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Abstract: A Wireless Sensor Network (WSN) is a key data provider for the Internet 
of Things (IoT). A WSN can serve as a tool for both identification and data 
generation. However, due to its inherent resource limitation the WSNs cannot 
generate and transmit large data streams and, therefore, typically transmit raw and 
simple sensor values. Furthermore, the sensors usually transmit their data in 
proprietary formats to an embedded application. This can be enough for WSN 
control and monitoring applications, but is not enough for the IoT where it is 
expected that thousands of different objects belonging to different context will be 
accessed remotely. In this work we propose to create a virtual representation of real 
objects (sensors) with a corresponding Virtual Object (VO) model. This VO 
produces not solely a stream of raw sensor measurements, but enriches those with 
context information. We evaluate our approach using a real city-scale traffic 
monitoring sensor network deployed in the city of Enschede, the Netherlands. 

Keywords: Internet of Things (IoT), Resource Description Framework (RDF), 
traffic monitoring, smart city. 

1. Introduction 

In the last decade, the Internet of Things (IoT) paradigm [11] has slowly but continuously 
conquered the minds of researchers and engineers expected, to the point of becoming one 
the most exciting innovation domains as shown by the hype at recent International 
Consumer Electronics Show1 (CES). Underneath such hype there are a number of enabling 
‘pillar’ technologies: sensor and actuator networks, identification and tracking technologies, 
enhanced communication protocols, distributed intelligence, and cognitive technologies. 
Amongst these, Wireless Sensor Networks (WSN) [12] are considered to be the key data 
provider for the IoT. A WSN is a collection of tiny, autonomous sensor nodes which 
measure physical conditions [14] and send the results over the wireless network to a WSN 
gateway.  
 The last two decades were characterized by a tremendous progress in WSN design 
fostering their increasingly widespread usage and leading to growth in both, number of 
nodes per deployment and infrastructure complexity. Nowadays, a city-scale WSN 
deployment2 is not a novelty anymore. The city-scale deployments can include a number of 
sub-deployments or be a single one. These deployments generate lots of data of different 
type which has to be synchronized, interpreted, adapted for specific needs, interconnected 
with other data and/or distinguished in service and application data. However, the data 
generated by typical WSNs are scanty in terms of ‘richness’: due to its inherent resource 
limitation the wireless sensor nodes cannot generate and transmit large data streams. With 
respect to this a number of open problems can be identified: 

                                                 
1 International consumer electronics show, www.cesweb.org 
2 Smart Santander project, www.smartsantander.eu 
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 Heterogeneity: data received from different sensor nodes may be in different 
formats since the devices may use different software and hardware. 

 Data poorness: enrichment of the raw WSN data with metadata and data proper 
management, will result in a more efficient data exploitation, e.g. data re-use, 
standardized data storage. 

 Data unavailability: WSNs are typically locked into unimodal closed systems, 
therefore, limiting the access to sensed data. 

Heterogeneity, raw data and unavailability are the problems we attempt to address with 
this work, by proposing a framework for processing, enriching raw data and storing it 
according to a given information model fostering standardised interfacing to sensed data 
and interoperability with various applications.  

In particular, we use crossroad traffic monitoring data from the WSN and induction 
loops installed on crossroads in the city of Enschede, in the Netherlands. To achieve the 
results presented in this paper we created a virtual representation of each sensor with a 
corresponding virtual object model. Compared to the real sensor, the virtual object produces 
not only a stream of sensed raw values, but it enriches those with context information, e.g. 
time and date, location, type of sensor. This information extension allows us to broaden the 
potential usage of the data in a variety of different applications empowered by cognitive 
technologies that exploit such enrichment.  

This paper is organized as follows: we first introduce the reader to the state-of-the-art 
works in the field in Section 2. In section 3 we briefly describe a real sensor network 
deployment in the city of Enschede. We then present the concept of virtual object and its 
information model in Section 4. The procedure of raw data transformation into RDF 
documents in described in Section 5. We demonstrate how to enrich the data and extract 
“knowledge” from data in Sections 6. Business benefits and summary of our work is 
provided in Sections 7 and 8 respectively.  

