

DISI - Via Sommarive 14 - 38123 Povo - Trento (Italy)

http://www.disi.unitn.it

SIMULATION MATCHING

IMPLEMENTATION OF AUTOMATA

MODULO THEORY (AMT)

Fabio Massacci and Ida Siahaan

August 2009

Technical Report # DISI-09-074

Contents

1 Introduction 3
1.1 The Contributions of the Paper . 4

2 Security by Contract in a nutshell 4

3 Automata Modulo Theory 7

4 Simulation 10

5 Simulation Matching 14

6 The Architecture 16
6.1 Updating the S3MS ConSpec Parser . 18
6.2 Extending the S3MS PolicyManager . 19
6.3 Extending the S3MS Framework . 19
6.4 Test Cases . 19

7 Design Decisions 20

8 Experiments on Desktop 21

9 Related Works and Conclusions 23

A Simulation Matching Prototype Class Diagram 26

B Simulation Matching Prototype Experiments 27

1

Abstract

The traditional realm of formal methods is the off-line verification of formal
properties of hardware and software. In this technical report we describe a different
approach using fair simulation for matching and adapts the Jurdziński’s algorithm
on parity games. The simulation algorithm takes as input two automata represent-
ing respectively the formal specification of a contract and of a policy. A match is
obtained when every security-relevant action invoked by contract can also be invoked
by AutP . In other words, every behavior of AutC is also a behavior of AutP .

In this paper we thoroughly describe contract-policy matching using simulation,
a prototype made on .NET for Desktop PC and give some experimental results.

Keywords Formal Specification · Mobile Code · Language-based security ·
Malicious code · Security and privacy policies

2

Table 1: End Users’ Distilled Security Requirements

USE of Costly functionalities Any invocation of paid services, such as sending text mes-
sages, using GPRS or wireless connections, must be controllable by the user.

NETwork connectivity Any external connections made by the application can be controlled.

PRIvate information management It is necessary to control what data is accessed by the
application such as local files, PIM items or contacts from Contact List.

INTeraction with other applets This requirement makes necessary to control means of in-
terprocess communication, in particular sockets and memory-mapped files.

Power consumption This requirement is two-fold: it makes necessary to control the invo-
cation of power-consuming functionality, such as WiFi connections, and to control the
battery level in course of running the application. This can be mapped into the NET and
USE categories.

EXTended functionality If the device is equipped with some advanced functionality, such as
camera or GPS receiver, its use is likely to be controlled by policies.

1 Introduction

In this technical report we describe a prototype implementation for matching the claims
on the security behavior of a midlet (for short contract) with the desired security be-
havior of a platform (for short policy) for realistic security scenarios (such as the “only
https connections”).

The formal model considered for capturing contracts and policies is based on the
novel concept of Automata Modulo Theory (AMT). AMT has been introduced in [22],
which extends Büchi Automata (BA) by labeling transitions with expressions belong to
decidable theories. It is suitable for formalizing systems with finitely many states but
infinitely many transitions by leveraging on the power of satisfiability-modulo-theory
(SMT) decision procedures. In this way we can represent the task of matching the con-
tract with the policy as language containment problem between two automata. However,
while [23] provides the theoretical framework, namely simulation matching algorithm
and the complexity results of the operation, the actual implementation of the algorithm
and the integration with a state-of-the-art theory solver is still left open.

Contracts and policies may vary significantly but a number of analyses of security
requirements for mobile and ubiquitous applications [20, 29, 33] have shown that we
can essentially distill them in few categories (Table 1). Such requirements can then
be mapped into concrete behavioral constraints on usage of APIs. Here we discuss
informally the syntax and refer to [1] for details.

The security behaviors provided by the contract and desired by the policy can be
represented as automata where transitions correspond to invocation of security-relevant
actions as suggested by Erlingsson [12, p.59] and Sekar et al. [27]. Then the operation of
matching the midlet’s claim with platform policy can be mapped into classical problems
in automata theory.

One possible alternative is language inclusion: given two automata AutC and AutP

representing respectively the formal specification of a contract and of a policy, we have
a match when the execution traces of the midlet described by AutC is a subset of the

3

acceptable traces for AutP . To check this property we can complement the automaton
of the policy, thus obtaining the set of traces disallowed by the policy and check its
intersection with the traces of the contract. If the intersection is not empty, any behavior
in it corresponds to a security violation, pursued in [22].

The other alternative is the notion of simulation: we have a match when every APIs
invoked by AutC can also be invoked by AutP . In other words, every behavior of AutC is
also behavior of AutP . Simulation is usually a stronger notion than language inclusion as
it requires that the policy allows the actions of the midlet’s contract in a ”step-by-step”
fashion, whereas language inclusion looks at an execution trace as a whole, pursued in
[23].

In this technical report we use the approach of simulation as in [23], namely given
two automata AutC and AutP representing respectively the formal specification of a
contract and of a policy we have a match when there is no behavior of AutC which is
disallowed by AutP .

1.1 The Contributions of the Paper

We discuss the overall implementation architecture and the integration issues with a
state of the art decision procedure solver NuSMV [9] integrated with its MathSAT
libraries [7]. This report is based on simulation algorithm implementation project report
[31] and experiment from [6]. The implementation extended the S3MS Framework [10]
by implementing the Simulation Matching Algorithm (SMA) [23].

To this extent we have decided to implement simulation as game graph with oracle
calls to the decision procedures available in NuSMV. Therefore our design decision
AMT makes reasoning about infinite transitions systems with finite states possible
without symbolic manipulation procedures of zones and regions or finite representation
by equivalence classes whose memory intensive characteristic is not suitable for our
application.

The second contribution is a performance analysis of the integration design alter-
natives regarding the construction of expressions, the initialization of solver, and the
caching of temporary results by considering both running time and internal metrics of
various available options.

First, we introduce the concept of Automata Modulo theory (Section3). We continue
by briefly recapping the notion of AMT simulation (Section4). After description of the
simulation algorithm for contract policy matching we introduce the architecture of our
prototype (Section6) and the design decisions needed for evaluation (Section7). Finally
we report our experimental findings (Section8) and conclude with a brief discussion of
related work (Section9).

2 Security by Contract in a nutshell

Security-by-contract (S×C)[11, 5] proposed to augment mobile code with a claim on
its security behavior that can be matched against a mobile platform policy on-the-fly,
which provides semantics for digital signatures on mobile code. In an S×Cframework
[11, 5] a mobile code is augmented with a claim on its security behavior (an application’s
contract) that could be matched against a mobile platform’s policy before downloading.

4

Figure 1: Workflow in Security-by-Contract

At development time the mobile code developers are responsible for providing a
description of the security behavior that their code finally provides. Such a code may
undergo a formal certification process by the developer’s own company, the smart card
provider, a mobile phone operator, or any other third party for which the application
has been developed. By using suitable techniques such as static analysis, monitor in-
lining, or general theorem proving, the code is certified to comply with the developer’s
contract. Next, the code and the security claims are sealed together with the evidence
for compliance (either a digital signature or a proof) and shipped as shown on Figure 2.

At deployment time, the target platform follows a workflow as depicted in Figure 1
[5]. This workflow is a modification of S×Cworkflow [5]) by adding optimization step.
First, the correctness of the evidence of a code is checked. Such evidence can be a trusted
signature [32] or a proof that the code satisfies the contract (one can use Proof-Carrying-
Code (PCC) techniques to check it [24]). When there is evidence that a contract is
trustworthy, a platform checks, that the claimed contract is compliant with the policy to
enforce. If it is, then the application can be run without further ado. It is a significant
saving from in-lining a security monitor. In case that at run-time we decide to still
monitor the application, then we add a number of checks into the application so that
any undesired behavior can be immediately stopped or corrected.

Matching succeeds, if and only if, by executing an application on the platform, every
behavior of the application that satisfies its contract also satisfies the platform’s policy.
If matching fails, but we still want to run the application, then we use either a security
monitor in-lining, or run-time enforcement of the policy (by running the application in
parallel with a reference monitor that intercepts all security relevant actions). However
with a constrained device, where CPU cycles means also battery consumption, we need
to minimize the run-time overheads as much as possible.

