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Wireless  sensor  networks  (WSNs)  have  recently  been  applied  for  the  detection  of  a  number  of  hazardous
gases.  Gas  monitoring  is  of significance,  for gas  leakage  and  the  resultant  penetration  of gases  into  the
environment  can  lead  to grave  or sometimes  fatal  consequences.  In this  work,  we propose  a  sensor  node
architecture  for  a  wireless  outdoor  CO  monitoring  unit  with  an  emphasis  on  the  energy  efficiency  of
measurements  and  optimal  power  supply  mechanism.  To  guarantee  the ‘perpetual’  operation,  the  sensor
node is  supported  by a hybrid  power  supply,  which  takes  advantage  of  both  wind  and  solar  ambient
O wireless gas sensor
nergy harvesting
as monitoring
ybrid power supply
ower management

energy  sources  to power  the  node  and  to charge  the  high  capacity  super  capacitors  that  act  as energy
buffers.  Using  an  electrochemical  CO  sensor,  we secure  the  low power  consumption  of  the  node  without
degrading  the  sensing  capabilities.  We demonstrate  our  experience  of  operating  the  developed  wireless
sensor  node  in  real  conditions.  Our  solution  can  be applied  for CO  monitoring  in urban  areas  and  outdoor
industrial  facilities.
. Introduction

Wireless sensor networks (WSN) have been widely used in mon-
toring and control applications including gas detection [1]. This
pplication is highly relevant to the smart cities and smart homes
cenarios in the scope of the forthcoming era of Internet of Things
2]. In terms of cities, intense urbanization and the growing number
f vehicles have resulted in the increase of carbon monoxide (CO)
oncentration. It is a colorless, odorless, and tasteless gas which is
oxic to humans and animals in high concentrations. The natural
ources of CO, apart those of vehicles origin, include volcanoes and
orest fires. In industry, CO can be generated by operating stoves and
ombustion engines. The monitoring of CO, therefore, is of partic-
lar significance as this toxic gas is often present in industrial and

iving environments.
In the last decade, monitoring solutions have transitioned from
ired to wireless, using the WSN  paradigm, ensuring fast deploy-
ent and unmanned operation in difficult to access areas. The

pplication of WSNs is, however, restricted by the limited onboard
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energy resources [1], requiring careful design and power manage-
ment. It is highly important due to the fact that power consumption
and accuracy, e.g., of measurements or synchronization, often go
hand in hand [3]. The energy availability, in fact, affects both the
lifetime of the node, as well as the accuracy and frequency with
which measurements can be taken [4].

Indeed, the problem of power management in WSN  has been
tackled from different perspectives such as energy-aware synchro-
nization [3], protocols [5], sensing [4,29] and analysis [6]. In terms of
power consumption, the wireless transceiver is typically the most
power hungry component onboard. The total energy consumption
of sensor nodes could exceed hundreds of milliwatts, requiring the
use of wires to provide electric power to the sensor node [7]. At the
same time, the WSN  paradigm involves not only the wireless data
transmission, but also independence on power grid. As a matter of
fact, the wired power supply limits the practical use of wireless sen-
sor networks. The transition from electric power through wires to
battery power requires a special focus on power consumption opti-
mization [4,6] to ensure the WSN  long lifetime. This problem has
been addressed from different points of view so far. For example,
the intelligent approaches presented in Refs. [8] and [2] adjust the

operation of a gas sensor by changing its duty cycle depending on
the context, e.g., people presence in a building. A similar intelligent
approach developed in Ref. [9] is based on a sensor fusion compo-

dx.doi.org/10.1016/j.sna.2015.12.004
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
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ent which detects the presence of chemical species and estimates
heir concentration. Analyzing the measured data, the node infers
hether the situation can be potentially dangerous and whether

he data must be forwarded to a network operator. The research
onducted in Refs. [10] and [11] report on energy savings due to an
ptimized measurement procedure. In Ref. [10] the authors pro-
ose to change the duty cycle of the heating pulse of the sensor
uring the measurement by fast turning on and off the device. This
pproach may  result in sensor damage. A more advanced “differen-
ial” heating profile is investigated in [11,12]: it is 65% more energy
fficient while ensuring the sensor performance as in a typical mea-
urement procedure. In contrast, designs shown in Refs. [13,14]
emonstrate long lifetime of the sensor nodes by employing a light
ensor in conjunction with a colorimetric chemical sensing film, but
ignificantly suffer in performance in terms of long sensor response,
hich fails to meet safety requirements.