2. State-of-the-Art 

The number of devices which generate data, e.g. sensors, cameras, constantly grows. The 
network administrators can not manually to manage large data streams from heterogeneous 
sources. Under the ‘management’ we understand the data processing procedure which 
stores the outcome of processing in Machine-to-Machine (M2M) understandable format. To 
address the issue of automatic data management a number of approaches have been 
proposed recently. In fact, these approaches can be divided into three groups:  
1. Data management onboard, when a sensing device processes and manages raw data 

stream on board and forwards the ready-to-use data in M2M format to the user, 
2. Local data management, when raw data stream is received by a base PC/server, 

processed and registered, 
3. Remote data management, when data stream is received by a web service and remotely 

processed and managed; a user in this case can retrieve raw data as well as processed 
data. 
Data management onboard. Storing data onboard of sensor nodes is a complicated 

task especially in the context of the IoT with its heterogeneous sensing platforms, their 
programming style, and resource constraints. Here we briefly review two techniques on 
embedded devices self-description. 

Web Services Description Language (WSDL) is used in [3] to enable self-description of 
embedded web services. These documents are properly compressed to meet strict 
requirement on long-term operation of sensor nodes and stored on board. Given work 
supports WSDL documents retrieval and discovery by using embedded discovery protocol. 
The description of sensor nodes using WSDL does not provide an opportunity for 
standardized integration of self-described sensor nodes with the linked data cloud. 
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This problem is addressed in [1] where the authors propose an approach to create RDF 
documents right on embedded IoT devices such as sensor nodes. To overcome sensing 
devices heterogeneity, the authors use Wiselib [2] which is the library of algorithms for 
platform-independent development on embedded systems, e.g. sensor nodes. The bottom 
line of this approach is that devices possess the self-description capability which allows 
them to describe, for example, the available sensors and services in RDF format. In this 
case these devices operate as the automatic semantic data generators. Using this approach 
one can link various RDF data forming data clusters or large data sets. In spite the authors 
use an RDF file compression technique, this approach is considered to be a power ‘hungry’ 
since a transmitter and receiver will be used for a longer period to transmit the RDF file 
rather than just sensed values. 

Local data management. In contrast to ‘onboard’ approach, in the ‘local’ one the data 
and their semantic description are stored on a base computer or server. 

For example, [4] presents an infrastructure for data processing in large-scale 
interconnected sensor networks which is also referred as Global Sensor Network (GSN). 
The key notion in GSN is the virtual sensor which can be any data generator including a 
video camera, real sensor, cellular phone or a combination of virtual sensors. The virtual 
sensors encode their data stream in XML format. To enable easy deployment and usage of 
virtual sensor, its specification provides all necessary information: metadata used, structure 
of the data stream, SQL-based specification of the stream processing in a virtual sensor, and 
functional properties. Using this approach one can ‘virtualize’ large networks. 

Similar approach proposed in [5] where single data generators are referred as Virtual 
Objects (VO) and add to the proposed framework cognitive mechanisms. The authors 
semantically enrich virtual counterparts of ICT Real-World Objects and propose to 
associate non-ICT RWOs, e.g. furniture, room, person, using ICT ones. Besides that, in 
accordance with application request single VOs can be organized in Composite Virtual 
Objects (CVO) with cognitive functionalities, e.g. situation acquisition, self-x functions, 
reasoning. 

Smart identification framework for ubiquitous computing is presented in [6]. The 
objects are identified with RFID devices as in CASAGRAS [7] and are described with 
minimal metadata. As soon as virtual counterpart is created the application communicates 
with it not trying to access real object. In the case when real objects does not exist any more 
the framework destroys its virtual copy. The work in [6] follows the object representation 
strategy whereas CASAGRAS relies on ontology.  

Remote data management. Web services such as Cosm (former Pachube) [8] or 
Sen.Se [9] create virtual objects for the IoT. These services accept raw data from sensors or 
other services and post them. Each feed has limited description in terms of metadata, e.g. 
location, measurement units, data owner, and limited number of samples to be stored, i.e. 
new data which exceed the storage threshold automatically remove the first posted data. 
This approach helps to open the data to community and simplifies the access to them: one 
need have the credentials and a simple Python/Java script. For example, research work in 
[10] uses Cosm for posting sensed values as well as posting actuation commands based on 
processed sensed data. 

3. Deployment 

In this section we briefly discuss traffic monitoring scenario and present the network 
architecture for traffic data collection in the city of Enschede. 
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3.1 – Scenario 

Figure 1 shows the map of sensors deployed in the city of Enschede. For example, 50 out of 
75 intersections marked with red circle (here we mean the intersections with traffic lights) 
are equipped with inductive loops. These inductive loop act as sensors and count vehicles 
passed by. To ensure accurate vehicle detection the lanes typically have three detectors per 
signal group. For example, if a vehicle is not detected by a loop or due to some reasons it 
does not pass the loop, there are two other loops in the lane to detect the vehicle. Also, a 
vehicle can be detected by the loops of adjacent signal groups in the case when it changes 
the lane. The controller (one per intersection) collects the data from detectors in order to (i) 
locally manage the traffic lights based on the data collected from the inductive loops and 
(ii) forward the collected data to a remote server for further processing.  