A contract is a formal specification of the behavior of an application for relevant

5

Figure 2: Mobile Code Components with Security-by-Contract

security actions for example Virtual Machine API Calls, Web Messages. By signing
the code the developer certifies that the code complies with the stated claims on its
security-relevant behavior. A policy is a formal specification of the acceptable behavior
of applications to be executed on a platform for what concerns relevant security actions.
Thus, a digital signature does not just certify the origin of the code but also bind together
the code with a contract with the main goal to provide a semantics for digital signatures
on mobile code. Therefore, this framework is a step in the transition from trusted code
to trustworthy code.

Technically, a contract is a security automaton in the sense of Schneider [16], and
it specifies an upper bound on the security-relevant behavior of the application: the
sequences of security-relevant events that an application can generate are all in the
language accepted by the security automaton.

A policy(also contract) covers a number of issues such as file access, network con-
nectivity, access to critical resources, or secure storage. A single contract can be seen
as a list of disjoint claims (for instance rules for connections). An example of a rule
for sessions regarding A Personal Information Management (PIM) and connections is
shown in Example 2.1, which can be one of the rules of a contract. Another example is
a rule for method invocation of a Java object as shown in Example 2.2. This example
can be one of the rules of a policy. Both examples describe safety properties, which are
common properties to be verified.

Example 2.1 PIM system on a phone has the ability to manage appointment books,
contact directories, etc., in electronic form. A privacy conscious user may restrict net-
work connectivity by stating a policy rule: “After PIM is opened no connections are al-
lowed”. This contract permits executing the javax.microedition.io.Connector.open()
method only if the javax.microedition.pim.PIM.openPIMList() method was never
called before.

6

Example 2.2 The policy of an operator may only require that “After PIM was accessed
only secure connections can be opened”. This policy permits executing the
javax.microedition.io.Connector.open(string url) method only if the started con-
nection is a secure one i.e. url starts with “https://”.

We can have a slightly more sophisticated approach using Büchi automata [28] if we
also want to cover liveness properties as shown in the following Example 2.3.

Example 2.3 If the application should use all the permissions it requests then for each
permission p at least one reachable invocation of a method permitted by p must exist in
the code. For example if p is io.Connector.http then a call to method Connector.open()

must exist in the code and the url argument must start with “http”. If p is io.Connector.https
then a call to method Connector.open() must exist in the code and the url argument
must start with “https” and so on for other constraints e.g. permission for sending SMS.

3 Automata Modulo Theory

The security behaviors, provided by the contract and desired by the policy, can be rep-
resented as automata, where transitions corresponds to invocation of APIs as suggested
by Erlingsson [12, p.59] and Sekar et al. [27]. Thus, the operation of matching the
midlet’s claim with platform policy can be mapped into classical problems in automata
theory.

One possible mechanism to represent matching is language inclusion: given two
automata AutC and AutP representing respectively the formal specification of a contract
and of a policy, we have a match when the execution traces of the midlet described by
AutC are a subset of the acceptable traces for AutP . To check this property we can
complement the automaton of the policy, thus obtaining the set of traces disallowed by
the policy and check its intersection with the traces of the contract. If the intersection
is not empty, any behavior in it corresponds to a security violation.

The other alternative is the notion of simulation: we have a match when every APIs
invoked by AutC can also be invoked by AutP . In other words, every behavior of AutC

is also a behavior of AutP . Simulation is a stronger notion than language inclusion as it
requires that the policy allows the actions of the midlet’s contract in a “step-by-step”
fashion, whereas language inclusion looks at an execution trace as a whole. We pursue
the language inclusion approach in [22] and in this technical report and refer to [23] for
the simulation approach.

While this idea of representing the security-digest as an automaton is almost a decade
old [27, 12], the practical realization has been hindered by a significant technical hurdle:
we cannot use the naive encoding into automata for practical policies. Even the basic
policies in Ex. 2.1 and Ex. 2.2 lead to automata with infinitely many transitions.

Fig.3a represents an automaton for Ex. 2.2. We start from state p0 and stay in this
state while PIM is not accessed (jop). As PIM is accessed, we move to state p1 and stay
in state p1 only if the started connection javax.microedition.io.Connector.open(string url)
method is a secure one (url starts with “https://”) or we keep accessing PIM (jop). If we
start an insecure connection javax.microedition.io.Connector.open(string url), for example
url starts with “http://” or “sms://”, then we enter state ep.

7

(a) An Infinite Automaton of Ex. 2.2

joc(url)
.
= javax.microedition.io.

Connector.open(url)

jop
.
= javax.microedition.pim.

PIM.openPIMList(. . .)

p(url) = type
.
= url.startsWith(type)

(b) Abbreviations for Java APIs

Figure 3: Infinite Transitions Security Policies

The examples presented are from a Java VM; since we do not consider it useful to
invent our own names for API calls, we use the javax.microedition APIs (even though
verbose) for the notation shown in Fig.3b.

Definition 3.1 (Automaton Modulo Theory (AMT)) An AMT is a tuple A =
〈E, T ,Σ, S, s0,∆, F 〉, where E is a finite set of Σ-formulas in Σ-theory T , S is a finite
set of states, s0 ∈ S is the initial state, ∆ ⊆ S × E × S is a labeled transition relation,
and F ⊆ S is a set of accepting states.

Figure 4 shows two examples of AMT using the signature for EUF with a function
symbol p() representing the protocol type used for the opening of a url. As described in
the cited examples the first automaton forbids the opening of plain http-connections as
soon as the PIM is invoked while the second just restricts connections to be only https.

The transitions in these automata describe with an expression a potentially infinite
set of transitions: the opening of all possible urls starting with https. The automaton
modulo theory is therefore an abstraction for a concrete (but infinite) automaton. The
concrete automaton corresponds to the behavior of the actual system in terms of API
calls, value of resources and the likes.

From a formal perspective, the concrete model of an automaton modulo theory in-
tuitively corresponds to the automaton where each symbolic transition labeled with an
expression is replaced by the set of transitions corresponding to all satisfiable instanti-
ations of the expression. To characterize how an automaton captures the behavior of
programs we need to define the notion of a trace. So, we start with the notion of a
symbolic run which corresponds to the traditional notion of run in automata.

8

¬Joc(url)

c1

Jop

¬Jop

*

c0

ec

Joc(url)

2009-11-07

(a) AMT rule from Example 2.1

(Joc(url) ∧ p(url)=”https”)

p1

Jop

¬Jop

*

p0

ep

Joc(url) ∧ ¬(p(url)=”https”)

Jop

2009-11-07

(b) AMT rule from Example 2.2

Joc(url)
.
= Joc(joc,url)

Jop
.
= Jop(jop,x1, . . . , xn)

p(url) = type
.
= url.startsWith(type)

joc
.
= javax.microedition.io.Connector.open

jop
.
= javax.microedition.pim.PIM.openPIMList

Joc,Jop are predicate symbols representing respectively joc(url),jop(x1, . . . , xn) APIs.

(c) Abbreviations for expressions

Figure 4: AMT Examples

Definition 3.2 (AMT symbolic run) Let A = 〈E, T ,Σ, S, s0,∆, F 〉 be an AMT . A
symbolic run of A is a sequence of states alternating with expressions σ = 〈s0e1s1e2s2 . . .〉,
such that:

1. s0 = s0

2. (si, ei+1, si+1) ∈ ∆ and ei+1 is T -satisfiable, that is there is some Σ-structure M a
model of Σ-theory T and there exists some assignment α such that (M, α) |= ei+1.

A finite symbolic run is denoted by 〈s0e1s1e2s2 . . . sn−1ensn〉. An infinite symbolic
run is denoted by 〈s0e1s1e2s2 . . .〉. A finite run is accepting if the last state goes through
some accepting state, that is sn ∈ F . An infinite run is accepting if the automaton goes
through some accepting states infinitely often.