The lifetime of WSN  can be increased by the application of
nergy harvesting technology [15–17]: different classes of genera-
ors can harvest and perform conversion to electricity from almost
very form of ambient energy [30]. The sensor nodes can use the
mbient energy directly or keep it in storage elements such as

 battery or super capacitor. During the last decade there have
een plenty of architectures and power management solutions [18]
roposing and implementing the energy scavenging paradigm in
he scope of WSN  [31]. In the context of power hungry gas sensing,
t should be noted that not all energy scavenging technologies gen-
rate sufficient amount of power [19,20]. Another crucial point is
hat some ambient energy sources are available only in particular
eather conditions which do not guarantee the stable operation of
ireless gas sensors.

Hybrid energy scavenging is considered as a technology which
an potentially ensure the ‘perpetual’ operation of WSN  and has
ecome popular recently [23,24]. The prototypes have evolved from

ab ones [25] to real deployments [26], e.g., for structural health
onitoring. However, more research efforts are still required in

his field to study hybrid structures in more detail, analyze their
ros and cons, potential applications and real world deployments.

In this work, we present POCO (“poco” in Italian is “little”, “low”)
 low power CO wireless sensor node with a hybrid power sup-
ly, which collects the ambient energy from sun and wind. In our
pproach, the dual harvester directly powers the sensor node at any
ime through the source with the most amount of available energy,
hile the remaining scavenged energy is stored in super capacitors

r on a backup battery.
The novelty of this work is the following:

The energy efficient design of the gas WSN  platform with a par-
ticular focus on the hybrid power supply which includes the
super capacitors, li-ion and two energy harvesting components:
a solar panel and wind turbine. In particular, our solution helps
to meet the standard requirements on the frequency of gases
measurement [28] which affect the power consumption of the
autonomous sensor node.
We evaluate the performance in real conditions (except for wind).
The proposed system ensures the required frequency of measure-
ments and guarantees the sensor node ‘perpetual’ operation.

This paper is organized as follows: in Section 2 we describe the
ensor node design focusing on the sensing and power manage-
ent circuits. Section 3 presents the energy harvesting solution
sed in this work. We  discuss the gas measurement procedure in
ection 4. Experimental results are shown in Section 5. Finally, we
rovide concluding remarks and discuss our future work in Section
.

ators A 238 (2016) 112–121 113

2. Sensor node design

2.1. System overview

An autonomous wireless sensor node for CO monitoring is
shown in Fig. 1. The core element of the node is the processing
unit, based on the ATXMTGA32A4 MCU, which manages the opera-
tions of the sensing and the wireless communication blocks. As for
the CO sensor, we used an NAP-505 (Nemoto) gas sensor operating
in amperometric mode for this work. The CO wireless gas sensor
node uses the Zigbee technology and transmits data via the BACnet
protocol. An ETRX3 Zigbee/IEEE802.15.4 modem was used for data
transmission and the protocol was  realized by the MCU  program.
This wireless technology is more energy efficient with respect to
WiFi [32].

The ZigBee transceiver is operated by the AT commands, which
are transmitted through the UART interface of the MCU. The node
is supplied by a hybrid power supply via a DC/DC converter which
outputs 2.8 V.

The wireless sensor is designed to operate in a wireless network
in order to perform outdoor ecological monitoring of air in urban
areas and industrial facilities. The data regarding the concentration
of CO are sent to the network coordinator, which can be a computer
with a Zigbee USB modem or device having a sound and light alarm.
The range of data transmission depends on the antenna used and
also the area in which the measurements are made. The range of
transmission exceeds 300 m in open outdoor areas with an external
antenna [21].

2.2. Sensing circuit

In order to increase the autonomous operation of the sensor
node we implement a periodic CO gas measurement, i.e., there
are three modes of operation which are data measurement, data
transfer and sleep. We  discuss them in this section.

The sensing circuit is built around a NAP-505 electrochemical
sensor [22] with three electrodes (working, reference, counter) by
Nemoto.

