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Abstract

With the advent of the next generation java servlet on the smartcard, the Future
Internet will be composed by web servers and clients silently yet busily running on
high end smart cards in our phones and our wallets. In this new world model we
can no longer accept the current security model where programs can be downloaded
on our machines just because they are vaguely “trusted”. We want to know what
they do in more precise details.

We claim that the Future Internet needs the notion of security-by-contract : a
contract describes the security relevant interactions that an application could have
with the smart devices hosting them. Compliance with contracts should verified at
development time, checked at deployment time and contracts should be accepted
by the platform before deployment and possibly their enforcement guaranteed, for
instance by in-line monitoring.

In this technical report we provide a formal model and an algorithm for match-
ing the claims on the security behavior of a midlet (for short contract) with the
desired security behavior of a platform (for short policy) on a security-by-contract
framework for realistic security scenarios.

Keywords Access control · Language-based security · Malicious code · Security
and privacy policies

2



1 Introduction

In this technical report we provide a formal model and an algorithm for matching the
claims on the security behavior of a midlet (for short contract) with the desired security
behavior of a platform (for short policy) for realistic security scenarios (such as the “only
https connections” mentioned afore).

The formal model used for capturing contracts and policies is based on the novel
concept of Automata Modulo Theory (AMT ). AMT generalizes the finite state au-
tomata of model-carrying code [43] and extends Büchi Automata (BA). It is suitable for
formalizing systems with finitely many states but infinitely many transitions, by lever-
aging the power of satisfiability-modulo-theory (SMT for short) decision procedures.
AMT enables us to define very expressive and customizable policies as a model for
security-by-contract, by capturing the infinite transition into finite transitions labeled as
expressions in suitable theories.

The second contribution is a decision procedure (and its complexity characterization)
for matching the mobile’s policy and the midlet’s security claims that concretize the
meta-level algorithm of security-by-contract [5]. We map the problem into classical
automata theoretic construction such as product and emptiness test.

Since our goal is to provide this midlet-contract vs platform-policy matching on-
the-fly (during the actual download of the midlet) issues like small memory footprint
and effective computations play a key role. We show that the tractability limit is the
complexity of the satisfiability procedure for the underlying theories used to describe
labels: we use NLOGSPACE and linear time algorithms for the automata theoretic part
[26] with oracle queries to a decision procedure solver1. Out of a number of requirements
studies, most of the policies of interests can be captured by theories which only requires
PTIME decision procedures.

We have further customized the decision algorithm the security policy has a particu-
lar form. For instance, if one uses security automata á la Schneider those can be mapped
to a particular form of AMT (with all accepting states and an error absorbing state) for
which particular optimizations are possible. In the original paper by Schneider security
automata specify transitions as a function of the input symbols which can be the entire
system state. Our AMT differs from security automata in this respects: transitions
are environmental parameters rather than system states. Writing policies in this way is
closer to one’s intuition.

This matching on-the-fly however requires to complement the policy of the mobile
platform and if we assume a general non-deterministic automaton this complementation
might lead to an exponential blow-up. A second problem is that in this way we need
two representations of the policy: a direct representation of the policy as an automata
that we can use for run-time monitor [47] and the complemented representation that we
use for matching.

Thus, we further propose to use the notion of simulation for matching the security
policy of the platform against the security claims of the midlet. Simulation is stronger

1In a nutshell AMT makes reasoning about infinite state systems possible without symbolic manip-
ulation procedures of zones and regions or finite representation by equivalence classes [24] that would
not be suitable for our intended application i.e. checking security claims before a pervasive download on
a mobile phone.
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Figure 1: Workflow in Security-by-Contract

than language inclusion (i.e. less midlets will obtain a green light) but they coincide for
deterministic policies.

In the next section, we briefly recap the notion of Security-by-Contract (we refer
the reader to [5] for more details). Next we introduce AMT and the corresponding
automata operations in (§3). We also expose some specific issues to be considered in
AMT . In §4 we describe an approach for lifting finite state tools to AMT . Next,
we describe simulation, symbolic simulation and fair simulation for AMT (§5) and we
continue with algorithm for lifting finite state tools to AMT simulation (§6). Finally,
we present related works and a concluding discussion.

