmin = 50%

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

A  D  (60%, 100%)

D  A  (60%, 75%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

Transaction-id Items bought

10 A, B, D

20 A, C, D

30 A, D, E

40 B, E, F

50 B, C, D, E, F
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The Market-Basket Model

 A large set of items, e.g., things sold in a 
supermarket.

 A large set of baskets, each of which is a small set 
of the items, e.g., the things one customer buys 
on one day.
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Support

 Simplest question: find sets of items that appear 
―frequently‖ in the baskets.

 Support for itemset I  = the number of baskets 
containing all items in I. 

 Given a support threshold s, sets of items that 
appear in > s baskets are called frequent 
itemsets.
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Example

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.
B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets? 
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Example

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.
B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: 
 {m}, {c}, {b}, {j}, {m, b}, {c, b}, {j, c}.
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Applications --- (1)

 Real market baskets: chain stores keep terabytes 
of information about what customers buy 
together.
 Tells how typical customers navigate stores, lets them 

position tempting items.
 Suggests tie-in ―tricks,‖ e.g., run sale on diapers and 

raise the price of beer.

 High support needed, or no $$’s .
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Applications --- (2)

 ―Baskets‖ = documents; ―items‖ = words in those 
documents.
 Lets us find words that appear together unusually 

frequently, i.e., linked concepts.

 ―Baskets‖ = sentences, ―items‖ = documents 
containing those sentences.
 Items that appear together too often could represent 

plagiarism.
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Applications --- (3)

 ―Baskets‖ = Web pages; ―items‖ = linked pages.
 Pairs of pages with many common references may be 

about the same topic.

 ―Baskets‖ = Web pages p ; ―items‖ = pages that 
link to p .
 Pages with many of the same links may be mirrors or 

about the same topic.
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Important Point

 ―Market Baskets‖ is an abstraction that models 
any many-many relationship between two 
concepts: ―items‖ and ―baskets.‖
 Items need not be ―contained‖ in baskets.

 The only difference is that we count co-
occurrences of items related to a basket, not vice-
versa.
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Scale of Problem

 WalMart sells 100,000 items and can store billions 
of baskets.

 The Web has  over 100,000,000 words and 
billions of pages.
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Association Rules

 If-then rules about the contents of baskets.

 {i1, i2,…,ik} → j means: ―if a basket contains all of 
i1,…,ik then it is likely to contain j.‖

 Confidence of this association rule is the 
probability of j given i1,…,ik.
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Example

B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

 An association rule: {m, b} → c.
 Confidence = 2/4 = 50%.
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Interest

 The interest of an association rule X → Y is the 
absolute value of the amount by which the 
confidence differs from the probability of Y.
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Example

B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4 = {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

 For association rule {m, b} → c, item c
appears in 5/8 of the baskets.

 Interest = | 2/4 - 5/8 | = 1/8 --- not very 
interesting.
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Relationships Among Measures

 Rules with high support and confidence may be 
useful even if they are not ―interesting.‖
 We don’t care if buying bread causes people to buy 

milk, or whether simply a lot of people buy both bread 
and milk.

 But high interest suggests a cause that might be 
worth investigating.
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Finding Association Rules

 A typical question: ―find all association rules with 
support ≥ s and confidence ≥ c.‖
 Note: ―support‖ of an association rule is the support of 

the set of items it mentions.

 Hard part: finding the high-support (frequent ) 
itemsets.
 Checking the confidence of association rules involving 

those sets is relatively easy.
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Computation Model

 Typically, data is kept in a ―flat file‖ rather than a 
database system.
 Stored on disk.
 Stored basket-by-basket.
 Expand baskets into pairs, triples, etc. as you read 

baskets.
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File Organization

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Basket 1

Basket 2

Basket 3

Etc.
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Computation Model --- (2)

 The true cost of mining disk-resident data is 
usually the number of disk I/O’s.

 In practice, association-rule algorithms read the 
data in passes --- all baskets read in turn.

 Thus, we measure the cost by the number of 
passes an algorithm takes.
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Main-Memory Bottleneck

 For many frequent-itemset algorithms, main 
memory is the critical resource.
 As we read baskets, we need to count something, e.g., 

occurrences of pairs.
 The number of different things we can count is limited 

by main memory.
 Swapping counts in/out is a disaster.
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Finding Frequent Pairs

 The hardest problem often turns out to be finding 
the frequent pairs.

 We’ll concentrate on how to do that, then discuss 
extensions to finding frequent triples, etc.
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Naïve Algorithm

 Read file once, counting in main memory the 
occurrences of each pair.
 Expand each basket of n items into its n (n -1)/2 pairs.