The sensing circuit of the node is shown in Fig. 2. It is a modified
version of the sensing circuit recommended by Nemoto [22]. Our
solution enables to carry out periodic measurements by switching
the circuit on and off. When no measurement is conducted, the
power supply is turned off by using MOSFET VT2 (IRLML6032). In
order to connect the electrodes, we use an analogue switch DA2
(ADG801) instead of an FET transistor used in the Nemoto design.
The idea behind this substitution lies in the operation of these
devices in normal condition: if using an FET transistor in sleep mode
the sensor electrodes are opened and if using an analogue switch
the sensor electrodes are closed. Most of the time the sensor node is
in sleep mode that makes the second option preferable. We  discuss
the sensor node operation in details in Section 4.

The measuring parameter (voltage) is at output 1 of amplifier
DA3A (OPA 2369). This voltage is supplied to the MCU  for detecting
the concentration of the CO gas.

At normal conditions, a 1–2 min  time interval is required for the
stabilization of the output voltage of the CO gas sensor after coming
out of sleep mode. Therefore, the duration of the measurements
shall be no less than 2 min. However, if the working and reference
electrodes are connected during the sleep mode, the stabilization
period is reduced up to 10 s. It is a recommendation of the sensor
manufacturer that was experimentally verified in this work. During
the remaining time, the MCU  switches the sensor to sleep mode due

to power saving reasons for a specified period. The management
of the operation mode of the sensor is performed by the analogue
switch DA2 and MOSFET VT2. The MOSFET is connected to the MCU
input–output line (SS line) and the transition between active and
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Fig. 1. The block diagram of the CO wireless gas sensor node with a hybrid power supply where C1 and C2 are super capacitors.

Fig. 2. Analog sensing circuit: (a) sensing circuit switch and (b) sensing circuit where X6 is the CO sensor.
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Fig. 4. Prototype of the wireless sensor node for CO monitoring: (a) a board with
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leep modes of the measuring circuit is provided. In sleep mode,
his MOSFET is closed and there is no VAA voltage. In this case, the
oltage at output ADC–MCU is also zero.

.3. Power management

Since green sources of energy have an intermittent nature, a
obust model is needed in order to provide a more stable operation
f the sensor node. One of the ideas to address this issue is the
pplication of a hybrid power source architecture which includes
ore than one energy source for the sensor.

As for the ambient energy sources, we use solar and wind energy
arvesters due to their availability in most outdoor conditions and
ufficient amount of power generated at their output. A wireless
ensor node with energy scavenging technology requires a buffer to
tore the harvested energy. The energy buffer allows the system to
e supplied even if the ambient source is unavailable at the moment
hen the system is in operation.

The hybrid power supply of the proposed sensor node consists
f wind and solar harvesters each wired in parallel with a super
apacitor and one 3.7 V, 3200 mAh  li-ion battery. In this design, the
attery is a backup storage: our experimental results demonstrate
hat the node can successfully rely on the ambient energy and the
nergy stored in the super capacitors. The logic behind the appli-
ation of a hybrid power source is in ensuring stable ‘perpetual’
peration of the sensor node performing gas detection and con-
rolling its concentration in the environment—an application that
s often considered safety critical.

The power management block operates as follows: the voltage
cross the battery and super capacitors C16 and C17 (see Fig. 3) is
ontrolled by the power monitor and relayed by the switch. The
apacity of super capacitors is 400 F each. If the voltage across the
uper capacitors exceeds 0.9 V, the one with the most charged unit
s selected for powering the node.

The reason for choosing 0.9 V is as follows. According to its data
heet, the DC–DC converter starts the operation at 0.3 V on its input.
ur experimental results have shown that the power circuit does
ot work properly at 0.3 V (i.e., it does not provide 2.8 V at the out-
ut). This happens because the energy stored in a super capacitor
t voltages lower than 0.9 V (W = 0.45 J) is not sufficient to produce
ower for the wireless sensor node. The stored energy is dissi-
ated in the power circuit, particularly in the DC–DC converter.
hat is why we have adjusted the circuit operation for switching at
.9 V.

It is interesting to note that the energy stored in the super capac-
tor when the voltage across its plates is 0.9 V is only 10% of the

hole energy stored in the supercapacitor when the voltage across
ts plates is equal to 2.7 V. Therefore, it is practically useless to start
C–DC at 0.3 V: it does not result in a significant increase in battery

ifetime for the wireless sensor node.
C17 is supplied by wind energy and C16 by solar energy. Energy

arvesting of both ambient sources is implemented separately,
.e., each super capacitor can perform charging when its respec-
ive ambient source is available. The supplied voltage level is
hen converted to a stable 2.8 V by the DC/DC unit (TPS61200)
A2.