2 Security by Contract in a nutshell

Security-by-contract (S×C)[11, 5] proposed to augment mobile code with a claim on
its security behavior that can be matched against a mobile platform policy on-the-fly,
which provides semantics for digital signatures on mobile code. In an S×Cframework
[11, 5] a mobile code is augmented with a claim on its security behavior (an application’s
contract) that could be matched against a mobile platform’s policy before downloading.

At development time the mobile code developers are responsible for providing a
description of the security behavior that their code finally provides. Such a code may
undergo a formal certification process by the developer’s own company, the smart card
provider, a mobile phone operator, or any other third party for which the application
has been developed. By using suitable techniques such as static analysis, monitor in-
lining, or general theorem proving, the code is certified to comply with the developer’s
contract. Next, the code and the security claims are sealed together with the evidence
for compliance (either a digital signature or a proof) and shipped as shown on Figure 2.

At deployment time, the target platform follows a workflow as depicted in Figure 1
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Figure 2: Mobile Code Components with Security-by-Contract

[5]. This workflow is a modification of S×Cworkflow [5]) by adding optimization step.
First, the correctness of the evidence of a code is checked. Such evidence can be a trusted
signature [51] or a proof that the code satisfies the contract (one can use Proof-Carrying-
Code (PCC) techniques to check it [34]). When there is evidence that a contract is
trustworthy, a platform checks, that the claimed contract is compliant with the policy to
enforce. If it is, then the application can be run without further ado. It is a significant
saving from in-lining a security monitor. In case that at run-time we decide to still
monitor the application, then we add a number of checks into the application so that
any undesired behavior can be immediately stopped or corrected.

Matching succeeds, if and only if, by executing an application on the platform, every
behavior of the application that satisfies its contract also satisfies the platform’s policy.
If matching fails, but we still want to run the application, then we use either a security
monitor in-lining, or run-time enforcement of the policy (by running the application in
parallel with a reference monitor that intercepts all security relevant actions). However
with a constrained device, where CPU cycles means also battery consumption, we need
to minimize the run-time overheads as much as possible.

A contract is a formal specification of the behavior of an application for relevant
security actions for example Virtual Machine API Calls, Web Messages. By signing
the code the developer certifies that the code complies with the stated claims on its
security-relevant behavior. A policy is a formal specification of the acceptable behavior
of applications to be executed on a platform for what concerns relevant security actions.
Thus, a digital signature does not just certify the origin of the code but also bind together
the code with a contract with the main goal to provide a semantics for digital signatures
on mobile code. Therefore, this framework is a step in the transition from trusted code
to trustworthy code.

Technically, a contract is a security automaton in the sense of Schneider [20], and
it specifies an upper bound on the security-relevant behavior of the application: the
sequences of security-relevant events that an application can generate are all in the
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language accepted by the security automaton.
A policy(also contract) covers a number of issues such as file access, network con-

nectivity, access to critical resources, or secure storage. A single contract can be seen
as a list of disjoint claims (for instance rules for connections). An example of a rule
for sessions regarding A Personal Information Management (PIM) and connections is
shown in Example 2.1, which can be one of the rules of a contract. Another example is
a rule for method invocation of a Java object as shown in Example 2.2. This example
can be one of the rules of a policy. Both examples describe safety properties, which are
common properties to be verified.

Example 2.1 PIM system on a phone has the ability to manage appointment books,
contact directories, etc., in electronic form. A privacy conscious user may restrict net-
work connectivity by stating a policy rule: “After PIM is opened no connections are al-
lowed”. This contract permits executing the javax.microedition.io.Connector.open()
method only if the javax.microedition.pim.PIM.openPIMList() method was never
called before.