 

Figure 1. The map of WSN deployment in the city of Enschede, the Netherlands. 

In this work we use only the data received from the traffic lights. Next section describes 
in more details the hardware architecture of sensor network for raw data collection.  

3.2 Hardware architecture 

Network architecture for traffic data collection in the city of Enschede, the Netherlands is 
comrised of five layers: sensors (inductive loop detectors), controllers, central hub, central 
server, and user layer. 
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Figure 2. Schematic architecture of network for traffic data collection in the city of Enschede, the 

Netherlands. 

Sensors. An inductive loop is an electromagnetic detection system which uses a 
moving magnet to induce an electrical current in a nearby wire. It enables the detection of a 
vehicle passing or arriving at a certain point. This data are forwarded to controllers located 
at the intersections near the traffic lights.  

Controllers. Each signalized intersection has a controller which collects data from 
detectors. The main goal of controllers is to capture the movement of a vehicle. Controllers, 
however, are not smart devices and can not predict route patterns, perform inference 
procedures or tracing back. Upon detecting the vehicle their tasks are pretty 
straightforward: (i) forward measured values over the network and (ii) locally control the 
respective traffic lights based on the collected data and/or standardized phase sequences. 

Central hub. The role of central hub consists in collecting the traffic data from the 
controllers and its transfer to the central server. 

Central server. The server is served by a local networking company which takes care 
about security and privacy issues. This server stores the data from all controllers. The data 
received from the controllers contain raw data and metadata. We discuss data in more 
details in next section. 

Virtual Objects (VO) created in the context of the IoT are also stored on the central 
server. Users can access the VOs for getting the up to date traffic information and/or use the 
VOs to create applications and services. The following sections describe how we create 
VOs and transform received raw data in RDF documents. 

4. Virtual Object and Information Model 

A VO is the virtual (abstract) representation of an ICT object that may be associated with a 
non-ICT object. Indeed, the act of ‘installation’ brings the ICT object in a specific real-
world context. VOs indeed help in accessing the real world objects and helps interfacing 
them (after abstraction) to the external world. The features, functionalities and resources 
(e.g. memory, computation, communication etc.) represented by a VO can be accessed and 
re-used by other entities in the Enschede traffic system. Once a VO is installed, it may also 
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be associated with one or more non-ICT objects. Information about the status of non-ICT 
objects is gathered through sensing capabilities of the ICT object, while the status of objects 
can be manipulated using actuation capabilities of ICT objects. 

The VO vision allows a vast amount of heterogeneous devices to be part of a versatile 
IoT service platform, while providing contextualised, meaningful information on real-time 
status of Real World Objects (RWOs). Whenever the status or situational context of a RWO 
changes, this is reflected in the VO. The term Real World Object (RWO) refers to any 
object that exists in the real/physical world. The RWOs might be classified as ICT 
Objects/devices (e.g.: a device such as a sensor, actuator, Smartphone, etc) and non-ICT 
Objects (e.g.: a room, a person, a car, a tire of a car, a strawberry, etc.). An ICT object may 
be located at a certain physical location, may be associated to a non-ICT object and may 
offer one or more functions (e.g. temperature measurements, humidity measurements, 
luminosity measurements, location of an object/person, etc). Non-ICT objects correspond to 
objects or entities of the physical world that do not have any direct ICT capabilities such as 
furniture, a room, fruits, a person, a city, etc. Further, the digital representation of the RWO 
is called a Digital World Object (DWO). 

The concept of VO is of vital importance in the context of smart city and the IoT [13]. It 
helps one to overcome the problems of devices heterogeneity, scalability and enrich the raw 
data generated by the devices with metadata (context information). Moreover, using 
machine learning techniques a user can “substitute” real sensors with virtual ones. Finally, 
VOs can be accessed anytime from anywhere. 