In order to capture the actual system invocations we introduce another type of run
called concrete run which is defined over valuations that represent actual system traces.
A valuation ν consists of interpretations and assignments which are actual system traces.

Definition 3.3 (AMT concrete run) Let A = 〈E, T ,Σ, S, s0,∆, F 〉 be an AMT . A
concrete run of A is a sequence of states alternating with a valuation σC = 〈s0ν1s1ν2s2 . . .〉,
such that:

1. s0 = s0

2. there exists expressions ei+1 ∈ E such that (si, ei+1, si+1) ∈ ∆ and there is some
Σ-structure M a model of Σ-theory T such that (M, αi+1) |= ei+1, where νi+1

represents αi+1 and I(ei+1).

9

A finite concrete run is denoted by 〈s0ν1s1ν2s2 . . . sn−1νnsn〉. An infinite concrete run
is denoted by 〈s0ν1s1ν2s2 . . .〉. A finite run is accepting if the last state goes through
some accepting state, that is sn ∈ F . An infinite run is accepting if the automaton
goes through some accepting states infinitely often. The trace associated with σC =
〈s0ν1s1ν2s2 . . .〉 is the sequence of valuations in the run. Thus a trace is accepting when
the corresponding run is accepting.

We use definition of run as in [14] which is slightly different from the one we use in [22],
where we use only states.

Example 3.1 An example of an accepting symbolic run of AMT rule from Exam-
ple 2.2 shown in Figure 4b is

c0 Jop(jop,file,permission) c1 Joc(joc,url)∧p(url)=“https′′ c1 Jop(jop,file,permission) c1 Joc(joc,url)∧p(url)=“https′′ ...

that corresponds with a non empty set of accepting concrete runs for example

c0(jop,PIM.CONTACT LIST,PIM.READ WRITE) c1 (joc,“https://www.esse3.unitn.it/′′)

c1(jop,PIM.CONTACT LIST,PIM.READ ONLY) c1 (joc,“https://online.unicreditbanca.it/login.htm′′) ...

Remark 3.1 A symbolic run defined in Definition 3.2 is interpreted by a non empty
set of concrete runs in Definition 3.3. This is a nature of our application domain
where security policies define AMT in symbolic level and the system to be enforced has
concrete runs. In other domains where we need the converse, namely to define symbolic
runs from concrete runs, then a symbolic run defined in Definition 3.2 can be considered
as an abstraction of concrete runs by Definition 3.3.

4 Simulation

The notion of simulation in AMT is both fair and symbolic. The fairness in AMT
is similar to fair simulation in Büchi automata as in [19]. A system fairly simulates
another system if and only if in the simulation game, there is a strategy that matches
each fair computation of the simulated system with a fair computation of the simulating
system. Efficient algorithms for computing a variety of simulation relations on the state
space of a Büchi automaton were proposed in [14] using parity game framework, that is
based on small progress measures [21]. Another algorithm based on the notion of fair
simulation was presented in [15]. The symbolism in AMT is similar to the theory of
symbolic bi-simulation for the π-calculus [18]. This symbolic representation can express
the operational semantics of many value-passing processes in terms of finite symbolic
transition graphs despite the infinite underlying labeled transitions graph.

In the sequel we will use s to denote states of the application’s contract and t to
denote state of the platform’s policy.

Definition 4.1 (Concrete Fair Compliance Game) Let Ac and Ap be AMT with
initial states s0 and t0 respectively. A Concrete Fair Compliance Game GC

Ac,Ap(s0, t0) is
played by two players, Contract and Policy, in rounds.

10

1. In the first round Contract is on the initial state s0 ∈ Sc and Policy is on the
initial state t0 ∈ Sp.

2. Contract chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T with a valuation νi represents αi

and I(ei) such that (M, αi) |= ec
i and moves to si+1.

3. Policy responds by a transition 〈ti, ep
i , ti+1〉 ∈ ∆p

T such that (M, αi) |= ep
i and

moves to ti+1.

The winner of the game is determined by the following rules:

• If the Contract cannot move then Policy wins.

• If the Policy cannot move then Contract wins.

• Otherwise there are two infinite concrete runs
→
s= 〈s0ν1s1ν2s2 . . .〉 and

→
t = 〈t0ν1t1ν2t2 . . .〉 respectively of Ac and Ap. If

→
s=

〈s0ν1s1ν2s2 . . .〉 is an accepting concrete run for Ac and
→
t = 〈t0ν1t1ν2t2 . . .〉 is not

an accepting concrete run for Ap then Contract wins. In other cases, Policy
wins.

Intuitively in the compliance game, the Contract tries to make a concrete move
and the Policy follows accordingly to show that the Contract move is allowed. If the
Policy cannot move then Contract is not compliant, meaning there is a move that the
Policy can not do, that is that particular action is a violation.

Example 4.1 In a game between the Contract from Figure 4a and the Policy from
Figure 4b, the Contract can choose to invoke the url http: // www. google. com and
the Policy can respond by selecting the appropriate expression which is satisfied by that
valuation.

A more complex situation occurs in the infinite case where infinite runs correspond
to liveness properties, i.e. something good will eventually happen. An example of this
property is shown in Example 2.3. In this case, the Contract only wins (i.e. it breaks the
Policy) when according to its view of the world there are infinitely many good things
but not for the Policy which after some initial good things is trapped in an endless
sequence of unsatisfactory states.

Example 4.2 In a game between the Contract and Policy from Ex.2.3, the Contract
can choose to invoke the url https: // sourceforge. net in a certain step after in some
previous steps it invokes permission io.Connector.https. The Policy can respond by
selecting the appropriate expression which is also satisfied by the same valuation, which is
possible in the game if Policy has previously requested permission io.Connector.https.

The concrete strategy for Policy in game GC
Ac,Ap(s0, t0) is a partial function that

determines its next move given the history of the concrete game up to a certain point.

Definition 4.2 (Concrete Strategy) A partial function f : Sc× (Sp×ν×Sc)∗ → Sp

is a concrete strategy if for any sequence 〈s0ν1s1ν2 . . . siνisi+1〉 which is a valid concrete
run for Ac

11

• f(s0) = t0

• f(〈s0t0ν1s1 . . . sitiνi+1si+1〉) = ti+1 such that 〈ti, ep
i , ti+1〉 ∈ ∆p

T and (M, αi) |= ep
i ,

where νi represents αi and I(ei).

A concrete strategy f of a game is a Policy winning strategy if and only if whenever
a Policy selects the moves of game as in Definition 4.1 according to f then Policy
wins.

Definition 4.3 (AMT Concrete Fair Simulation Relation) An automaton Ap con-
cretely fair simulates an automaton Ac if and only if there is a concrete winning strategy
for Ap we denote as Ac v Ap. We also say that Ac complies with Ap.

We have now the machinery to generalize the notion of simulation to symbolic level,
among expressions.

Definition 4.4 (AMT Fair Compliance Game) A Fair Compliance Game
GAc,Ap(s0, t0) is played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state s0 ∈ Sc and Policy is on the
initial state t0 ∈ Sp.

2. Contract chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T such that ec
i is satisfiable and

moves to si+1.

3. Policy responds by a transition ∆p
T (ti, e

p
i , ti+1) such that (ec

i → ep
i) is valid and

moves to ti+1
1.

The winner of the game is determined by the rules as in Definition 4.1 with the difference
in run where we define run over expressions instead of assignments.

The intuition is similar to concrete game: Contract tries to make a symbolic move
and the Policy follows suit in order to show that the Contract move is allowed. If the
Policy cannot move this means that the Contract may not be compliant because there
is a symbolic move that the Policy could not do. However, as we shall see this might
not imply that at the concrete level the Contract is really non-compliant.

