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Abstract

Clustering algorithms are attragadifor the task of class iden-
tification in spatial databases. Wever, the application to
large spatial databases rises the feit@ requirements for
clustering algorithms: minimal requirements of domain
knowledge to determine the input parameters, disgoof
clusters with arbitrary shape and godiicegncy on lage da-
tabases. The well-kmm clustering algorithms &&#r no solu-
tion to the combination of these requirements. In this paper
we present the meclustering algorithm DBSCAN relying on

a density-based notion of clusters which is designed to dis-
cover clusters of arbitrary shape. DBSCAN requires only one
input parameter and supports the user in determining an ap-
propriate alue for it. W& performed anx@erimental gealua-

tion of the efectiveness and &€iengy of DBSCAN using
synthetic data and real data of the SEU)A 2000 bench-
mark. The results of ourxperiments demonstrate that (1)
DBSCAN is significantly more &fctive in disc@ering clus-
ters of arbitrary shape than the well-wrmoalgorithm CLAR-
ANS, and that (2) DBSCAN outperforms CLARANS by a
factor of more than 100 in terms ofieiengy.

Keywords: Clustering Algorithms, Arbitrary Shape of Clus-
ters, Eficiency on Lage Spatial Databases, Handling Noise.

1. Introduction

Numerous applications require the managemerspafial
data, i.e. data related to spaSpatial Database Systems
(SDBS)(Gueting 1994) are database systems for the man-
agement of spatial data. Increasinghyg&amounts of data
are obtained from satellite images, X-ray crystallogyaph
other automatic equipment. Therefore, automatedvkno
ledge disceery becomes more and more important in spatial
databases.

Several tasks oknowled@ discwery in databased<DD)
have been defined in the literature (Matheus, Chan & Pi-
atetsly-Shapiro 1993). The task considered in this paper is
class identificationi.e. the grouping of the objects of a data-
base into meaningful subclasses. In an earth ofs@nda-
tabase, e.g., we mightant to disceer classes of houses
along some vier.

Clustering algorithms are attragti for the task of class
identification. Havever, the application to |lge spatial data-
bases rises the folldng requirements for clustering algo-
rithms:

(1) Minimal requirements of domain kwtedge to deter-
mine the input parameters, because appropraites

are often not knen in adwance when dealing with ige
databases.

(2) Discavery of clusters with arbitrary shape, because the
shape of clusters in spatial databases may be spherical,
drawvn-out, lineayelongted etc.

(3) Good dficiency on lage databases, i.e. on databases of
significantly more than just avfethousand objects.

The well-knavn clustering algorithms @#r no solution to

the combination of these requirements. In this paper

present the e clustering algorithm DBSCAN. It requires

only one input parameter and supports the user in determin-
ing an appropriateatue for it. It discwers clusters of arbi-
trary shape. Final\DBSCAN is eficient esen for lage spa-

tial databases. The rest of the papergaoized as follws.

We discuss clustering algorithms in sectibmvaluating

them according to the a® requirements. In secti@) we

present our notion of clusters which is based on the concept
of density in the database. Sectibiintroduces the algo-
rithm DBSCAN which disceers such clusters in a spatial
database. In sectidy we performed arxperimental galu-

ation of the dectiveness and &fiengy of DBSCAN using

synthetic data and data of the SEQIA 2000 benchmark.

Section6 concludes with a summary and some directions for

future research.

2. Clustering Algorithms

There are tw basic types of clustering algorithms (Kaufman
& Rousseeuw 1990): partitioning and hierarchical algo-
rithms. Partitioning algorithmsconstruct a partition of a da-
tabaseD of n objects into a set d&fclustersk is an input pa-
rameter for these algorithms, i.e some domaiwkedge is
required which unfortunately is notailable for mag ap-
plications. The partitioning algorithm typically starts with
an initial partition ofD and then uses an itesadi control
strategyy to optimize an objeaté function. Each cluster is
represented by the gfity center of the clustgk-means al-
gorithmg or by one of the objects of the cluster located near
its center k-medoid algorithms Consequentlypartitioning
algorithms use a tw¢step procedure. First, determineep-
resentaties minimizing the objeate function. Second, as-
sign each object to the cluster with its represam@étlos-

est” to the considered object. The second step implies that a
partition is equialent to a eronoi diagram and each cluster
is contained in one of th@konoi cells. Thus, the shape of all



clusters found by a partitioning algorithm is eexwhich is
very restrictve.