Virtual Object
hasID :URI

ICT Object
hasID :URI
hasType :URI

represents

hasPhysicalLocation

Location
hasLongitude :float
hasLatitude :float
hasAltitude :float

Function
hasID:URI
hasName :string

offersFunction(s)

isAssociatedTo

non‐ICT Object
hasID :URI
hasType :URI
hasName :string

Cost
hasName :string
hasValue :literal

Utility
hasName :string
hasValue :literal

hasCost
hasUtility

Input
hasID :URI
hasType :URI

Output
hasID :URI
hasType :URI

hasInput
hasOutput

OutputMetadata
metadataType :URI
metadataValue :literal

hasMetadata

 
Figure 3. VO information model. 

An ontology has been developed in order to be used as information model (see Figure 3) 
for the description of the VOs. The Resource Description Framework (RDF) has been used 
in order that the information to be presented as machine readable/understandable data. The 
mechanisms retrieve the available parameters form the VO Templates and store them as 
RDF Triples in form Subject – Predicate – Object. The semantically enriched information, 
are stored in the VO registries that have been implemented as RDF graph databases with the 
use of Sesame, an extensible Java framework that supports the management of the RDF 
data. The SPARQL query language used to allow the interaction with the information that 
are stored in VO registries. Creation of RDF triples and their retrieving using SPARQL is 
presented in next section in more details. 
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5. Data Transformation 

This section describes how raw sensor data can be enriched and transformed into Resource 
Description Framework (RDF) format compliant with information model presented in 
previous section. RDF document can be then published in a database as well as requested 
by an application. A reader can also refer to the alternative data transformation solution 
[15]. In our vision, however, it lacks the implementation simplicity. 

First, we would like to clarify why the ultimate goal of such a conversion is the RDF 
format. The RDF data model has become the actual standard for the description of real-
world phenomena and has no dependence on an application. The main idea of RDF consists 
in making statements about resources in the form of subject-predicate-object expressions. 
This allows linking described resources with other RDF data. 

The data transformation consists of two stages (see Figure 4). The goal of the first stage 
is to get XML file, the goal of the second – RDF file. We can receive raw data from the 
Central Server (see Section 3.2) in Enschede in CSV or HTML format. In this work we 
consider two scenarios of raw data:  
 ‘Travel time per day’: license plate cameras installed along three main directions in 

Enschede count the number of vehicles; 
 ‘Intensity’: Induction loops measuring passing vehicles near the traffic lights. 

The raw data are distributed in the columns and show the number of cars detected per 
15 minutes within 24 hours. File name is comprised of data and route the measurements are 
collected. In order to get XML file we create XML schema (XSD file) and XLS (Excel) 
document. XML schema shows which data (and their types) will be included in RDF and 
they are linked and interconnected. We note here that this document does not contain any 
raw data, i.e. values received from the sensors. At this stage a user may enrich the XML 
schema with any types of data he needs to have in the final document. XLS document, in 
contrast, must contain raw data distributed in columns, for instance, where columns must 
have the headers’ names with respect to data types defined in XML schema. Upon 
completion of both documents XLS to XML mapping exists using XML schema. 

 

CSV
HTML

XLS XML

XSD

XSLT

RDF

Sesame

SPARQL

Output

Validation

XLS-XML mapping

XML-RDF 
transformation

 
Figure 4. Sensor data transformation to RDF, its publishing and requesting. 

To complete the transformation XML and XSLT files are required. Extensible 
Stylesheet Language Transformations (XSLT) is a language which helps to transform an 
XML file into other XML-based documents. To do so we used ‘xml2rdf3.xsl’ file available 
on Github. For the XML schema creation and XML-RDF conversion we used XMLSpy 
sofware by Altova. RDF file has to be uploaded to Sesame data base. 
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6. Knowledge Creation and Data Enrichment 

In this section we demonstrate a technique able to convert “Data” into “Knowledge”. The 
Data can be seen as raw information extracted from sensors, whereas the Knowledge is 
information that is consolidated, contextualised, and less transient than Data. For example, 
the information that a street is currently blocked by a traffic jam is considered as 
knowledge. This information is derived from the analysis on the sensor data located in and 
around this street. By essence, Knowledge is more reusable than raw Data because it is 
more contextualized, and more stable in time. It also obviously presents more value for a 
user. 

As a result of the process presented in the previous chapter, an RDF file as been created 
containing the raw data from the sensors, and this data has been uploaded in a Sesame data 
base. As an example, we’ll use the data provided by traffic light sensors in the city of 
Enschede, able to count the numbers of cars passing. Those traffic light sensors are located 
in 4 different axis (Noord-Zuiderval, Zuiderval-Singels, Gronausestraat-Euregioweg, 
Gronausestraat-Boulevard) for a total of 40 traffic lights and corresponding sensors. The 
data provided corresponds to a car count every 15 minutes. 