The voltage level on the super capacitors must not exceed the
pper threshold, which is 2.7 V. To securely control the charging
rocess and avoid the cells overcharging, we employ compara-
ors DA6 and DA7 (see Fig. 3) for each charging channel. This
ircuit operates as follows: the voltage on the comparator input
s compared to the reference voltage 0.9 V generated by the inter-

al reference source. At the same time, the voltage of the super
apacitors is divided by the resistive voltage dividers R21–R22 and
23–R24 for solar and wind circuits, respectively. This operation is
o be performed in such a way that a 0.9 V value in the middle point
the MCU  and wireless transceiver, (b) harvesters, super capacitors and CO sensor in
packaging.

of the divider corresponds to the maximum working voltage of the
super capacitor.

The power management circuit of both ambient energy sources
is connected using diodes VD4 and VD6. This allows the system to
choose the most highly charged super capacitor for powering the
node.

Both solar and wind power management circuits are joined
using diodes VD5 and VD7 and connected to R1–R2. Its voltage is
compared with the reference value 0.9 V and if it is higher than the
reference one, the system switches from the battery to one of the
super capacitors. Switching between the battery power supply to
one of the super capacitors is performed by switch VT2.

3. Energy harvesting

As specified earlier, in this work we employ two  harvesting
technologies: solar radiation and wind. The solar cell power is
approximately 2 W at 1.5 A (short circuit current Isc = 0.9 A and
open-circuit voltage Uoc = 2.2 V). A small wind turbine provides
a maximum open circuit voltage and short circuit current of 2.2 V
and 27 mA at a wind speed of 4.3 m/s  respectively.

The battery is used only as a backup energy storage. Changing
from battery to energy harvesting sources takes place when the
amount of voltage in the super capacitors is above 900 mV.  The
prototype of the sensor node with harvesters is shown in Fig. 4.

Since the main task designated for the gas sensor node is to mon-
itor the CO concentration, it is necessary to provide a continuous
operation of the sensor node even in cases when the amount of
energy provided by the harvesting sources is not enough to power
the sensor node. Therefore, the battery can be used as a comple-
mentary system for powering the sensor node. Each super capacitor

stores energy independently as a result of which it will be possi-
ble to store and use the energy from each source with maximum
efficiency.



A. Baranov et al. / Sensors and Actu

F

i

W

w
a

trates into a permeable membrane as well as a carbon filter, which
ig. 5. Curve showing sensor response (output current) w.r.t. CO concentration.

The energy stored in the super capacitor for powering the node
s given by the following equation:

 = C ×
(
V2 − V2

)
(1)
2 max min

here Vmax, Vmin are maximum (2.7 V) and minimum (0.9 V) volt-
ge, respectively, and C is the capacity. The result is 1300 J or

Fig. 6. Algorithm showing how the senso
ators A 238 (2016) 112–121 117

0.36 Wh.  Theoretically, fully charged capacitor stores 1430 J or
0.41 Wh.

4. Gas measurement procedure

In this section, we first overview the relevant standards on
admissible CO concentration. The following standards regarding
the maximum permissible concentration of CO gases for the resi-
dential areas as well as industrial complexes are accepted in Russia:

• For residential areas, the maximum permissible concentration of
CO for a long term stay is 3 mg/m3 (approximately 2.6 ррм at the
temperature of 20 ◦C and pressure of 1 bar) and for a short dura-
tion of stay it corresponds to 5 mg/m3 (approximately 4.3 ррм at
the temperature of 20 ◦C and pressure of 1 bar).

• The maximum permissible value of the CO concentration at
industrial complexes is 20 mg/m3 (approximately 17 ррм at the
temperature of 20 ◦C and pressure of 1 bar).

The operation principle of the sensor is based on applying a cer-
tain amount of potential difference corresponding to oxidation or
reduction of the substance to be detected. The amount of current
in the cell is proportional to the concentration of the substance.

In order to carry out precise amperometric measurements, three
electrodes are used in the electrochemical sensor: working, counter
and reference ones. The reference voltage is necessary to support
a stable voltage between the working electrodes. The gas pene-
removes all gases except carbon monoxide. The reaction takes place
at the three phase boundary of electrolyte, gas and catalyst. As a
result of the CO oxidation in the sensor, current flows. The results

r node conducts gas measurement.
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Fig. 7. Charging of the super capacitor from the wind generator: (a) continuous
charging at wind speed of 4 m/s, (b) charging from the wind depending on its avail-
ability.
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Fig. 9. Super capacitor self-discharge within 6 days.