Ng & Han (1994) eplore partitioning algorithms for
KDD in spatial databases. An algorithm called CLARANS
(Clustering Lage Applications based on RANdomized
Search) is introduced which is an imped k-medoid meth-
od. Compared to former k-medoid algorithms, CLARANS
is more efiective and more éitient. An experimental ealu-
ation indicates that CLARANS rundfiefently on databases
of thousands of objects. Ng & Han (1994) also discuss meth-
ods to determine the “natural” numbey,of clusters in a
database. Tlyepropose to run CLARANS once for each k
from 2 to n. Br each of the diseered clusterings the sil-
houette codicient (Kaufman & Rousseeuw 1990) is calcu-
lated, and finallythe clustering with the maximum silhou-
ette codicient is chosen as the *“natural” clustering.
Unfortunately the run time of this approach is prohipéti
for large n, because it implies O(n) calls of CLARANS.

CLARANS assumes that all objects to be clustered can re-
side in main memory at the same time which does not hold
for large databases. Furthermore, the run time of CLARANS
is prohibitve on lage databases. Therefore, Estétiegel
&Xu (1995) present seeral focusing techniques which ad-
dress both of these problems by focusing the clustering pro-
cess on the rekant parts of the database. First, the focus is
small enough to be memory resident and second, the run
time of CLARANS on the objects of the focus is significant-
ly less than its run time on the whole database.

Hierarchical algorithms create a hierarchical decomposi-
tion of D. The hierarchical decomposition is represented by
a dendrogram, a tree that iterately splitsD into smaller

moderate &lues for n, bt it is prohibitive for applications on
large databases.

Jain (1988) eplores a density based approach to identify
clusters in k-dimensional point sets. The data set is parti-
tioned into a number of nowerlapping cells and histograms
are constructed. Cells with relaly high frequeng counts
of points are the potential cluster centers and the boundaries
between clusterafi in the “valleys” of the histogram. This
method has the capability of identifying clusters of an
shape. Hwever, the space and run-time requirements for
storing and searching multidimensional histograms can be
enormous. Een if the space and run-time requirements are
optimized, the performance of such an approach crucially
depends on the size of the cells.

3. A Density Based Notion of Clusters

When looking at the sample sets of points depicted in
figure 1, we can easily and unambiguously detect clusters of
points and noise points not belonging ty ahthose clus-
ters.

database 3

database 1 database 2

figure 1: Sample databases

subsets until each subset consists of only one object. In such The main reason whwe recognize the clusters is that

a hierarcl, each node of the tree represents a cluster. of
The dendrogram can either be created from theeteap to
the root &gglomerative approach) or from the root den to
the leaes (ivisive approach) by meging or dviding clus-
ters at each step. In contrast to partitioning algorithms, hier-
archical algorithms do not nekds an input. Heever, ater-
mination condition has to be defined indicating when the
mege or dvision process should be terminated. Oxene
ple of a termination condition in the agglomeratapproach
is the critical distance j;; between all the clusters X

So far, the main problem with hierarchical clustering al-
gorithms has been the fiifulty of derving appropriate pa-
rameters for the termination condition, e.gatue of Oy
which is small enough to separate all “natural” clusters and,
at the same time lge enough such that no cluster is split into
two parts. Recentyn the area of signal processing the hier-
archical algorithm Ejcluster has been presented (Garcia,
Fdez-\aldivia, Cortijo & Molina 1994) automatically deri
ing a termination condition. Itelidea is that tw points be-
long to the same cluster if you caalkfrom the first point
to the second one by a “fisfently small” step. Ejcluster
follows the dvisive approach. It does not requireyanput
of domain knavledge. Furthermore xperiments shw that
it is very efective in disceering non-comex clusters. Ha/-
ever, the computational cost of Ejcluster is @)(due to the
distance calculation for each pair of points. This is accept-
able for applications such as character recognition with

within each cluster we ke a typical density of points which
is considerably higher than outside of the clugterther-
more, the density within the areas of noise vgdothan the
density in ag of the clusters.

