
Cognitive Management Framework for
Internet of Things

- A Prototype Implementation

Swaytha Sasidharan∗†, Andrey Somov∗, Abdur Rahim Biswas∗, and Raffaele Giaffreda∗
∗CREATE-NET, Via alla Cascata 56/D Povo, Trento (TN), 38123, Italy

Email: firstname.lastname@create-net.org
† University of Trento - Italy

Abstract—In the domain of Internet of Things (IoT),
applications are modeled to understand and react based
on existing contextual and situational parameters. This
work implements a management flow for the abstraction
of real world objects and virtual composition of those
objects to provide IoT services. We also present a
real world knowledge model that aggregates constraints
defining a situation, which is then used to detect and
anticipate future potential situations. It is implemented
based on reasoning and machine learning mechanisms.
This work showcases a prototype implementation of
the architectural framework in a smart home scenario,
targeting two functionalities: actuation and automa-
tion based on the imposed constraints and thereby
responding to situations and also adapting to the user
preferences. It thus provides a productive integration
of heterogeneous devices, IoT platforms, and cognitive
technologies to improve the services provided to the user.

Keywords: Internet of Things, Cognitive Technologies,
Smart Home, Machine Learning

I. INTRODUCTION

The Internet of Things (IoT) paradigm [1] aims at
connecting billions of objects [2] to the Internet. This
requires suitable architecture and technologies capable
of bridging the vast heterogeneity of the devices
to provide meaningful services. Most of the smart
applications require a management framework which
will perform the selection of the optimal devices to
address both functional and systemic requirements of
the application [3]. To enable this seamless integration
of devices to provide sophisticated services, the con-
cept of virtualization has been explored in [4] [5] to
address a number of issues with the growing number
of devices e.g. scalability, heterogeneity, reliability,
etc. Early attempts to virtualize Real World Objects
(RWO) resulted in RFID tags aimed to identify ob-
jects [6]. These first Virtual Objects (VOs) are simple
since RFID could represent only the raw data. With
the appearance of Wireless Sensor Networks (WSN)
technology and growing number of deployed sensor
nodes the research community introduced the concept
of virtual nodes and actuators to simplify WSNs

application development [7]. The virtual sensor con-
cept introduced in [5] helps to address heterogeneity
problem and hide the implementation complexity for
a user while virtualizing any RWOs. However, this
concept lacks smart capabilities which could help to
address scalability and data (re)usability problems.
Enriching each VO with smart functions, assists VOs
to communicate with people and other VOs provid-
ing context and situation awareness, by logging past
actions [8] and providing support to users in decision
making [9].

The IoT architectural framework presented in [10]
is enhanced with cognitive technologies to abstract
the heterogeneity of the RWOs by creating semanti-
cally [11] enriched virtual representation of the ob-
jects known as VOs. While this work presents the
theoretical underpinnings of the framework, there are
various research questions and implementation options
raised in realizing it. Some of the functional aspects
have been implemented in [12] focusing on dynamic
creation of a Composite Virtual Object (CVO) and
self-healing aspects of the framework.

In our work, we implement the framework pro-
posed in [10] for a smart home use-case and improve
it with an additional learning and reasoning engine to
exploit the advantages offered by both the cognitive
methodologies to make meaningful decisions. Our
main contribution is twofold:

• Full workflow: We demonstrate a full work-
flow of processing a service request, creating
the CVO and using the data to make intel-
ligent decisions by means of a real world
knowledge model.

• Integration of technologies: We present a pro-
totype implementation comprised of a number
of IoT related and cognitive technologies re-
alized as a Java application integrated with
Xively libraries for data storage, Drools, a
rule based engine for performing reasoning,
and WEKA libraries for performing the learn-
ing functionalities.



The rest of the paper is structured as follows: Sec-
tion II provides the conceptual description of the
cognitive architecture for IoT, and Section III provides
the implementation details of the framework within
a smart home domain use-case. Finally, discussion
of the results and concluding remarks are presented
in Section IV and Section V, respectively.

II. COGNITIVE ARCHITECTURE FOR IOT

The cognitive architectural framework for the
IoT [10] is targeted to conceal the technological
heterogeneity and provide services to different appli-
cations.