Fig. 10. Theoretical (solid curve) and experimental dependences (dots curve) for
the supercapacitor energy (curve ‘1’ and ‘3’) and voltage (curve ‘2’ and ‘4’) during
Fig. 8. Super capacitor charging through the solar panel.

f this experiment conducted under normal conditions are shown
n Fig. 5. The CO gas was injected into a measuring chamber in

hich the sensor was located. The CO concentration was varied as
an be seen in Fig. 5.

The sensor node is designed to detect CO using two thresholds
see Fig. 5), set to T1 = 5 mg/m3 and T2 = 20 mg/m3, respectively,
nd stored in the MCU  memory. In fact, depending on the appli-
ation needs, the user can manually program the thresholds. The
entioned thresholds can also be changed within the program. If

he detected concentration is less than T1—the sensor node goes
o sleep mode; if the concentration is between T1 and T2—a local
ound alarm announces the increased CO concentration; finally, if

he concentration is higher than T2—the node transmits an alarm

essage to an operator via the network coordinator. As a result,
he operator can (de) activate an actuator, e.g., a gas valve, to avoid
otentially dangerous situations.
wireless sensor gas node operation.

The CO measurements are performed periodically according to
the following algorithm (see Fig. 6). Most of the time, the sensor is
in sleep mode, during which no measurements occur. During this
time, the working and reference electrodes are connected. When a
measurement is required, the MCU  comes out of sleep mode and
powers the sensor. At the same time, the working and reference
electrodes are disconnected (“Electrodes → Open” state in Fig. 6),
and transient signals can be observed at the output. In this case, as
specified earlier, the stabilization of the output voltage is carried
out within 10 s after the power is on. In order to decrease energy
consumption within this time, the MCU  goes again into sleep mode.
Then, the MCU  wakes up and the measurements of the CO concen-
tration are performed and, if thresholds are exceeded, the data is
sent to the sensor network coordinator. The measurements of the
CO concentration are performed every minute during which the
microcontroller wakes up. In this process, the working and refer-
ence electrodes still remain disconnected. When the measurements
are over, the MCU  connects the working and reference electrodes
and switches the sensor node to sleep mode. Actually, the MCU  is
in energy saving mode almost the entire time, except when the
measurements are performed or during the transceiver activation.
During the data transfer time, the main consumer of energy is the
transceiver. It is necessary to note that if the concentration of the CO
gas is less than the defined thresholds, there is no need to send data

to the network coordinator and this in turn decreases the power
consumption.
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Fig. 11. Current consumption of sensor node: (a) in sensing mode and (b) aver

. Experimental results

In this section we demonstrate experimental results aimed at
he evaluation of super capacitors performance depending on the
mbient energy sources conditions.
.1. Evaluation of supercapacitor performance

Fig. 7 demonstrates the curves showing the super capacitor
harging from a wind generator. As a wind source, we  used a fan
rrent consumption (sensing and data transmission) is 43.49 mA within 0.28 s.

which was  placed in front of the wind generator at a distance guar-
anteeing constant 4 m/s  wind speed for the generator. The wind
speed was controlled by a wind speed detector.

Fig. 7(a) shows the time required to charge the super capac-
itor till 2.7 V at 4 m/s  wind speed. This speed is chosen as an
average daily wind speed in May  in Moscow. Fig. 7(b) shows the

time required for super capacitor charging depending on wind
availability in outdoor conditions. The curve contains the parts
associated with the wind availability and increase of voltage level.
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ome parts are associated with the wind absence or its low speed
hich results in the super capacitor self discharge or slow charg-

ng.
Fig. 8 presents the curves of super capacitor charging using a

olar panel in outdoor conditions. One of the curves shows charging
n sunny weather in May  in Moscow and the second curve demon-
trates the results of the same experiment in cloudy weather. We
id not measure the intensity of solar radiation since the goal was
o evaluate the charging process in average sunny and cloud con-
itions.

Fig. 9 shows the status of the super capacitor self-discharge (cur-
ent leakage) within approximately one week. During the first day
he super capacitor discharges pretty quickly. When it achieves the
alue of 2.3 V the discharge process becomes slower. We  have not
ontinued this experiment till the full discharge of the super capac-
tor since the weather conditions certainly change during one week
nd sun or wind are expected to appear.