In the following, we try to formalize this intuite notion
of “clusters” and “noise” in a databaBeof points of some
k-dimensional spacg Note that both, our notion of clusters
and our algorithm DBSCAN, apply as well to 2D or 3D Eu-
clidean space as to some high dimensional feature space.
The ley idea is that for each point of a cluster the neighbor-
hood of a gren radius has to contain at least a minimum
number of points, i.e. the density in the neighborhood has to
exceed some threshold. The shape of a neighborhood is de-
termined by the choice of a distance function far pints
p and g, denoted kgist(p,q). For instance, when using the
Manhattan distance in 2D space, the shape of the neighbor-
hood is rectangulaNote, that our approachonks with ary
distance function so that an appropriate function can be cho-
sen for some gen application. &r the purpose of proper vi-
sualization, all eamples will be in 2D space using the Eu-
clidean distance.

Definition 1: (Eps-neighborhood of a point) Theps-
neighborhood of a point p, denoted bygN{p), is defined by
Nepdp) = {q LID | dist(p,q) Eps}.

A naive approach could require for each point in a cluster
that there are at least a minimum numip&inPts) of points
in an Eps-neighborhood of that point. wkwver, this ap-



proach &ils because there aredwinds of points in a clus-
ter, points inside of the clustesgre points) and points on the
border of the clusterbérder points). In general, an Eps-
neighborhood of a border point contains significantly less
points than an Eps-neighborhood of a core point. Therefore,
we would have to set the minimum number of points to a rel-
atively low value in order to include all points belonging to
the same clusteThis \alue, havever, will not be character-
istic for the respeate cluster - particularly in the presence of
noise. Therefore, we require that feegy point p in a clus-
ter C there is a point g in C so that p is inside of the Eps-
neighborhood of g and fl{qg) contains at least MinPts
points. This definition is elaborated in the fallag.

Definition 2: (directly density-reachable) A point pds
rectly density-reachable from a point g wrt. Eps, MinPts if

1) pJ Ngpdg) and

2) Ngpda)l = MinPts (core point condition)
Obviously, directly density-reachable is symmetric for pairs
of core points. In general, Wever, it is not symmetric if one
core point and one border point aredlved. Figure2 shavs
the asymmetric case.

p directly density—

(@) 13 )
P . s reachable from g
p: border peint = 9 o . ° .
e s . . .
q: core point e ve " . .
. . qnot directly density-

. * t . ' reachable from p

figure 2: core points and border points

Definition 3: (density-reachable) A point p density-
reachable from a point q wrt. Eps and MinPts if there is a
chain of points g, ..., Py, PL = 0, |, = p such that;p, is di-
rectly density-reachable from.p

Density-reachability is a canonicaktension of direct
density-reachabilityThis relation is transite, hut it is not
symmetric. Figuré depicts the relations of some sample
points and, in particulathe asymmetric case. Although not
symmetric in general, it is ®@us that density-reachability
is symmetric for core points.

p density—

reachable fromg # N p and q density—

) connected to
gnot density— each otherby o

reachable fromp e :

figure 3: density-reachability and density-connectivity

Definition 5: (cluster) LetD be a database of points. A
cluster C wrt. Eps and MinPts is a non-empty subsebof
satisfying the follaving conditions:

1)0p, q: if p[J C and q is density-reachable from p wrt.
Eps and MinPts, thenﬂ C. (Maximality)

2) O p, qO C: p is density-connected to q wrt. EPS and
MinPts. (Connectity)

Definition 6: (noise) LetC, ,. . ., C, be the clusters of the
databas® wrt. parameters Epand MinPtg i=1, .. ., k.
Then we define theoise as the set of points in the database
D not belonging to anclusterC; , i.e. noise = {de [Oi:p
Ocl.