Figure 1. IoT cognitive architectural framework

The framework comprises of three main levels of
enablers, as shown in Figure 1, which are reusable
to various-diverse applications. In each layer there
are scalable fabrics, which offer mechanisms for the
registration, look-up and discovery of entities, and the
composition of services. At the VO level, the virtual
representations of the real world or digital objects,
are created and registered. The VOs are responsible
for maintaining the means of communication to the
RWOs, monitoring the status and capturing the data
from the objects. A cognitive mash-up of the VOs
together forms the CVOs that render services in based
on the application requirements. The composition of
CVOs also facilitates the re-use of the VOs in a wide
range of contexts. Cognitive technologies at this level
help to optimize the resource usage by intelligent se-
lection mechanisms which can be optimized to system
requirements such as energy conservation, computa-
tional performance or reliability. The service level is

responsible for interaction and elicitation of require-
ments from service requesters and users. This level
includes the functionalities of translation of service
requests, building and growing real world knowledge
and provides the requisite information down to the
CVO level in order to create meaningful mashups to
serve the request. It also holds the acceptance criteria
for the services thereby ensuring the quality of the
rendered services. One method of building the real
world knowledge is to record the users needs and
requirements (e.g., human intentions) by collecting
and analysing the user profiles, stakeholders contracts
(e.g., Service Level Agreements) and eventually acting
on behalf of the users. The real world knowledge
model holds the logic responsible for perceiving and
reasoning on the contextual information and conduct-
ing associated knowledge driven decision-making.

III. IMPLEMENTATION

In this section, we present a prototype implemen-
tation of the cognitive framework. While the frame-
work presented in [10] is extensive, the focus of this
implementation is in exploring the means to realize
the minimal functional aspects of the architecture.

A. Scenario

The scenario is detailed along with the devices and
the technologies used to realize the components of the
architecture. Consider a use-case of a smart home,
which is equipped with temperature, humidity and
luminosity sensors. In addition, to monitor the health
of the inhabitant, heart rate and body temperature
sensors are used.

Figure 2. Layout of the smart home: A1 - fan, A2 - lamp, A3
- light alarm (LED), A4 - sound alarm (buzzer), S1 - temperature
sensor, S2 - light sensor, S3 - humidity sensor, S4 - heart rate sensor

Two application scenarios are considered for the
implementation: (i) Heating, Air-conditioning and



(a) (b)

(c) (d)

Figure 3. Real world objects: (a) Wasp mote with humidity, light,
and temperature sensors, (b) Arduino platform with lamp, light
alarm (LED), and fan actuators, (c) Flyport with heart rate and body
temperature sensors, and (d) Flyport with sound alarm actuator

Ventilation Control (HAVC) (ii) Medical status mon-
itoring. The sensed information is provided to the
cognitive engine which processes the information and
provides the outputs which are used to trigger the
actuators, in this case fan, light and alarms. Figure 2
presents the layout of the smart home with details
of the hardware components that are deployed in the
smart home.

B. Hardware Components - Real World Objects

In this section we describe the hardware used in
this work. To emphasize the heterogeneity feature of
our implementation we use three different open source
sensor node and IoT platforms represented in Figure 3.

1) Wasp mote: WaspMote [13] is a sensor node
platform designed by Libelium. The main idea of the
platform is extensibility. The platform is composed
of two boards: motherboard (MCU, radio, memory
and on-board sensors, namely temperature and ac-
celerometer sensors) and an extension board designed
for specific applications and therefore containing re-
spective sensors. In this work we use Smart City
extension board with light and humidity sensors (we
also use the temperature sensor on the motherboard).
The sensor node transmits measured data to a gateway
(ZigBee, IEEE802.15.4) attached to a computer. From
the computer, the collected data is registered to Xively.

2) Arduino platform: The Arduino platform [14]
is used for actuation, which controls actuators such
as fan, visual alarm, or lamp. The Arduino board is
programmed to actuate these devices based on control
signals. The principle of operation is as follows:
Arduino scans Xively (using Ethernet connection) and
makes the analysis of scanned data. If the data satisfies

the constraints, the arduino platform (de)activates fan,
alarm, or lamp.