 Fails if (#items)2 exceeds main memory.
 Remember: #items can be 100K (Wal-Mart) or 10B 

(Web pages).
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Details of Main-Memory Counting

 Two approaches:
1. Count all item pairs, using a triangular matrix.
2. Keep a table of triples [i, j, c] = the count of the pair 

of items {i,j } is c.

 (1) requires only (say) 4 bytes/pair.

 (2) requires 12 bytes, but only for those pairs 
with count > 0.



15

Data Mining for Knowledge Management 29

4 per pair

Method (1) Method (2)

12 per
occurring pair

Details of Main-Memory Counting
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Details of Approach #1

 Number items 1, 2,…
 Keep pairs in the order {1,2}, {1,3},…, {1,n }, 

{2,3}, {2,4},…,{2,n }, {3,4},…, {3,n },…{n -
1,n }.

 Find pair {i, j } at the position:
 (i –1)(n –i /2) + j – i

 Total number of pairs n (n –1)/2; total bytes 
about 2n 2.



16

Data Mining for Knowledge Management 31

Details of Approach #2

 You need a hash table, with i and j as the key, 
to locate (i, j, c) triples efficiently.
 Typically, the cost of the hash structure can be 

neglected.

 Total bytes used is about 12p, where p is the 
number of pairs that actually occur.
 Beats triangular matrix if at most 1/3 of possible pairs 

actually occur.

Data Mining for Knowledge Management 32

Roadmap

 Frequent Patterns

 A-Priori Algorithm
 Monotonicity Property

 Algorithm Description

 Improvements to A-Priori
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A-Priori Algorithm --- (1)

 A two-pass approach called a-priori limits the 
need for main memory.

 Key idea: monotonicity :  if a set of items appears 
at least s times, so does every subset.
 Contrapositive for pairs: if item i does not appear in s

baskets, then no pair including i can appear in s
baskets.

(Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)
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A-Priori Algorithm --- (2)

 Pass 1: Read baskets and count in main memory 
the occurrences of each item.
 memory requirements?
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A-Priori Algorithm --- (2)

 Pass 1: Read baskets and count in main memory 
the occurrences of each item.
 Requires only memory proportional to #items.
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A-Priori Algorithm --- (2)

 Pass 1: Read baskets and count in main memory 
the occurrences of each item.
 Requires only memory proportional to #items.

 Pass 2: Read baskets again and count in main 
memory only those pairs both of which were 
found in Pass 1 to be frequent.
 memory requirements?
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A-Priori Algorithm --- (2)

 Pass 1: Read baskets and count in main memory 
the occurrences of each item.
 Requires only memory proportional to #items.

 Pass 2: Read baskets again and count in main 
memory only those pairs both of which were 
found in Pass 1 to be frequent.
 Requires memory proportional to square of frequent 

items only.
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Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of

candidate

pairs
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C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

First
pass

Second
pass

Frequent Triples, Etc.
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A-Priori for All Frequent 
Itemsets

 One pass for each k.

 Needs room in main memory to count each 
candidate k –tuple.

 For typical market-basket data and reasonable 
support (e.g., 1%), k = 2 requires the most 
memory.
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The Apriori Algorithm—An Example 

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2
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The Apriori Algorithm

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk != ; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;
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Important Details of Apriori

 How to generate candidates?

 Step 1: self-joining Lk

 Step 2: pruning

 How to count supports of candidates?

 Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd

 acde from acd and ace

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}
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How to Generate Candidates?

 Suppose the items in Lk-1 are listed in an order

 Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-

1

 Step 2: pruning

forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck
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How to Count Supports of Candidates?

 Why counting supports of candidates a problem?

 The total number of candidates can be huge

 One transaction may contain many candidates

 Method:

 Candidate itemsets are stored in a hash-tree

 Leaf node of hash-tree contains a list of itemsets and counts

 Interior node contains a hash table

 Subset function: finds all the candidates contained in a 

transaction
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Where are the Association Rules?

 so far we have seen how A-priori efficiently computes all the frequent 
itemsets

 but how are the association rules generated from the frequent 
itemsets?
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Association Rule Generation

 given the frequent itemsets, generate association rules as follows

 for each frequent itemset l

 generate all non-empty subsets of l

 for each non-empty subset s of l

 output association rule: s -> (l-s)
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Association Rule Generation

 given the frequent itemsets, generate association rules as follows

 for each frequent itemset l

 generate all non-empty subsets of l

 for each non-empty subset s of l

 output association rule: s -> (l-s), if supp(l)/supp(s)>=c
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Association Rule Generation

 given the frequent itemsets, generate association rules as follows

 for each frequent itemset l

 generate all non-empty subsets of l

 for each non-empty subset s of l

 output association rule: s -> (l-s), if supp(l)/supp(s)>=c

 we know supp(rule)>=s

 generated from frequent itemsets