Example 2.2 The policy of an operator may only require that “After PIM was accessed
only secure connections can be opened”. This policy permits executing the
javax.microedition.io.Connector.open(string url) method only if the started con-
nection is a secure one i.e. url starts with “https://”.

We can have a slightly more sophisticated approach using Büchi automata [44] if we
also want to cover liveness properties as shown in the following Example 2.3.

Example 2.3 If the application should use all the permissions it requests then for each
permission p at least one reachable invocation of a method permitted by p must exist in
the code. For example if p is io.Connector.http then a call to method Connector.open()

must exist in the code and the url argument must start with “http”. If p is io.Connector.https
then a call to method Connector.open() must exist in the code and the url argument
must start with “https” and so on for other constraints e.g. permission for sending SMS.

3 Automata Modulo Theory

The security behaviors, provided by the contract and desired by the policy, can be rep-
resented as automata, where transitions corresponds to invocation of APIs as suggested
by Erlingsson [12, p.59] and Sekar et al. [43]. Thus, the operation of matching the
midlet’s claim with platform policy can be mapped into classical problems in automata
theory.

One possible mechanism to represent matching is language inclusion: given two
automata AutC and AutP representing respectively the formal specification of a contract
and of a policy, we have a match when the execution traces of the midlet described by
AutC are a subset of the acceptable traces for AutP . To check this property we can
complement the automaton of the policy, thus obtaining the set of traces disallowed by
the policy and check its intersection with the traces of the contract. If the intersection
is not empty, any behavior in it corresponds to a security violation.
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(a) An Infinite Automaton of Ex. 2.2

joc(url)
.
= javax.microedition.io.

Connector.open(url)

jop
.
= javax.microedition.pim.

PIM.openPIMList(. . .)

p(url) = type
.
= url.startsWith(type)

(b) Abbreviations for Java APIs

Figure 3: Infinite Transitions Security Policies

The other alternative is the notion of simulation: we have a match when every APIs
invoked by AutC can also be invoked by AutP . In other words, every behavior of AutC

is also a behavior of AutP . Simulation is a stronger notion than language inclusion as it
requires that the policy allows the actions of the midlet’s contract in a “step-by-step”
fashion, whereas language inclusion looks at an execution trace as a whole. We pursue
the language inclusion approach in [32] and in this technical report and refer to [33] for
the simulation approach.

While this idea of representing the security-digest as an automaton is almost a decade
old [43, 12], the practical realization has been hindered by a significant technical hurdle:
we cannot use the naive encoding into automata for practical policies. Even the basic
policies in Ex. 2.1 and Ex. 2.2 lead to automata with infinitely many transitions.

Fig.3a represents an automaton for Ex. 2.2. We start from state p0 and stay in this
state while PIM is not accessed (jop). As PIM is accessed, we move to state p1 and stay
in state p1 only if the started connection javax.microedition.io.Connector.open(string url)
method is a secure one (url starts with “https://”) or we keep accessing PIM (jop). If we
start an insecure connection javax.microedition.io.Connector.open(string url), for example
url starts with “http://” or “sms://”, then we enter state ep.

The examples presented are from a Java VM; since we do not consider it useful to
invent our own names for API calls, we use the javax.microedition APIs (even though
verbose) for the notation shown in Fig.3b.

3.1 Theory in Automaton Modulo Theory

The notion of theory in AMT is derived from the notion of theory in the Satisfiability
Modulo Theories (SMT) problem. The SMT problem focuses on the satisfiability of
quantifier-free first-order formulas modulo background theories [7]. Some theories of
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Table 1: Theories of Interest
Theory (Non)Convex Decidability Complexity
EUF convex decidable polynomial [1]
LA(Q) convex decidable polynomial [19]
LA(Z) non-convex decidable NP-Complete [38]
DL(Q) convex decidable polynomial [9]
DL(Z) non-convex decidable NP-Complete [31]

interest for example are the theory of equality and uninterpreted functions (EUF ), the
quantifier-free fragment of linear arithmetic over the rationals (LA(Q) ), and over the
integers (LA(Z) ), and the corresponding subtheories of difference logic both over the
rationals (DL(Q) ), and over the integers (DL(Z) ).