3) Flyport: Flyport [15] is another IoT platform
with embedded internet connectivity. It provides sup-
port for a wide range of sensors. It can send data
directly to the Internet using WiFi, GPRS, or Ethernet
technology. In this implementation we use Flyport
with WiFi chip for both sensing (heart rate, body
temperature sensors) and actuation (sound alarm).

We note here that other devices (including smart
phones or custom WSN platforms [16]) can be easily
integrated in the deployment.

C. Framework Implementation

Figure 4. Architectural control flow of implemented functionalities

The overall process flow of the demo implemen-
tation is represented in Figure 4. The implementation
has been done is Java with various libraries required
to realize the functionalities of the framework. The
various modules and its functionalities are elucidated
below:

1) Service Level: At the service composition level,
the incoming request from a service requestor is an-
alyzed and translated to generate the requirements of
creating the CVO. In the current implementation, there
are three kinds of incoming service requests namely
control appliances or monitor the medical status of
the inhabitant or activate emergency service response.
The former request generates a CVO requirement
consisting of temperature, humidity and light sensors,
all located in a defined spatial frame. For monitoring
the health of the inhabitant, a CVO consisting of



heart-rate and temperature sensor is required. And for
emergency services, temperature and humidity sensors
of the room are required in order to detect a fire
situation [17]. The selection of the service request is
done by the user through a Graphical User Interface
(GUI). It is then passed on to a service translator
which co-relates the chosen application to pre-defined
service identifiers. Based on the service identifier, the
CVO requirements are passed on to the CVO level.

2) CVO Level: CVO is a mash-up of two or more
VOs. The CVO level comprises of a CVO manage-
ment unit and a CVO registry. On reception of a ser-
vice request, the CVO management unit searches the
CVO registry for an existing CVO which can provide
the requested service. If such a CVO is unavailable,
then it performs a look up in the VO management unit
to find relevant VOs capable of providing the required
functionalities in addition to satisfying the constraints
generated by the request. The VOs that satisfy all
the constraints are brought together to create a CVO,
which can then independently provide the requested
service.For example, a temperature control request
involves searching for a CVO with temperatures in the
house. If a CVO, which can provide the temperature
values, is unavailable, the management unit performs
a lookup in the VO registries. It then composes a CVO
based on the details of the VOs obtained from the VO
management unit of the temperature sensors and also
the fan, which is used to regulate the temperature.
The CVO holds the meta-data of the VO, along with
details to connect to the VO and RWO in turn.

3) VO Level: In this work we represent our ICT
real world object, presented in Figure 3, as VOs in
the Xively platform [18]. During registration of ICT
objects we enrich its description with contextual infor-
mation of the object, such as location, functionality,
measurement units, status and owner details. All the
VOs are stored in Xively in machine readable data
formats, e.g. XML, and, basically, are web resources
which can be reached using RESTful commands.
Virtual representation of real objects ensures interop-
erability among different technologies. Xively makes
it possible to reach VOs anytime from anywhere and,
moreover, applying REST Web Services and MQTT
the implementation complexity of the communication
link becomes low. In our implementation, Python
scripts are used to send the data gathered from the
sensors to a Xively feed, which acts as the source of
information for the VO registry. The actuators listen
on another Xively feed, which provides the control
information to actuate the devices.

4) Real World Knowledge Model: A real world
knowledge model should be capable of capturing and
retaining knowledge about the events and decisions,
which are direct consequences of the continuously
evolving environmental situations. This enables the

system to make informed decisions and drives the
future behavior of the system. The data that comes
from the objects in the CVO are passed on to the real
world knowledge model. The cognitive capabilities
are divided into reasoning and learning modules. The
reasoning module holds all the constraints that should
be satisfied in order to trigger an outcome. For exam-
ple consider a temperature CVO which continuously
provides information of the temperature values in a
house. This information is fed to the reasoning engine,
and when the values cross the set thresholds, it triggers
a high temperature event, which leads to the activation
of the fan.