Note that a cluster C wrt. Eps and MinPts contains at least
MinPts points because of the fallimg reasons. Since C
contains at least one point p, p must be density-connected to
itself via some point o (which may be equal to p). Thus, at
least o has to satisfy the core point condition and, conse-
guently the Eps-Neighborhood of o contains at least MinPts
points.

The following lemmata are important foaNdating the
correctness of our clustering algorithm. Intety, they
state the follwing. Given the parameters Eps and MinPts,
we can disceer a cluster in a torstep approach. First,
choose an arbitrary point from the database satisfying the
core point condition as a seed. Second, redrel points
that are density-reachable from the seed obtaining the clus-
ter containing the seed.

Lemma 1 Let p be a point id and [N:pdp)| = MinPts.
ThentheseD={o| 0 [IDandois density-reachable from
p wrt. Eps and MinPts} is a cluster wrt. Eps and MinPts.

It is not olvious that a cluste€ wrt. Eps and MinPts is
uniquely determined bywny of its core points. Heever,

Two border points of the same cluster C are possibly not each point inC is density-reachable from yamwf the core
density reachable from each other because the core pointpoints ofC and, therefore, a clustér contains eactly the

condition might not hold for both of them. tever, there

points which are density-reachable from an arbitrary core

must be a core point in C from which both border points of C point ofC.

are density-reachable. Therefore, we introduce the notion of

density-connectity which covers this relation of border
points.

Definition 4: (density-connected) A point p density-
connected to a point g wrt. Eps and MinPts if there is a point

o such that both, p and q are density-reachable from o wrt.

Eps and MinPts.

Density-connectity is a symmetric relation.df density
reachable points, the relation of density-connéytis also
reflexive (c.f. figure3).

Lemma 2 LetC be a cluster wrt. Eps and MinPts and let
p be ay point inC with |Ngp,dp)|= MinPts. TherC equals
to the seD = {o | o is density-reachable from p wrt. Eps and
MinPts}.

4. DBSCAN: Density Based Spatial Clustering
of Applications with Noise

In this section, we present the algorithm DBSCAN (Density
Based Spatial Clustering of Applications with Noise) which

Now, we are able to define our density-based notion of a is designed to diseer the clusters and the noise in a spatial

cluster Intuitively, a cluster is defined to be a set of density-
connected points which is maximal wrt. density-reachabili-
ty. Noise will be defined relat to a gien set of clusters.
Noise is simply the set of pointsiihnot belonging to anof

its clusters.

database according to definitions 5 and 6. Ideaiywould
have to knav the appropriate parameters Eps and MinPts of
each cluster and at least one point from the resjgeciiis-

ter. Then, we could retrie all points that are density-reach-
able from the gien point using the correct parameters. But



there is no easyay to get this information in adwce for all
clusters of the database. \maver, there is a simple and ef-
fective heuristic (presented in sectieection 4.2) to deter-
mine the parameters Eps and MinPts of the "thinnest", i.e.
least dense, cluster in the database. Therefore, DBSCAN
uses global alues for Eps and MinPts, i.e. the sarakigs

for all clusters. The density parameters of the “thinnest”
cluster are good candidates for these global paranadterss
specifying the lavest density which is not considered to be
noise.

4.1 TheAlgorithm

To find a clusterDBSCAN starts with an arbitrary point p
and retriges all points density-reachable from p wrt. Eps
and MinPts. If p is a core point, this procedure yields a clus-
ter wrt. Eps and MinPts (see Lemma 2). If p is a border point,
no points are density-reachable from p and DBSCAN visits
the net point of the database.