Fig. 10 shows the theoretical and experimental dependences
or the super capacitor energy and voltage during wireless gas
ensor node operation, if a fully charged super capacitor (1300 J,
00 F, 2.7 V) is used. We  can observe that the super capacitor
ischarges much more quickly (for 200 h) compared to the the-
retical time of 360 h. This result is due to the actual energy

osses occurring in the conversion of energy, in particular because
f losses in the DC–DC converter and the super capacitor self-
ischarge. DC–DC converters have a high efficiency (more than
0%) in the case of a lower voltage, but relatively low efficiency

n the case of the need to raise the voltage (that is in our
ase).

.2. Power consumption and life time estimation

Fig. 11 illustrates the current consumption during the CO mea-
urement and data transfer to the network coordinator. The peak
f current consumption is observed when data is received or
ransmitted. The current peak associated with connecting or dis-
onnecting working and reference electrodes is not visible at
his time scale since the switching time takes place in millisec-
nds.

It can be seen from Fig. 11(b) that the main power consumption
eriods are caused by the operation of the modem. The average cur-
ent consumption during the data transfer time is 43.49 mA within
.28 s (Fig. 11). Therefore, one measurement and consequent data
ransmission within one cycle, i.e., 1 min, results in 0.2 mA  of aver-
ge current consumption. Using one 3.7 V 3200 mAh  li-ion AA-type
attery as a backup power supply, the node can operate 21 month.
ased on our experiments and strong background in this area we
ould claim that the lifetime of the proposed solution is basically
imited by degradation of the physical conditions of electronic com-
onents and CO sensor. For this reason we always put “perpetual”

n quotes, to mean that real perpetual operation in not physically
ttainable.

According to the sensor specification its lifetime is 7 years [22].
eriodical calibration (one per year) is a must requirement if the
ensor is embedded in a gas detection system which is supposed to
unction in a harsh environment such as a gas plant, for instance. In
ur case the system operation is defined by two low thresholds and
upposed to be deployed in a living area where working environ-
ent is friendly. The sensor parameters do not degrade much and

ccording to relevant standards do not require calibration through-
ut the sensor lifetime.
The sensor node for CO monitoring proposed in this work
mproves the power consumption of the state-of-the-art platforms
8,10,27] up to three times depending on the measurement proce-
ure and the period of measurements.
ators A 238 (2016) 112–121

6. Conclusion

In this work, we have presented a CO wireless gas sensor with
a hybrid power supply which takes its energy from solar and wind
ambient sources. The sensor node can be applied for outdoor mon-
itoring in urban areas and industrial facilities. The combination of
the alternative energy sources and a backup battery can signifi-
cantly extend the sensor lifetime ensuring its ‘perpetual’ operation.

The CO wireless gas sensor node has two gas concentration
thresholds, i.e., 5 and 20 mg/cm3. The sensor is designed to operate
in the IEEE 802.15.4 ZigBee networks. The electrical circuit of the
CO wireless gas sensor node and the measurement algorithms are
optimized so that efficient energy consumption can be achieved.

It is shown that the charging of the capacitor by the solar cell
is much more effective than that of the wind turbine. Therefore, a
wind generator cannot effectively provide the power for wireless
gas sensor node. This is a reason why  the hybrid power supply with
at least two  ambient sources is needed.

We have demonstrated that a fully charged super capacitor
discharges much more quickly (200 h) compared to the theoret-
ical time (360 h). This result is due to the actual energy losses
occurring in the conversion of energy, in particular in the DC–DC
converter. Besides, we  have experimentally demonstrated that the
super capacitor was  self-discharging within approximately one
week from 2.7 V to about 2.2 V. Therefore, the self-discharge does
not drastically influence the operation time of the wireless gas sen-
sor node.

Switching from battery to the alternative energy sources takes
place when the amount of voltage at the super capacitors is 0.9 V;
i.e., even when they are not fully charged. This mechanism saves
more energy for the battery which acts as the energy buffer. The
choice of using wind or solar energy is based on the amount of
voltage available on the corresponding super capacitors, i.e., that
alternative source powers the sensor node whose super capacitor
has the highest voltage. Moreover, the circuit design makes it pos-
sible to charge the super capacitors and extract energy from them
simultaneously.

We plan to apply the developed power supply circuit to other
devices of the WSNs as well. These devices can be coordinators,
actuators, relays and other gas sensors.
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