The learning engine provides the possibility to
monitor preference patterns over time leveraged to
make predictions and with a defined confidence mea-
sure, can automate actions. The advantage of this
distinction is the ability to exploit on the strengths of
both modalities of intelligence. The reasoning engine
is implemented as a rule based engine, Drools. It is
an open source business logic integration platform
for rules, workflows and event processing [19]. In
the current implementation, the Drools library is used
as the rule base for the activation of the various
actuators when the sensors satisfy the rules. The
learning functionality is realized by means of machine
learning algorithms. The WEKA toolkit [20], an open
source library of machine learning algorithms has
been used in the implementation. To demonstrate the
learning functionality, the temperature preferences of
the user has been recorded over time through a user
interface. Based on this information and using the
multilayer perceptron algorithm (MLP), user prefer-
ence is learned and is used to predict the preferred
temperature based on time of the day. This information
can thus automate the control of the actuators tuned to
the preference of the user and without the intervention
of the user.

IV. RESULTS AND DISCUSSION

With the fully functional implementation, tests
were carried out to understand the timing information
for the dynamic creation of the CVOs. Simulations
were performed varying the number of VOs in the
VO registry, the number of VOs per CVO and also
the time taken to look up from an existing CVO and
to compose a new CVO. It has been observed, based
on the current implementation, lookup from a CVO
registry logically takes up lesser time than to create
a new CVO. The time taken to compose the CVO’s
for every service request is represented graphically in
Figure 5. On the arrival of the first service request a
new CVO is composed and for the subsequent service
requests, the previously composed CVO is looked up
from the registry. It is observed that it takes 300 ms or
longer to form the first CVO. The four curves depict



the various trials with varied parameters, in terms of
number of VOs in the registry and number of VOs in
a CVO. Thus it shows the advantage of re-using the
composed CVOs to composing a new CVO for every
received request.

Figure 5. Service Request (SR) execution time

In the learning engine, WEKAs multilayer per-
ceptron has been used to learn the temperature pref-
erences of the user. In brief, multilayer perceptrons
represents a feed-forward artificial neural network that
maps input data onto a set of output data. In the
implementation, a three layer MLP, with one hidden
layer was considered. It uses a supervised backprop-
agation algorithm for training the model. The input
consisted of recorded temperature preferences of the
inhabitant during various times of the day. The MLP
is trained with the recorded input and tested. We have
achieved an accuracy of greater than 95 percentage in
correctly setting the temperature based on the time
of the day. This integration thus makes it possible
to capture the user behaviour and tune the system to
automatically learn the changes in user preferences
over time and update the temperature settings in line
with the changing preferences.

Due to its scalability and heterogeneity the im-
plemented framework can be easily extended and
deployed in specific industrial settings, e.g. boiler
facility [21], or in smart city scenarios [3].

V. CONCLUSION

In this paper a real-time implementation of the
cognitive management framework at the three ar-
chitectural levels: Virtual Object (VO), Composite
Virtual Object (CVO) and service level, is presented.
In particular, creation of a CVO and building a real
world knowledge model is demonstrated. The real
world knowledge model comprises of reasoning and
learning functionalities to analyze, make intelligent
decisions and provide requested services. A success-
ful integration of various IoT related and cognitive

technologies in order to realize a functional use-case
scenario of a smart home is also showcased. The
utility of the approach is analyzed in terms of CVO
composition timings at the arrival of a service request.
This evaluation process highlights the advantage of
reusing previously composed CVOs in subsequent
service requests over the composition of a new CVO.
Our future work consists in enhancing the prototype
implementation with semantics for the representation
of the VOs, adding formal methods of search and
composition techniques, and including the self-x func-
tionalities at the VO and CVO levels.

ACKNOWLEDGEMENT

This work was supported by the EU Integrated
Project iCore, “Internet Connected Objects for Re-
configurable Ecosystems”, funded within the Euro-
pean 7th Framework Programme (contract number:
287708).

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlam-
tach, “Internet of things: Vision, applications and research
chalenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–1516,
2012.

[2] M. Uusitalo, “Global vision for the future wireless world
from the WWRF,” IEEE Vehicular Technology Magazine,
vol. 1, no. 2, pp. 4–8, 2006.

[3] A. Somov, C. Dupont, and R. Giaffreda, “Supporting smart-
city mobility with cognitive internet of things,” in Future
Network and Mobile Summit (FutureNetworkSummit), 2013,
2013, pp. 1–10.