Definition 4.5 (Strategy) A partial function f : Sc × (Sp × E × Sc)∗ → Sp is a
symbolic strategy if and only if for any sequence 〈s0e

c
0s1e

c
1 . . . sie

c
isi+1〉 which is a valid

symbolic run for Ac

• f(s0) = t0

• f(〈s0t0e
c
0s1t1e

c
1 . . . sitie

c
isi+1〉) = ti+1 such that ∆p

T (ti, e
p
i , ti+1) and (ec

i → ep
i) is

valid.

A strategy f of the game is a Policy winning strategy if and only if whenever a
Policy select the moves of game as in Definition 4.4 according to f then Policy wins.

1→ in (ec
i → ep

i) represents implication symbol in first order logic.

12

2010-01-08

s1

(Joc(url) ∧ p(url)=”http”)(Joc(url) ∧ p(url)=”https”)

s0

(a) Splitting Edges

s0

s1

(Joc(url) ∧ p(url)=”https”) ∨
(Joc(url) ∧ p(url)=”http”)

2010-01-08

(b) Disjuncting Expressions

Joc(”http://a2ω”)

Joc(”https://a11”)

Joc(”https://a1ω”)

Joc(”http://a21”)
s0

s1

2010-01-08

(c) Concrete Automaton

e11
.
= (Joc(url) ∧ p(url) = “https”)

e12
.
= (Joc(url) ∧ p(url) = “http”)

e2
.
= (Joc(url) ∧ p(url) = “https”)

∨(Joc(url) ∧ p(url) = “http”)

(d) Abbreviations for expressions

Figure 5: Symbolic vs Concrete Automaton

Definition 4.6 (AMT Fair Simulation Relation) An automaton Ap fair simulates
an automaton Ac if and only if there is a winning strategy for Ap we denote as Ac ≤ Ap.
We also say that Ac complies with Ap.

Proposition 4.1 If Ac ≤ Ap is an AMT fair simulation relation then Ac v Ap is a
concrete fair simulation relation.

In contrast to the language inclusion approach where symbolic language inclusion
coincides with concrete language inclusion, and also the simulation notions of [18], the
converse of Proposition 4.1 does not hold in general.

Proposition 4.2 AMT fair simulation is stronger than AMT language inclusion.

In order to show that AMT simulation coincides with concrete simulation we must
impose some additional syntactic constraints on the automaton.

Definition 4.7 (Normalized AMT) A = 〈E, T ,Σ, S, s0,∆, F 〉 is a normalized au-
tomaton modulo theory T if and only if for every s, s1 ∈ S there is at most one expression
e1 ∈ E such that s1 ∈ ∆T (s, e1).

For example Figure 5a is a normalized automaton while Figure 5b is not normalized.

Lemma 4.1 It is possible to normalize an AMT automaton A = 〈E, T ,Σ, S, s0,∆, F 〉
when theory T is convex and closed under disjunction.

Lemma 4.2 Normalization preserves the determinism of an AMT .

Proposition 4.3 For normalized AMT if Ac v Ap is a concrete fair simulation rela-
tion then Ac ≤ Ap is an AMT fair simulation relation.

13

s0

s1

2010-01-08

s0

s1

nee ∨∨K1

ne1e K

(a) Automaton before normalization

s0

s1

2010-01-08

s0

s1

nee ∨∨K1

ne1e K

(b) Automaton after normalization

Figure 6: Normalization of an automaton

If automata are in normalized form then we have the following theorem from [23]:

Theorem 4.1 For normalized AMT Ac ≤ Ap is an AMT fair simulation if and only
if Ac v Ap is a concrete fair simulation.

5 Simulation Matching

In this section we describe fair simulation for matching and adapts the Jurdziński’s
algorithm on parity games [21]. The simulation algorithm Algorithm 1 takes as input
two automata AutC and AutP representing respectively the formal specification of a
contract and of a policy. A match is obtained when every security-relevant action
invoked by AutC can also be invoked by AutP . In other words, every behavior of AutC

is also a behavior of AutP .
At the first step (line 1) a compliance game graph G = 〈V1, V0, E, l〉 is constructed

out of automata AutC andAutP . A compliance game graph can be formally defined as
follows:

Definition 5.1 (Compliance Graph) Given 〈Ec, T c,Σc, Sc, s0c,∆c
T , F c〉 and〈

Ep, T p,Σp, Sp, s0p,∆p
T , F p

〉
, construct a 〈V1, V0, E, l〉 as follows:

• V1= {v(sc,sp)|sc ∈ Sc, sp ∈ Sp}

• V0= {v(sc,sp,ec)|sc ∈ Sc, sp ∈ Sp,∃rc.sc ∈ ∆c
T (rc, ec)}

• E= {(v(sc,sp,ec), v(sc,tp))|tp ∈ ∆c
T (sp, ep) ∧ V ALID(ec → ep)} ∪

{(v(sc,sp), v(tc,sp,ec))|tc ∈ ∆c
T (sc, ec)}

•

l(v) =

0 if v = v(sc,sp) and sp ∈ F p

1 if v = v(sc,sp) and sc ∈ F c and sp /∈ F p

2 otherwise

A compliance graph G is the tuple 〈V1, V0, E, l〉

Intuitively the compliance level l(v) is 0 when the simulating automaton accepts, 1
when the simulated automaton accepts (but the simulating automaton has not accepted

14

Algorithm 1 Simulation Algorithm

Input: two AMT automata AutC and AutP

1: Construct compliance game graph G = 〈V1, V0, E, l〉
2: for all v ∈ V do
3: µ(v) := µnew(v) := 0
4: end for
5: repeat
6: µ := µnew

7: for all v ∈ V0 do

8: µnew(v) :=
{
∞ if {µ(w)|(v, w)} = ∅
min {µ(w)|(v, w)} otherwise

9: end for
10: for all v ∈ V1 do
11: maxv := max {µ(w)|(v, w) ∈ E}

12: µnew(v) :=

∞ if maxv = ∞
0 if l(v) = 0
maxv + 1 if l(v) = 1
maxv if l(v) = 2

13: end for
14: until µ = µnew

15: if µ(v(s0c,s0p)) < ∞ then
16: Simulation exists
17: end if

yet) and 2 when neither of them accepts. V1 consists of v(sc,sp) where AutC is on sc and
AutP is on sp and it is Contract turn to move. V0 consists of v(sc,sp,ec) where AutC is
on sc and AutP is on sp, Contract just made a move ec and it is Policy turn to move
such that V ALID(ec → ep) by querying to an oracle for the SMT solver.

Lemma 5.1 Let AutC =
〈
EAutC , T AutC ,ΣAutC , SAutC , s0AutC ,∆AutC

T , FAutC
〉

and AutP =〈
EAutP , T AutP ,ΣAutP , SAutP , s0AutP ,∆AutP

T , FAutP
〉

be AMT automata and let the the-

ory T = T AutC∪T AutP be decidable with an oracle for the SMT problem in the complexity
class C

1. |G = 〈V1, V0, E, l〉| constructed out of automata AutC and AutP by Definition 5.1
is in
O(|Sc| . |Sp| . |∆c

T |)C

2.
∣∣l−1(1)

∣∣ defined as in Definition 5.1 is in O(|Sc| . |Sp|)

A compliance game P (G, v0) on G starting at v0 ∈ V is played by two players
Policy (for AutP) and Contract (for AutC). The game starts by placing pebble on v0.
At round i with pebble on vi, vi ∈ V0(V1), Policy (Contract resp.) plays and moves
the pebble to vi+1 such that (vi, vi+1) ∈ E. The player who cannot move loses. For
infinite play π = v0v1v2 . . ., the winner defined as the minimum compliance level that

15

occurs infinitely often, namely if the minimum compliance level is 0 or 2 then Policy
wins, otherwise Contract wins.

Next, we define a compliance measure µ : V →
{
x|x ≤ |l−1(1)|

}
∪ {∞}. µ ranges

from 0 to |l−1(1)| because at l(v)=1 the simulated automaton (contract) accepts but
the simulating automaton (policy) has not accepted yet. Thus, progressing the measure
has the analogy of computing the pre-fixed point where the Contract remains winning
and ∞ shows that the µ keeps progressing beyond this limit, meaning Contract wins
the game. If l(v) = 1, then µ(v) > µ(w), where |l−1(1)|+1 = ∞. If l(v) = 2 or l(v) = 0,
then µ(v) ≥ µ(w).