Example 3.1 A security policy may set limits on resources that can be captured with
constraints expressed in different theories

1. no communication allowed if the battery level falls below 30% (LA(Q) can be used);

2. no jpeg file can be downloaded with size more than 500KB while avi files can arrive
up to 1MB (LA(Z) can be used here)

3. EUF can be used when comparing a policy requiring protocol(url)=‘‘https’’

and port(url)=‘‘8080’’ with a contract claiming to use only connections where
protocol(url)=‘‘https’’ or protocol(url)=‘‘http’’. We do not need to ex-
tract a protocol from the url. It is sufficient to treat protocol and port as unin-
terpreted functions and apply the theory of equality and uninterpreted functions
EUF .

The previous examples show simple security policies each uses only one kind of
theory. However, we are particularly interested in the combination of two or more
theories to accommodate complex security policies.

Example 3.2 A policy may allow only secure connections with limited size of down-
loads. To express this policy we combine EUF for handling protocol(url)=‘‘https’’

and LA(Z) for handling downloading a file of at most 500KB.

We use traditional first-order logic terminology [15] for defining a SMT theory. A
signature Σ consists a set of function symbols F and a set of predicate symbols P with
their arities, and a set of variables V . A 0-ary function symbol c is called a constant
and 0-ary predicate symbol B is called a Boolean atom. A Σ-term is a variable in V
or constructed from application of function symbols F to Σ-terms. If t1, . . . , tn are
Σ-terms and p is a predicate symbol then p(t1, . . . , tn) is a Σ-atom. A Σ-literal is a
Σ-atom or negation of Σ-atom. Σ-formula is defined over Σ-literals, the universal and
the existential quantifiers ∀,∃, and the boolean connectives ¬,∧. A Σ-formula is named
quantifier-free when it contains no quantifier and sentence when it contains no free
variables. A Σ-theory T is a set of first-order sentences with signature Σ.
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A Σ-structure M is a model of Σ-theory T if M satisfies every sentences in T . A
Σ-structure M consists of a set D of elements as domain and an interpretation I as in
first order logic. The interpretation of an n-ary function symbol is a mapping of each
n-ary function symbol f ∈ Σ to a total function fM : Dn → D. The interpretation
of a constant symbol is a mapping of each constant c ∈ Σ to itself. The interpretation
of an n-ary predicate symbol is a mapping of each n-ary predicate symbol p ∈ Σ to
a relation pM ⊆ Dn and the interpretation of a Boolean atom is a mapping of each
Boolean atom B ∈ Σ to (>,⊥). Let M denote a Σ-structure, φ a formula, and T a
theory, all of signature Σ. We say that φ is satisfiable in M (or φ is T -satisfiable)
if there exists some assignment α which assigns the set of variables to values in the
domain such that (M, α) |= φ. A theory T is convex [42] if all the conjunctions of
literals are convex in theory T . A conjunction of T -literals in a theory T is convex if for
each disjunction (M, α) |=

∨n
i=1 ei if and only if (M, α) |= ei for some i, where ei are

equalities between variables occurring in (M, α). For practical purposes we make some
additional restrictions.

First-order as base logic We use classical first-order logic based SMT. Extension
to a higher-order logic is possible as proposed in [30], where they introduced parametric
theories. In the sequel, we consider only quantifier-free Σ-formulas on theories T where
the T -satisfiability of conjunctions of literals is decidable by a T -solver [37].