Since we use globahlues for Eps and MinPts, DBSCAN
may mege two clusters according to definition 5 into one
cluster if two clusters of ditrent density are “close” to each
other Let thedistance between two sets of points S; and S
be defined as dist {SS,) = min {dist(p,q) | 1 S;, q[J S5}
Then, tw sets of points héng at least the density of the
thinnest cluster will be separated from each other only if the
distance between the twsets is lager than Eps. Conse-
guently a recursie call of DBSCAN may be necessary for
the detected clusters with a highatue for MinPts. This is,
however, no disadantage because the recuesapplication
of DBSCAN yields an egant and ery eficient basic algo-
rithm. Furthermore, the recuvsi clustering of the points of
a cluster is only necessary under conditions that can be easi-
ly detected.

In the folloving, we present a basiension of DBSCAN
omitting details of data types and generation of additional
information about clusters:

DBSCAN ( Set O Poi nts, Eps, M nPts)

/1 SetOf Points is UNCLASSI FI ED
Clusterld := nextld(NJ SE);
FOR i FROM 1 TO Set O Points. size DO
Point := SetOf Points.get(i);
IF Point.dId UNCLASSI FI ED THEN
| F ExpandC ust er ( Set Of Poi nts, Point,
Clusterld, Eps, MnPts) THEN
Clusterld := nextld(d usterld)
END | F
END | F
END FOR
END; // DBSCAN

Set O Poi nt s is either the whole database or a dis-
covered cluster from a pvimus run.Eps andM nPt s are
the global density parameters determined either manually or
according to the heuristics presented in section 4.2. The
function Set OF Poi nt s. get (i) returns the i-th ele-
ment of Set OF Poi nt s. The most important function

used byDBSCANis ExpandCl ust er which is present-
ed belov:

Expandd ust er ( Set Of Poi nt's, Poi nt,
M nPts) : Bool ean;
seeds: =Set O Poi nt s. r egi onQuer y( Poi nt, Eps) ;
| F seeds. sizesM nPts THEN // no core point
Set O Poi nt . changeC | d( Poi nt, NO SE);
RETURN Fal se;
ELSE // all points in seeds are density-
/'l reachabl e from Poi nt
Set Of Poi nt s. changed | ds(seeds, d 1d);
seeds. del et e(Point);
WHI LE seeds <> Enpty DO

ald, Eps,

currentP : = seeds.first();
result := SetOf Points.regi onQuery(currentP,
Eps) ;
IF result.size >= MnPts THEN
FORi FROM 1 TO result.size DO
resultP :=result.get(i);

IF resultP.d Id
I'N { UNCLASSI FI ED, NO SE} THEN
IF resultP.dId = UNCLASSI FI ED THEN
seeds. append(resul tP);
END | F;
Set Of Poi nts. changed | d(resultP,C 1d);
END | F; // UNCLASSIFIED or NO SE
END FOR;
END IF; // result.size >=
seeds. del ete(currentP);

M nPt s

END WHI LE; // seeds <> Enpty
RETURN Tr ue;
END | F
END; // Expandd uster
A call of Set O Poi nt s.r egi onQue-

ry( Poi nt, Eps) returns the Eps-Neighborhood of
Poi nt in Set O Poi nt s as alist of points. Rgon que-
ries can be supportedfiefently by spatial access methods
such as R*-trees (Beckmann et al. 1990) which are assumed
to be aailable in a SDBS for &tient processing of seral
types of spatial queries (BrinkHat al. 1994). The height of
an R*-tree is O(log n) for a database of n points in thestv
case and a query with a “small” quergin has to tneerse
only a limited number of paths in thé-Ree. Since the Eps-
Neighborhoods arexpected to be small compared to the
size of the whole data space, threrage run time compte
ty of a single rgion query is O(log n). & each of the n
points of the database, wevikaat most one gion query
Thus, the werage run time comptéy of DBSCAN is
O(n* log n).

Thed | d (clusterld) of points which ka been mard
to beNO SE may be changed latéfrthey are density-reach-
able from some other point of the database. This happens for
border points of a clusteFhose points are not added to the
seeds-list because we already kmahat a point with a
Clld of NO SE is not a core point. Adding those points to
seeds would only result in additional gbon queries which
would yield no ner answers.