The compliance measure for each node is the number of potential bad nodes, namely
nodes where the contract accepts but the policy does not, that it can reach. Thus,
µ(v) = ∞ means that there is an infinite path where policy cannot return to compliance
level 0. We slighty modify the Jurdziński progress measure [21] to compliance measure
where instead of a pair (0, x) we only use x. This is due to our observation of our
domain where we only have three priorities, namely l(v) ∈ 0, 1, 2 thus for ordering
(0, x) ≥l(v) (0, x′) the first component will not effect the ordering.

Jurdziński’s algorithm on parity games [21] defines that Policy has a winning strat-
egy from precisely the vertices v where after its lifting algorithm halts has µ(v) < ∞.
However, in contract-policy matching we are interested when there is a winning strategy
from the initial vertex v(s0c,s0p), depicted in Algorithm 1 as µ(v(s0c,s0p)) < ∞.

Proposition 5.1 Let G be a parity game constructed from two AMT automata AutC

and AutP constructed as in Definition 5.1. Policy has a winning strategy from the
initial vertex v(s0c,s0p) when Algorithm 1 halts with µ(v(s0c,s0p)) < ∞.

6 The Architecture

In this section we describe the conceptual architecture of the prototype that implements
the overall matching algorithm and supports integration with state of the art decision
procedure solver NuSMV [9] integrated with its MathSAT libraries [7]. The main aim is
to provide a concrete overview of how the prototype is implemented so that one can easily
understand the possible options for integration with the solver. The contract-matching
prototype takes as input a contract and a policy both specified in ConSpec and checks
whether or not the contract matches the policy. The source code itself is thoroughly
documented and should therefore be easy to understand. In addition, the following class
diagram should provide the reader with a good overview over the Simulation Algorithm
namespace and its classes as shown in Figure 7. Detailed class diagram is available on
Appendix A.

The prototype had been implemented as a Desktop version by extending the pro-
totype from [6]. The prototype consists of only one part which is off-device implemen-
tations. At the first step of matching, a compliance game graph G = 〈V1, V0, E, l〉 is
constructed out of automata AutC and AutP . The main parity game algorithm runs on
the constructed game graph and makes calls to the decision procedure during its execu-
tion. The different step from the on-the-fly implementation is that the policy automata
need not be complemented. The rest of integration issues with decision solver based on
MathSAT and NuSMV follows from on-the-fly matching implementation, for example

16

2010-01-08
SimulationMatching
GeneralPicture

NuSMV library

Policy
Automaton

Add
Constraints

Decision Procedure

Solve

Remove
Constraints

Declare variables

Matching algorithm

Parity game
simulation

Contract
Automaton

match succeed/fail

Construct
game graph

Figure 7: Simulation Implementation Architecture

we use the solver as a black box (an oracle) for the general algorithm that gives the
answer whether the problem is satisfiable or not.

The prototype is basically separated in 2 parts: on-device and off-device implemen-
tations. During off-device part execution, the contract and policy are transformed into
a suitable internal representation for the on-the-fly algorithm. In on-device part of the
prototype the main on-the-fly algorithm runs over already created contract and pol-
icy as AMT and makes a significant amount of calls to the decision procedure during
execution.

The initial parsing algorithm just transforms a contract (resp. a policy) into a .NET
class, ContractAutomaton.cs (resp. PolicyAutomaton.cs) that can be directly manipu-
lated by the actual algorithm responsible for the simulation matching.

Since a contract-policy matching algorithm should frequently call the decision pro-
cedure during its runs, we have found a design decision for an internal representation
of AMT . This particular form of AMT supports all the options of integration with
solver that we address in this paper.

A number of variables is associated to every edge, where method is an API call that
the policy is supposed to rule, cond - a guarded command which must be true in order
for the method to be executed, for instance a cond specifies that the url must start with
the string “https”.

For further representation simplification, we follow the semantics for security au-
tomata proposed in [1] so that we have a prioritized execution among guards: we go
to the next guard only if the guards before it have all failed. Such information is rep-
resented in otherConds - the other guarded commands that failed before reaching the
current guard otherMethods - an expression consists of all other methods that are not
supposed to rule at the current moment e.g. ¬m1∧¬m2 where m1 and m2 are methods
that are not supposed to rule.

We use the solver as a black box for the general algorithm so it gives the answer
whether the problem is satisfiable or not. In this way it could be easy to also try a
different decision procedure such as MathSAT by Bozzano et al. [7], DPLL(T) by Tinelli

17

[25] or CVC-lite [2]. For the same reason we have further decided to interface with the
solver without using its internal data structure but rather to interact with the decision
procedure by using strings. While this creates a bit of overhead for parsing, it makes it
significantly easier to replace the solver. An industry level application committing to a
particular solver would likely bypass this step.

Among the different possibilities we have used the decision procedure libraries behind
the tools MathSAT and NuSMV [9]. In this way we could support expressions in the
edges of the automaton modulo theory that are arbitrarily complex boolean expression,
mathematical expression and uninterpreted function symbols.

Remark 6.1 All the paths given in this technical report are from internal repository,
for publicly available protototype the path may differ and will be explained in the corre-
sponding distribution.

The SMA was first implemented as a Desktop version by extending the existing
S3MSDesktopMatcher project which can currently be found in the following directory:
s3ms code\Automata Matching\Release 1.10\NET DESKTOP Matcher.

In the following the most important classes of the implementation will be described:

Simulation.cs This is the main class of the SMA implementation. It contains the
Run() method that can be used to execute the algorithm.

SimulationDebugHelper.cs A helper class that, if used, prints a lot of useful debug
information about the execution of the algorithm.

SimulationTester.cs This class is used for testing the algorithm within the Desktop
environment. It contains various test cases that can be enabled. Notice that the
test cases need to be uncommented directly in the source code, since there can
only be on instance of the NUSMV solver and therefore only one execution of a
test case per run of the program. This class is only meant for initial testing and
testing of special test cases, since only one test case can be executed at a time.
An external testing framework was created to run multiple tests at once.

6.1 Updating the S3MS ConSpec Parser

The S3MS ConSpec Parser is updated from the previous implementation in [6] such
that it supports complementing the policy automata only if SMA should not be used,
instead of complementing the policy automaton in every case. A command line argu-
ment was added to the Parser that specifies whether the policy automaton should be
complemented. The following files were updated:

• The file Program.cs was changed to check if the third command line argument is set
to “false”. In this case the automaton is not complemented.

• The file \Business\CSContent.cs was updated to only complement the automaton if
the command line argument was not set or set to true.

The new version of the parser can be found in the directory:
s3ms code\ConSpec Parser\Simulation Algorithm Update\Conspec\FOR NET DESKTOP\S3MS-Parser\S3MS-

VBProject.