[4] D. Kelaidonis, A. Somov, V. Foteinos, G. Poulios,
V. Stavroulaki, P. Vlacheas, P. Demestichas, A. Baranov,
A. Biswas, and R. Giaffreda, “Virtualization and cognitive
management of real world objects in the internet of things,”
in Green Computing and Communications (GreenCom), 2012
IEEE International Conference on. IEEE, 2012, pp. 187–
194.

[5] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure
for data processing in large-scale interconnected sensor net-
works,” in Mobile Data Management, 2007 International
Conference on. IEEE, 2007, pp. 198–205.

[6] R. Weinstein, “RFID: a technical overview and its application
to the enterprise,” IT professional, vol. 7, no. 3, pp. 27–33,
2005.

[7] P. Ciciriello, L. Mottola, and G. P. Picco, “Building virtual
sensors and actuators over logical neighborhoods,” in Pro-
ceedings of the international workshop on Middleware for
sensor networks. ACM, 2006, pp. 19–24.

[8] F. Mattern, “From smart devices to smart everyday objects,”
in Proceedings of Smart Objects Conference, 2003.

[9] N. A. Streitz, C. Rocker, T. Prante, D. van Alphen, R. Stenzel,
and C. Magerkurth, “Designing smart artifacts for smart
environments,” Computer, vol. 38, no. 3, pp. 41–49, 2005.

[10] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaido-
nis, V. Foteinos, G. Poulios, P. Demestichas, A. Somov,
A. Biswas, and K. Moessner, “Enabling smart cities through a
cognitive management framework for the internet of things,”
IEEE Communications Magazine, vol. 51, no. 6, pp. 102–
111, 2013.



[11] T. Zhang, S. Liu, C. Xu, and H. Lu, “Mining semantic con-
text information for intelligent video surveillance of traffic
scenes,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 1, pp. 149–160, 2013.

[12] V. Foteinos, D. Kelaidonis, G. Poulios, V. Stavroulaki,
P. Vlacheas, P. Demestichas, R. Giaffreda, A. Biswas,
S. Menoret, G. Nguengang, M. Etelapera, N. Septimiu-
Cosmin, M. Roelands, F. Visintainer, and K. Moessner,
“A cognitive management framework for empowering the
internet of things,” in The Future Internet, ser. Lecture Notes
in Computer Science, A. Galis and A. Gavras, Eds. Springer,
2013, vol. 7858, pp. 187–199.

[13] “WASP motes,” http://www.libelium.com/products/
waspmote/.

[14] “Arduino,” http://www.arduino.cc/.
[15] “Open Picus, Flyport,” http://www.openpicus.com/.
[16] A. Somov, A. Baranov, A. Savkin, M. Ivanov, L. Calliari,

R. Passerone, E. Karpov, and A. Suchkov, “Energy-aware gas
sensing using wireless sensor networks,” in Wireless Sensor
Networks, ser. Lecture Notes in Computer Science, G. Picco
and W. Heinzelman, Eds. Springer Berlin Heidelberg, 2012,
vol. 7158, pp. 245–260.

[17] A. Somov, D. Spirjakin, M. Ivanov, I. Khromushin,
R. Passerone, A. Baranov, and A. Savkin, “Combustible gases
and early fire detection: An autonomous system for wireless
sensor networks,” in Energy-Efficient Computing and Net-
working (e-Energy), 2010 ACM International Conference on.
ACM, 2010, pp. 85–93.

[18] “Xively, Platform for Internet of Things,” https://xively.com/.
[19] “Drools, business logic integration platform,” http://www.

jboss.org/drools/.
[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten, “The weka data mining software: an
update,” ACM SIGKDD Explorations Newsletter, vol. 11,
no. 1, pp. 10–18, 2009.

[21] A. Somov, A. Baranov, D. Spirjakin, A. Spirjakin,
V. Sleptsov, and R. Passerone, “Deployment and evaluation
of a wireless sensor network for methane leak detection,”
Sensors and Actuators A: Physical, vol. 202, pp. 217 – 225,
2013.