If two clusters @ and G are \ery close to each othdt
might happen that some point p belongs to bothar@ G.
Then p must be a border point in both clusters because other-
wise G would be equal to £since we use global parame-



ters. In this case, point p will be assigned to the cluster dis-
covered first. Except from these rare situations, the result of
DBSCAN is independent of the order in which the points of
the database are visited due to Lemma 2.

4.2 Determining the Parameters Epsand MinPts

In this section, we delop a simple bt effective heuristic to
determine the parameters Eps and MinPts of the "thinnest"
cluster in the database. This heuristic is based on thesfollo
ing obseration. Let d be the distance of a point p to its k-th
nearest neighbpthen the d-neighborhood of p contairs e
actly k+1 points for almost all points p. The d-neighborhood
of p contains more than k+1 points only if/eml points
have exactly the same distance d from p which is quite un-
likely. Furthermore, changing k for a point in a cluster does
not result in lage changes of d. This only happens if the k-th
nearest neighbors of p for k=1, 2, 3, . . . are located approxi-
mately on a straight line which is in general not true for a
point in a cluster

For a gven k we define a functidadist from the database

« The system computes and displays the 4-dist graph for
the database.

« If the user can estimate the percentage of noise, this per-
centage is entered and the systemvesra proposal for
the threshold point from it.

« The user either accepts the proposed threshold or selects
another point as the threshold point. The 4-didtiey of
the threshold point is used as the Eplsig for DBSCAN.

5. Performance Evaluation

In this section, wewaluate the performance of DBSCAN.
We compare it with the performance of CLARANS because
this is the first and only clustering algorithm designed for the
purpose of KDD. In our future research, we will perform a
comparison with classical density based clustering algo-
rithms. We hare implemented DBSCAN in C++ based on an
implementation of the R*-tree (Beckmann et al. 1990). All
experiments hae been run on HP 735 / 10M@rkstations.

We have used both synthetic sample databases and the data-

D to the real numbers, mapping each point to the distance base of the SEQOIA 2000 benchmark.

from its k-th nearest neighb&vhen sorting the points of the
database in descending order of their k-cisi@s, the graph

of this function gies some hints concerning the density dis-
tribution in the database.aMall this graph thsorted k-dist
graph. If we choose an arbitrary point p, set the parameter
Eps to k-dist(p) and set the parameter MinPts to k, all points
with an equal or smaller k-distle will be core points. If
we could find d@hreshold point with the maximal k-distal-

ue in the “thinnest” cluster @ we would hase the desired
parameter alues. The threshold point is the first point in the
first “valley” of the sorted k-dist graph (see figure All
points with a higher k-distalue ( left of the threshold) are
considered to be noise, all other points (right of the thresh-
old) are assigned to some cluster

. —>
- A .
4-dist : threshold
o point
noise | clusters .
l » points

figure 4: sorted 4-dist graph for sample database 3

In general, it is gry difficult to detect the first ‘alley” au-
tomatically but it is relatvely simple for a user to see this
valley in a graphical representation. Therefore, we propose
to follow an interactie approach for determining the thresh-
old point.

DBSCAN needs tw parameters, Eps and MinPts.vHo
ever, our periments indicate that the k-dist graphs fork > 4
do not significantly dfer from the 4-dist graph and, further-
more, thg need considerably more computation. Therefore,
we eliminate the parameter MinPts by setting it to 4 for all
databases (for 2-dimensional datag jWopose the folle-
ing interactve approach for determining the parameter Eps
of DBSCAN:

To compare DBSCAN with CLARANS in terms ofed-
tivity (accurag), we use the three synthetic sample databas-
es which are depicted in figute Since DBSCAN and
CLARANS are clustering algorithms of téfent types, the
have no common quantita® measure of the classification
accurag. Therefore, wewaluate the accurgof both algo-
rithms by visual inspection. In sample database 1, there are
four ball-shaped clusters of significantly fdiing sizes.
Sample database 2 contains four clusters of namgon
shape. In sample database 3, there are four clusteréeof dif
ent shape and size with additional noigesfiav the results
of both clustering algorithms, we visualize each cluster by a
different color (see wwwailability after section 6).dgive
CLARANS some adantage, we set the paramdtéo 4 for
these sample databases. The clusterings dised by
CLARANS are depicted in figurg.