18

Table 2: Benchmark Contract and Policies

Example ID Natural Language description Coverage
httpHttps The application only uses high-level network connections. NET
https The application only uses HTTPS network connections. NET, PRI
maxKB512 The data received by application is bounded by 512Kb USE, NET
maxKB1024 The data received by application is bounded by 1024Kb USE, NET
noPushRegistry The application does not use the push registry mechanism USE
oneConnPushRegistry Only one connection registered to the Push registry at a time USE, NET
notCreateRSt The policy allows to open record stores, but it is not allowed INT

to create new record stores.
notCreateSharedRS The application does not create shared record stores. INT, PRI
noSMS No messages are sent by the application USE
100SMS Maximum 100 text messages can be sent by the application USE
pimNoConn After PIM was opened no connections are allowed USE, PRI, NET
pimSecConn After PIM was accessed only secure connections (HTTPS) USE, PRI, NET

can be opened

6.2 Extending the S3MS PolicyManager

The GUI of the S3MS PolicyManager has been updated to be able to create a policy
that can be used for Simulation Matching. To create a policy for Simulation Matching
the user simply selects the entry “SimulationMatching Representation” in the policy
management window. A new version of the parser was plugged-into the S3MS Policy-
Manager and the S3MS PolicyManager was updated to make use of its new functionality.
The actual version of the S3MS PolicyManager can be found in:
s3ms code\Simulation Algorithm Framework Update\S3MS.PolicyManager

6.3 Extending the S3MS Framework

The S3MS Framework itself had to be extended to support the SMA. This work is cur-
rently in progress. At this point the S3MS Framework has already been prepared to
support the SMA, but the old version of the S3MS Matcher has to be replaced with
the new version of the S3MS Matcher that implements SMA, before SMA can be used
within the framework. However, the current SMA implementation was not yet plugged-
into the framework. To plug SMA implementation into the framework, first the existing
S3MS DesktopMatcher project must be compiled for the use in a mobile device. Next,
the old Matcher executable in the Framework must be replaced with the new version.
The old version of the S3MS Matcher that has to be replaced can be found in:
s3ms code\Simulation Algorithm Framework Update\S3MS.PolicyManager\S3MS.SemanticMatcher\SEMANTIC BIN

6.4 Test Cases

Test cases based on matching algorithm with language inclusion implementation [6].
We consider a number of examples for experiments that provide a good coverage of the
requirements that we mentioned afore (Table2). We append to each problem name the
contract or policy suffix denoting whether the rule is used to specify a contract or a
policy.

The ConSpec files, CS files, DLL files and an overview over all the test cases can be
found in:

19

s3ms code\S3MS Testing\Simulation Algorithm\TestCases.

7 Design Decisions

In integrating matching algorithm with the theory solver we faced a number of design
options, where different design decisions are made in order to decide the best configu-
ration of integrating automata-based inclusion algorithm with decision procedure as the
problem is not trivial. Every option of the configuration proposed below has different
memory impact and this information and results of such analysis is very important be-
cause of the resource constraints of mobile device. In integrating matching algorithm
with the theory solver we faced a number of design options:

One vs Many Solver in object oriented languages is by itself an object. We could either
create only one instance of solver, relying on the solver to assert and retract ex-
pressions on demand, or create a new instance of the solver every time we call the
decision procedure.

ALL INSTANCES The expression sent to the solver has the following structure: method∧
otherMethods ∧ cond ∧ otherConds.

CACHING MC Since many edges will be traversed again and again we could save time
by caching the results of the matching. The solver itself has a caching mechanism
that could be equally used (CACHING SOLVER).

Unlike in on-the-fly matching implementation, we do not have MUTEX SOLVER, MU-

TEX MC, and PRIORITY MC options instead we introduce ALL INSTANCES which is suitable
for representation of only policy automaton and not the complementation of policy
automaton.

As in on-the-fly matching implementation, the One vs Many option was not possible
which requires only one instance of solver exists at time in order to interact correctly with
the NuSMV library. This leads to use a static invocation for the solver and set significant
constraints on the interaction. For example, before starting to visit all constraints to
the library, all variables used in expressions must be declared. The NuSMV library has
to invoke DeclareNewBooleanVar, DeclareNewWordVar, DeclareNewStringVar methods
for declaration of boolean, integer and string variables respectively. Only after declaring
all the variables from contract and policy expressions, the simulation algorithm can
actually start invoking the decision procedure in its visit. A consequence of this rule
is that with this implementation we cannot insert edges that introduce new variables
because the solver can be called only after declaring all the variables and adding all the
needed constraints. Therefore, during the visit of the algorithm we must at first upload
constraints to the solver with the AddConstraint method of the NuSMV class and then
remove them with the RemoveConstraint.

Therefore, during the visit of the algorithm we must at first upload constraints to
the solver with the AddConstraint method of the NuSMV class and then remove them
with the RemoveConstraint.

20

Table 3: Problems Suit

Problem Contract Policy SC TC SP TP
P1 size 100 512 contract.pol size 10 1024 policy.pol 2 4 2 4
P2 maxKB512 contract.pol maxKB1024 policy.pol 2 4 2 4
P3 noPushRegistry contract.pol oneConnRegistry policy.pol 2 3 3 9
P4 notCreateRS contract.pol notCreateSharedRS policy.pol 2 4 2 4
P5 pimNoConn contract.pol pimSecConn policy.pol 3 7 3 9
P6 2hard contract.pol 2hard policy.pol 3 7 3 7
P7 http contract.pol https policy.pol 3 7 3 7
P8 3hard contract.pol 3hard policy.pol 3 7 3 7
P100 noSMS contract.pol 100SMS policy.pol 2 4 102 304

SC: Number of States Contract TC: Number of Transitions Contract
SP: Number of States Policy TP: Number of Transitions Policy

(a) Abbreviations

Table 4: Running Problem Suit 10 Times
ALL INSTANCES ONE INSTANCE CACHING MC

Problem ART (s) CRT (s) Result
P1 2.014 2.014 Match
P2 1.934 3.948 Match
P3 1.886 5.834 Match
P4 1.886 7.72 Match
P6 1.998 1.998 Not Match
P7 2.06 4.058 Not Match
P8 1.998 6.056 Not Match
P100 5.528 5.528 Match

(a) Running Problem Suit

ART: Average Runtime for 10 runs
CRT: Cumulative Average Runtime

(b) Abbreviations

8 Experiments on Desktop

To understand the best option we collected data on running time for each problem in each
design alternative and the number of solved problems against time. From (Section 7) the
design alternatives can be implemented and tested in two alternative configurations and
we use the same problem suit as in Table3 for possible combinations of policy-contract
(mis)matching pairs.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,
3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Microsoft
Windows XP Professional Version 2002 Service Pack 3. The result is shown in Table 4.

For the sake of example we present the result obtained for alternative with ALL INSTANCES

ONE INSTANCE CACHING MC in Table 4. The results for all design alternatives are mapped
into diagram shown in Figure 8a for matching problems and Figure 8b for not matching
problems. Notice that we only provide the cumulative running time that is necessary
to solve all problems as for on-the-fly implementation experiments. This is important
because our goal is to match (or not match) all rules in a contract with all corresponding

21

0

1

2

3

4

5

6

7

8

9

1 2 3 4

NUMBER OF PROBLEMS SOLVED

T
IM

E
 (

s)

(a) Match succeeds for real policies

0

1

2

3

4

5

6

7

1 2 3

NUMBER OF PROBLEMS SOLVED

T
IM

E
 (

s)

(b) Match fails for real policies

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMBER OF PROBLEMS SOLVED

T
IM

E
 (

s)

M7
M8

(c) Matches among synthetic contracts and policies

M7: ALL INSTANCES ONE INSTANCE CACHING SOLVER
M8: ALL INSTANCES ONE INSTANCE CACHING MC

(d) Abbreviations for Configurations

Figure 8: Cumulative response time of matching algorithm on Desktop PC

rules in a policy. Thus, the value of the single problem is not important except for some
cases where the average output might be significantly off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large num-
ber of states compared to the others: essentially this happened because we draw an
automaton modulo theory with 100 states and which traverse from one state to another
by adding 1 to the number of SMS sent.

In this case there is a difference between M7 and M8, namely 5.387 s and 4.434 s
resp., that is M8 is better around 21.5% than M7. In order to study this anomaly in
more details, we generated more unreal problem sets: as P100 with combination of sent
SMS none, 1, 10, and 100 for both contract and policy. The data of the experiment is
given on Appendix B. The generated cases cumulative running time of implementation
is propositional to the number of problems solved (see Figure 8c). In this case the
difference between M7 and M8 is only around 9.8% still with M8 better than M7. This
result conforms to our intuition because M8 uses fewer calls to solver due to its caching
and thus save computations.

All methods seem to perform equally well because the problems are not stressful

22

enough for the different configurations. This is actually a promising result for the
deployment to the resource constrained in mobile device domain. However, we have
not yet implemented the same algorithm for a mobile platform.