As a first step, we have to enrich the data provided with context information, such as the 
geographical position of the traffic lights. This is done with the following SPARQL update: 

 
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> 
INSERT DATA { 
<ns1:EIT_Experiments/ns1:IntensityFromTrafficLights/ns1:one>  
   geo:lat "55.701"; 
   geo:lon "12.552". 
} 

Figure 5. Enriching data with GPS coordinates for the traffic lights. 

This operation attributes a latitude and longitude to the first traffic light named “one” and 
insert them in the RDF data base. It must be done for every traffic light.  
We can now query our database for the number of vehicles that passed by a certain traffic 
light from 18:00 to 20:00: 
 
SELECT (SUM(xsd:decimal(?carCountValue)) as ?total) 
WHERE { 
 ?IntensityFromTrafficLights ns1:TimeFrom ?timeFrom. 
 ?timeFrom rdf:value ?time. 
 ?IntensityFromTrafficLights ns1:one ?carCount. 
 ?carCount rdf:value ?carCountValue. 
FILTER (?time >= "18:00:00.000" && ?time < "20:00:00.000") 
} 
 
Result: 293 

Figure 6. Consolidating the number of cars. 

We then present a technique of Knowledge creation and enrichment based on SPARQL 
using the keyword CONSTRUCT. Indeed, whereas a SELECT query on an RDF graph 
returns the results formatted as a table, a CONSTRUCT query is returning the results 
formatted as an RDF graph themselves. For example one can insert a rule on traffic jam 
detection directly in the RDF graph as a CONSTRUCT request. Then when a user will 
query for traffic jams, this rule will be triggered. The request is the following: 
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CONSTRUCT {?carCount ns1:HasTrafficJam "Jammed".} 
WHERE { 
 ?IntensityFromTrafficLights ns1:TimeFrom ?timeFrom. 
 ?timeFrom rdf:value ?time. 
 ?IntensityFromTrafficLights ns1:one ?carCount. 
 ?carCount rdf:value ?carCountValue. 
FILTER (xsd:decimal(?carCountValue)>100) 
} 

Figure 7. Creation knowledge on traffic jams. 

In this request we construct a new RDF graph containing the “jammed” status of every 
traffic light. We arbitrarily consider that a traffic jam has appeared if more than 100 cars 
have passed at a traffic light in the last 15 minutes. This new RDF graph comes as a 
complement from the original RDF graph containing the initial data and can be, in turn, 
queried. 

Furthermore, this SPARQL request can be stored itself as RDF data, using the SPIN 
SPARQL dialect3. SPIN SPARQL defines an RDF representation of SPARQL. The original 
RDF data is thus enriched with “rules” stored themselves as RDF. This has the advantage to 
save a lot of space in database: a rule is often more concise than the data it generates. It also 
allows to store all resources from a domain model (both rules and data) under the same 
representation and in the same place, which enhance reusability. 

7. Business Benefits 

The presented work and results are expected to bring considerable value to future smart-
cities and Intelligent Transport Systems (ITS) applications.  Ordinary cities are already 
today characterized by a wealth of data being collected through a number of different 
sensing infrastructures and partly used for different, often siloed application purposes.  

Putting aside bespoke applications and associated sensing infrastructures that particular 
cities may have, with the Internet of Things becoming more and more established, as 
anticipated in the introduction, the trend we can currently observe is an increasing amount 
data enriching the overall set and coming from connected objects and sensor.  

With initiatives dedicated to opening-up such data aiming to promote innovative use 
and useful applications creation, our work aims at lowering the entry-level threshold for 
developers, as it gives the means to semantically enrich and also aggregate data in ways that 
the application stakeholders can then exploit.  

Understanding how and with what extra info to enrich sensed data and publish it as 
more composite RDF data can also be of interest for sensor manufacturers, which can in 
this way gain differential advantage for tapping into the business potentials of cognitive 
IoT.  

8. Conclusions and Future Work 

In this work we have proposed to enrich raw sensor data with context information for 
further usage in the IoT applications. To do so, we have developed virtual representations 
of real sensors called virtual objects. These IoT objects produce not only raw sensor 
measurements, but enrich those with context information as well. The enriched data are 
stored in RDF documents. Our experimental scenario where we evaluated our approach 
included real sensor network deployment for traffic monitoring in the city of Enschede. In 
particular, we have demonstrated how to enrich raw data and how to extract ‘knowledge’ 
from the available data. The experimental results demonstrate high potential of IoT 
paradigm towards successful traffic monitoring in the context of smart city. 