database 1 database 2 database 3
figure5: Clusterings discovered by CLARANS

For DBSCAN, we set the noise percentage to 0% for sam-
ple databases 1 and 2, and to 10% for sample database 3, re-
spectvely. The clusterings diswered by DBSCAN are de-
picted in figureb.

DBSCAN discaers all clusters (according to definition
5) and detects the noise points (according to definition 6)
from all sample databases. CLARANSwmer, splits clus-
ters if thegy are relatrely lamge or if thg are close to some
other clusterFurthermore, CLARANS has nxicit no-
tion of noise. Instead, all points are assigned to their closest
medoid.



database 1 database 2 database 3

figure 6: Clusterings discovered by DBSCAN

To test the diciency of DBSCAN and CLARANS, we
use the SEQOIA 2000 benchmark data. The SHQIA
2000 benchmark database (Stonebrat al. 1993) uses real
data sets that are representatf Earth Science tasks. There

and on real data of the SBEQIA 2000 benchmark. The re-
sults of thesexperiments demonstrate that DBSCAN is sig-
nificantly more efctive in discaoering clusters of arbitrary
shape than the well-kmm algorithm CLARANS. Further-
more, the gperiments hae shaevn that DBSCAN outper-
forms CLARANS by adctor of at least 100 in terms ofief
ciengy.

Future research will va to consider the folleing issues.
First, we hae only considered point objects. Spatial data-
bases, hoever, may also containxéended objects such as
polygons. V& have to deelop a definition of the density in
an Eps-neighborhood in polygon databases for generalizing
DBSCAN. Second, applications of DBSCAN to high di-

are four types of data in the database: raster data, point datamensional feature spaces should bestigated. In particu-
polygon data and directed graph data. The point data set con-lar, the shape of the k-dist graph in such applications has to

tains 62,584 Californian names of landmarkstraeted
from the US Geological Suey’s Geographic Names Infor-
mation System, together with their location. The point data
set occupies about 2.1 M bytes. Since the run time of CLAR-
ANS on the whole data set isry high, we hee extracted a
series of subsets of the SBIDA 2000 point data set con-
taining from 2% to 20% representats of the whole set.
The run time comparison of DBSCAN and CLARANS on
these databases is shoin table 1.

Table 1. runtimein seconds

numberof | 05 | 2503 | 3010 | 5213 | 6256
points

DBSCAN | 3.1 6.7 113 | 160 | 178
CLAR-

NS 758 | 3026 | 6845 | 11745 | 18029
numberof | zoo0 | go37 | 10426 | 12512

points

DBSCAN | 245 | 282 | 327 | 417
CLAR-

NS 29826 | 39265 | 60540 | 80638

The results of oureriments she that the run time of
DBSCAN is slightly higher than linear in the number of
points. The run time of CLARANS, ver, is close to qua-
dratic in the number of points. The resultswglbat DB-
SCAN outperforms CLARANS by attor of between 250
and 1900 which grses with increasing size of the database.

6. Conclusions

Clustering algorithms are attragtifor the task of class iden-
tification in spatial databases. Wever, the well-knevn al-
gorithms sufer from seere dravbacks when applied to
large spatial databases. In this paper presented the clus-
tering algorithm DBSCAN which relies on a density-based
notion of clusters. It requires only one input parameter and
supports the user in determining an appropriateesfor it.

We performed a performancegaduation on synthetic data

be plored.
WWW Availability

A version of this paper in Iger font, with lage figures and
clusterings in color isvailable under the follwing URL:
http://ww. dbs. informatik. uni - nuenchen. de/
dbs/ proj ect/ publi kati onen/ veroeffentlichun-
gen. htn .
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