In this chapter, we have given possible design decisions and run experiment on
PC for AMT simulation. Furthermore, we have detailed the time of the running on
the mobile platform for one design decision only to give the reader a feeling how the
matching algorithm with integrated decision procedure can run in real life and that it will
take a reasonable time. Our current implementation uses ALL INSTANCES ONE INSTANCE

CACHING MC configuration. ALL INSTANCES is preferred because of the nature of rules in
policies when an automaton is not complemented. ONE INSTANCE is chosen because of
garbage collection problem. CACHING MC is desired in order to save calls to solver for
the already solved rules.

As already described on (Section7) the S3MSDesktopMatcher project can only run
one test case at a time, since there can only be one instance of the NuSMV solver.
Therefore an external TestSuite was created to run all the test cases at once. This
Testsuite is located in:
s3ms code\S3MS Testing\Simulation Algorithm\SimulationTestSuite

In the following the most important classes of the TestSuite will be described:

SimulationTester.cs This is the main class of the TestSuite. Use the Run() method to
execute the test cases. The file also contains some of the settings that have to been
customized according to your system. Most importantly the variable MatcherLoca-
tion has to be modified to point to the executable of the S3MSDesktopMatcher
project.

SimulationTestCase.cs A test case that is going to be executed. In this class the
flags can be adjusted that will be used to execute the S3MSDesktopMatcher.

Program.cs This is the class that will be executed when the TestSuite is run. It
contains information about all the command line arguments that are accepted by
the TestSuite.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,
3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Microsoft
Windows XP Professional Version 2002 Service Pack 3. The result is shown in Table 5.

9 Related Works and Conclusions

Mobile code security can be achieved by several approaches, for example code signing
to ensure the origin of the code by trust relationship, proof-carrying code (PCC) to
ensure safety by explicit proof, model-carrying code (MCC) that carries security-relevant
behavior of the producer mobile code [27], and security-by-contract (SxC) where a digital
signature should not just certify the origin of the code but rather bind together the code
with a contract [11].

Security-by-contract (SxC). Security-by-contract [11] proposed to augment mobile
code with a claim on its security behavior that can be matched against a mobile plat-
form policy on-the-fly, which provides semantics for digital signatures on mobile code.

23

Table 5: Running Problem Suit 10 Times
ALL INSTANCES ONE INSTANCE CACHING MC

Problem ART (s) CRT (s) Result
P1 2.014 2.014 Match
P2 1.934 3.948 Match
P3 1.886 5.834 Match
P4 1.886 7.72 Match
P6 1.998 1.998 Not Match
P7 2.06 4.058 Not Match
P8 1.998 6.056 Not Match
P100 4.53 4.53 Match

(a) Running Problem Suit

ART: Average Runtime for 10 runs CRT: Cumulative Average Runtime

(b) Abbreviations

Security-by-contract attempts to overcome the major limitation of MCC, namely not
fully developed issue of contract matching and limited to finite state automata which
are too simple to describe realistic policies. In coping with this challenge, we propose
an application of formal methods that goes beyond the traditional realm of off-line ver-
ification of formal properties of hardware and software. The formal model considered
for capturing contracts and policies is based on the novel concept of Automata Modulo
Theory (AMT).

Off-line Verification. Our approach is different from off-line verification while we
use integration of emptiness test for automata modulo theory with satisfiability using
decision procedures. Such reasoning capabilities should then be used at the time an
application is downloaded on a mobile application such as PDA or a smart phone.
The usage of decision procedures allowed us to cope with automata modulo theories
where edges are not just finite states of labels but rather expressions that can capture
infinite transitions such as “connect only to urls starting with https://”. In the off-line
verification realm, the idea of embedding decision procedures into a higher level reasoner
is well accepted and was one of the strongholds of the PVS system. At theoretical level
Tinelli in [30] combines order-sorted first-order theories and their decision procedures
for theories satisfying certain conditions into a decision procedure for their union, where
SMT problems themselves can be addressed by tools such as CVC [2], UCLID [8],
MathSAT [7].

Infinite States System. Infinite numbers of transitions in security policies by la-
beling each transition with a computable predicate instead of an atomic symbol has
been studied in [26] and implemented in systems like PoET/PSLang toolkit [13]. Edit
automata [3] extend security automata to model the transforming effects of in-lined
reference monitors and is implemented in the Polymer system [4]. These approaches
focus on the relations between code and security claims on the code. The Mobile system
[17] implements a linear decision algorithm that verifies that annotated .NET bytecode
binaries satisfy a class of policies that includes security automata and edit automata.

24

Conclusions. We have described the prototype implementation, its integration with
a state of the art decision solver (based on MathSAT and NuSMV) and the preliminary
experiments that we have done for contract-policy matching.

Acknowledgments

We thank S. Vogl for first version of simulation prototype implementation. We also
acknowledge N. Bielova for comments and suggestions regarding interaction with solver
and for support in the implementation.
The EU-FP6-IST-STREP-S3MS project for partly supporting this research.

25

A Simulation Matching Prototype Class Diagram

ComplianceGraphEdge
Class

Fields

_endNode : ComplianceGraphNode

_startNode : ComplianceGraphNode

Methods

ComplianceGraphEdge(ComplianceGraphNode startNode, ComplianceGraphNode endNode)

ComplianceGraphEdgeSet
Class

Fields

_edges : Dictionary<ComplianceGraphNode, List<ComplianceGraphEdge>>

Methods

Add(ComplianceGraphEdge edge) : void

Clear() : void

ComplianceGraphEdgeSet()

GetEdgesOfNode(ComplianceGraphNode node) : List<ComplianceGraphEdge>

ComplianceGraphNode
Class

Fields

_complianceLevel : byte

_complianceMeasure : int

_contractState : State

_ID : int

_leadingEdge : Edge

_policyState : State

idCounter : int

Properties

ComplianceLevel { get; set; } : byte

ComplianceMeasure { get; set; } : int

ContractState { get; set; } : State

ID { get; } : int

PolicyState { get; set; } : State

Methods

ComplianceGraphNode()

ComplianceGraphNode(State policyState, State contractState, Edge leadingEdge, byte co…

ComplianceGraphNodeSet
Class

Fields

_cOrdered : Dictionary<State, List<ComplianceGraphNode>>

_nodesWithComplianceLevel0 : int

_nodesWithComplianceLevel1 : int

_nodesWithComplianceLevel2 : int

_pOrdered : Dictionary<State, List<ComplianceGraphNode>>

Properties

COrdered { get; set; } : Dictionary<State, List<ComplianceG…

POrdered { get; set; } : Dictionary<State, List<ComplianceG…

Methods

ComplianceGraphNodeSet()

Simulation
Class

Fields

_contractRule : Rule

_edges : ComplianceGraphEdgeSet

_flags : Flags

_policyRule : Rule

_V0 : ComplianceGraphNodeSet

_V1 : ComplianceGraphNodeSet

sdh : SimulationDebugHelper

Properties

ContractRule { get; set; } : Rule

Edges { get; set; } : ComplianceGraphEdgeSet

Flags { get; } : Flags

PolicyRule { get; set; } : Rule

V0 { get; set; } : ComplianceGraphNodeSet

V1 { get; set; } : ComplianceGraphNodeSet

Methods

CreateEdgeSet() : void

CreateNodeSetV0() : void

CreateNodeSetV1() : void

GetComplianceLevel(State pState, State cState) : byte

Simulation(Rule contractRule, Rule policyRule, Flags flags)

Valid(Edge contractEdge, Edge policyEdge) : bool

ComplianceGraph
Class

Fields

_edgeSet : ComplianceGraphEdgeSet

_nodeSetV0 : ComplianceGraphNodeSet

_nodeSetV1 : ComplianceGraphNodeSet

_startNode : ComplianceGraphNode

Methods

ComplianceGraph()