                                                 
3 http://spinrdf.org/sp.html 
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Our future work includes full automatization of VO creation for traffic monitoring use 
case. However, a reader can refer to our recent work [13] where we evaluate the time of VO 
creation using simulations in the context of proposed IoT framework. Besides, we plan to 
employ machine learning techniques to performs inference procedures, e.g. create route 
patterns, predict road congestions. 

Acknowledgements 

The authors would like to thank Erik Klok, Marcel Meeuwissen (Municipality of Enschede, 
the Netherlands), and Sander Veenstra (University of Twente, the Netherlands) for 
providing real traffic data and fruitful discussions. 

This paper describes work undertaken in the context of the iCore project, ‘Internet 
Connected Objects for Reconfigurable Ecosystems’ (http://www.iot-icore.eu/). iCore is an 
EU Integrated Project funded within the European 7th Framework Programme, contract 
number: 287708. The contents of this publication are the sole responsibility of iCore project 
and can in no way be taken to reflect the views of the European Union. 

References 
[1] H. Hasemann, A. Kroller, and M. Pagel, “RDF Provisioning for the Internet of Things,” In Proceedings 

of the Internet of Things 2012 International Conference (IoT 2012), pp. 143-150, Wuxi, China, October 
24-26, 2012. 

[2] T. Baumgartner, I. Chatzigiannakis, S. P. Fekete, C. Koninis, A. Kroller, and A. Pyrgelis, “Wiselib: A 
Generic Algorithm Library for Heterogeneous Sensor networks,” In Proceedings of the 7th European 
Conference on Wireless Sensor Networks (EWSN 2010), pp. 162-177, Coimbra, Portugal, 17-19 
February, 2010. 

[3] N. Glombitza, R. Mietz, K. Romer, S. Fischer, and D. Pfisterer, “Self-Description and Protocol 
Conversion for a Web of Things,” In Proceedings of International Conference on Sensor Networks, 
Ubiquitous, and Trustworthy Computing, pp.229-236, Newport Beach, California, USA, 7-9 June, 2010. 

[4] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for Data Processing in Large-Scale 
Interconnected Sensor Networks”, Proc. of the International Conference on Mobile Data Management 
(MDM 07). Washington, DC, USA, May 2007, pp. 198-205, doi: 10.1109/MDM.2007.36. 

[5] D. Kelaidonis, A. Somov, V. Foteinos, G. Poulios, V. Stavroulaki, P. Vlacheas, P. Demestichas, A. 
Baranov, A. R. Biswas, R. Giaffreda, “Virtualization and cognitive management of real world objects in 
the internet of things,” In Proceedings of the International Conference on Internet of Things, pp. 187-
194, Besançon, France, November 20-23, 2012. 

[6] K. Romer, T. Schoch, F. Mattern, T. Dubendorfer, “Smart Identification Frameworks for Ubiquitous 
Computing Applications,” J. Wireless Networks 10(6): 689-700, 2004. 

[7] CASAGRAS2, http://www.iot-casagras.org 
[8] Cosm platform, https://cosm.com 
[9] Sen.Se platform, http://open.sen.se 
[10] D. Kelaidonis, A. Somov, G. Poulios, V. Foteinos, V. Stavroulaki, P. Vlacheas, P. Demestichas “A 

cognitive management framework for smart objects and applications in the internet of things,” In 
Proceedings of the 2nd Workshop on Smart Objects Resource Management, Hamburg, Germany, 
September 26, 2012. 

[11] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtach, “Internet of Things: Vision, Applications and 
Research Challenges,” Ad Hoc Networks, 10(7): 1497-1516, 2012. 

[12] K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor networks,” IEEE Comput. 37(8): 50–56, 
2004. 

[13] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis, A. Somov, V. Foteinos, G. Poulios, A. R. 
Biswas, K. Moessner, P. Demestichas, “Enabling smart cities through a cognitive management 
framework for the internet of things,” IEEE Communications Magazine, to appear, 2013. 

[14] A. Somov, A. Baranov, A. Savkin, D. Spirjakin, A. Spirjakin, and R. Passerone, “Development of 
wireless sensor network for combustible gas monitoring,” J. Sensors and Actuators, A: Physical 171(2): 
398-405, 2011. 

[15] Model driven engineering, http://wiki.eclipse.org/ATL/Concepts 