ComplianceGraph(ComplianceGraphNodeSet V0, Compli…

Edge
Class

OnTheFly

DFSAlgorithm

Class

Abstract Class

NuSMV
Class

AutomatonMTT
Class

SATExpression
Class

SpecificBoolExp

Expression

Class

State
Class

IDisposable

ICloneable

StartNode EndNode

Edges : List<ComplianceGraphEdge>

LeadingEdge

Nodes : List<ComplianceGraphNode>

_graph

_ofly

Edges

StartNode

V0 V1

aut1 aut2

SATList : List<SATExpression>

ns

InitState

Alphabet : List<Edge>

se1 se2

Figure 9: Simulation Class Diagram

26

B Simulation Matching Prototype Experiments

Table 6: Problems Suit
Problem Contract Policy
P100-100 100SMS contract.pol 100SMS policy.pol
P100-10 100SMS contract.pol 100SMS policy.pol
P100-1 100SMS contract.pol 100SMS policy.pol
P100-NO 100SMS contract.pol noSMS policy.pol
P10-100 10SMS contract.pol 100SMS policy.pol
P10-10 10SMS contract.pol 10SMS policy.pol
P10-1 10SMS contract.pol 1SMS policy.pol
P10-NO 10SMS contract.pol noSMS policy.pol
P1-100 1SMS contract.pol 100SMS policy.pol
P1-10 1SMS contract.pol 10SMS policy.pol
P1-1 1SMS contract.pol 1SMS policy.pol
P1-NO 1SMS contract.pol noSMS policy.pol
PNO-100 noSMS contract.pol 100SMS policy.pol
PNO-10 noSMS contract.pol 10SMS policy.pol
PNO-1 noSMS contract.pol 1SMS policy.pol
PNO-NO noSMS contract.pol noSMS policy.pol

Table 7: Average Running Problem Suit 10 Times (s)
Problem M7 M8 Result
P100-100 3.668 5.528 Match
P100-10 5.465 7.259 Not Match
P100-1 9.106 7.419 Not Match
P100-NO 7.228 6.385 Not Match
P10-100 5.308 7.531 Match
P10-10 3.446 2.59 Match
P10-1 2.308 2.165 Not Match
P10-NO 2.18 2.105 Not Match
P1-100 6.184 4.696 Match
P1-10 2.26 2.15 Match
P1-1 1.918 1.886 Match
P1-NO 1.854 1.87 Not Match
PNO-100 5.387 4.434 Match
PNO-10 2.372 2.077 Match
PNO-1 1.995 1.838 Match
PNO-NO 1.822 1.838 Match

27

References

[1] I. Aktug and K. Naliuka. Conspec - a formal language for policy specification.
In Proc. of the 1st Int. Workshop on Run Time Enforcement for Mobile and Dis-
tributed Systems (REM 2007), Dresden, Germany, 2007.

[2] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Proc. of the 16th Int. Conf. on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, pages 515–518. Springer-Verlag, 2004.

[3] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Found.
of Comp. Security, 2002.

[4] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In
Proc. of the ACM SIGPLAN 2005 Conf. on Prog. Lang. Design and Implementa-
tion, pages 305–314. ACM Press, 2005.

[5] N. Bielova, N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Matching in
security-by-contract for mobile code. J. of Logic and Algebraic Programming,
78:340–358, May-June 2009.

[6] N. Bielova, F. Massacci, and I. Siahaan. Testing decision procedures for security-
by-contract. In Joint Workshop on Found. of Comp. Sec., Automated Reasoning for
Sec. Protocol Analysis and Issues in the Theory of Sec. (FCS-ARSPA-WITS’08),
2008.

[7] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.v. Rossum,
and R. Sebastiani. MathSAT: Tight integration of SAT and mathematical decision
procedures. J. of Autom. Reas., 35(1):265–293, 2005.

[8] R. E. Bryant, S.K. Lahiri, , and S. A. Seshia. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02), LNCS,
pages 78–92. Springer-Verlag, 2002.

[9] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model check-
ing. In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02),
LNCS, pages 359–364. Springer-Verlag, 2002.

[10] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and
D. Vanoverberghe. Security-by-contract on the .NET platform. Information Secu-
rity Tech. Rep., 13(1):25 – 32, 2008.

[11] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward
a Semantics for Digital Signatures on Mobile Code. In Proc. of the 4th European
PKI Workshop Theory and Practice (EUROPKI’07), page 297. Springer-Verlag,
2007.

28

[12] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforce-
ment. PhD thesis, Department of Computer Science, Cornell University, 2004.

[13] U. Erlingsson and F.B. Schneider. IRM enforcement of Java stack inspection. In
Proc. of the 2000 IEEE Symp. on Security and Privacy, pages 246–255, 2000.

[14] K. Etessami, T. Wilke, and R. Schuller. Fair simulation relations, parity games, and
state space reduction for büchi automata. SIAM J. on Comp., 34(5):1159–1175,
2005.

[15] S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization. In Proc.
of the 14th Int. Conf. on Computer Aided Verification (CAV’02), pages 610–624.
Springer-Verlag, 2002.

[16] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for en-
forcement mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

[17] K.W. Hamlen, G. Morrisett, and F.B. Schneider. Certified in-lined reference mon-
itoring on .net. In Proc. of the 2006 workshop on Prog. Lang. and analysis for
security, pages 7–16. ACM Press, 2006.

[18] M. Hennessy and H. Lin. Symbolic bisimulations. In MFPS’92: Selected papers
of the meeting on Math. Foundations of Programming Semantics, pages 353–389.
Elsevier Sci. Publishers B. V., 1995.

[19] T.A. Henzinger, O. Kupferman, and S.K. Rajamani. Fair simulation. In Proc. of
of the 8th Int. Conf. on Concurrency Theory, pages 273–287. ACM Press, 1997.

[20] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Usage control requirements in
mobile and ubiquitous computing applications. In Proc. of the Int. Conf. on Sys.
and Net. Comm. (ICSNC 2006), pages 27–27. IEEE Press, 2006.

[21] M. Jurdzinski. Small progress measures for solving parity games. In STACS ’00:
Proc. of the 17th Annual ACM Symposium on Theoretical Aspects of Computer
Science, pages 290–301. Springer-Verlag, 2000.

[22] F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform
security policy using automata modulo theory. In Proc. of the 12th Nordic Workshop
on Secure IT Systems (NordSec’07), 2007.

[23] F. Massacci and I. Siahaan. Simulating midlet’s security claims with automata
modulo theory. In Proc. of the 2008 workshop on Prog. Lang. and analysis for
security, pages 1–9, 2008.

[24] G.C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT
Symp. on Princ. of Prog. Lang., pages 106–119. ACM Press, 1997.

[25] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
J. of the ACM, 53(6):937–977, 2006.

29

[26] F.B. Schneider. Enforceable security policies. ACM Trans. on Inf. and Syst. Secu-
rity, 3(1):30–50, 2000.

[27] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-
carrying code: a practical approach for safe execution of untrusted applications. In
Proc. of the 19th ACM Symp. on Operating Syst. Princ., pages 15–28. ACM Press,
2003.

[28] C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under
memory-limitation constraints. Inform. and Comp., 206(2-4):158–184, 2007.

[29] MOBIUS Project Team. Framework- and application-specific security requirements.
Public Deliverable D1.2, Mobility, Ubiquity and Security - MOBIUS, 2006. Report
available at http://mobius.inria.fr.

[30] C. Tinelli and C.G. Zarba. Combining decision procedures for sorted theories.
LNCS, pages 641–653, 2004.

[31] S. Vogl. Simulation algorithm project report. Technical report, University of Trento,
2009.

[32] B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D. Jensen, editors,
Secure Internet Programming, pages 261–273. Springer-Verlag, 1999.

[33] A. Zobel, C. Simoni, D. Piazza, X. Nunez, and Daniel Rodriguez. Business case and
security requirements. Public Deliverable D5.1.1, EU Project S3MS, 2006. Report
available at www.s3ms.org.

30