Combination of theories is consistent Given a consistent theory T1 and a consis-
tent theory T2, we assume that the combination theory T := T1∪T2 is also consistent and
there exists a T -solver for the combined theory. We are interested in T1∪T2-satisfiability
of Σ1∪Σ2-formulas that can be generalized to combine many possibly signature-disjoint
theories T1 ∪ . . .∪Tn. The Nelson-Oppen (NO) combination procedure [35] is a seminal
work in this area. NO combines decision procedures for first-order theories restricted to
theories that are stably-infinite (informally the theory that has infinite models (see [35]))
and that have disjoint signatures (Σ1 ∩Σ2 = ∅). Tinelli-Zarba’s combination procedure
[46] extends NO for combining an arbitrary theory which maybe stably infinite with a
stably infinite theory that is also shiny. They also proposed a variant of the combi-
nation method for combining theories having only finite models with theories that are
stably finite. Ghilardi’s combination procedure [17] extends NO for combining theories
that share signature with restriction that the theories are compatible with respect to a
common sub theory in the shared signature.

Conjunctions of formulas Given theories T1 and T2 that can be combined as T
where T := T1 ∪T2 and conjunctive normal form formula φ1(resp. φ2) that is satisfiable
in T1 (resp. T2) then φ1 ∧ φ2 is decidable in T (not necessarily satisfiable). We do not
impose restrictions as in Proposition 3.8. in [45] that if φ1(resp. φ2) is satisfiable, then
φ1 ∧ φ2 is satisfiable in T .

3.2 Automaton Modulo Theory Preliminary

Having defined the theory in AMT , in this section we continue by defining tuple, run,
and word in AMT . An automaton in AMT is defined as a tuple of a finite set of
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¬Joc(url)

c1

Jop

¬Jop

*

c0

ec

Joc(url)

2009-11-07

(a) AMT rule from Example 2.1

(Joc(url) ∧ p(url)=”https”)

p1

Jop

¬Jop

*

p0

ep

Joc(url) ∧ ¬(p(url)=”https”)

Jop

2009-11-07

(b) AMT rule from Example 2.2

Joc(url)
.
= Joc(joc,url)

Jop
.
= Jop(jop,x1, . . . , xn)

p(url) = type
.
= url.startsWith(type)

joc
.
= javax.microedition.io.Connector.open

jop
.
= javax.microedition.pim.PIM.openPIMList

Joc,Jop are predicate symbols representing respectively joc(url),jop(x1, . . . , xn) APIs.

(c) Abbreviations for expressions

Figure 4: AMT Examples

Σ-formulas in Σ-theory T , a finite set of states, an initial state, a labeled transition
relation, and a set of accepting states. Formally, it is given in Definition 3.1.

Definition 3.1 (Automaton Modulo Theory (AMT )) An AMT is a tuple A =
〈E, T ,Σ, S, s0,∆, F 〉, where E is a finite set of Σ-formulas in Σ-theory T , S is a finite
set of states, s0 ∈ S is the initial state, ∆ ⊆ S × E × S is a labeled transition relation,
and F ⊆ S is a set of accepting states.

Figure 4 shows two examples of AMT using the signature for EUF with a function
symbol p() representing the protocol type used for the opening of a url. As described in
the cited examples the first automaton forbids the opening of plain http-connections as
soon as the PIM is invoked while the second just restricts connections to be only https.

The transitions in these automata describe with an expression a potentially infinite
set of transitions: the opening of all possible urls starting with https. The automaton
modulo theory is therefore an abstraction for a concrete (but infinite) automaton. The
concrete automaton corresponds to the behavior of the actual system in terms of API
calls, value of resources and the likes.

From a formal perspective, the concrete model of an automaton modulo theory in-
tuitively corresponds to the automaton where each symbolic transition labeled with an
expression is replaced by the set of transitions corresponding to all satisfiable instanti-
ations of the expression. To characterize how an automaton captures the behavior of
programs we need to define the notion of a trace. So, we start with the notion of a
symbolic run which corresponds to the traditional notion of run in automata.
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Definition 3.2 (AMT symbolic run) Let A = 〈E, T ,Σ, S, s0,∆, F 〉 be an AMT . A
symbolic run of A is a sequence of states alternating with expressions σ = 〈s0e1s1e2s2 . . .〉,
such that:

1. s0 = s0

2. (si, ei+1, si+1) ∈ ∆ and ei+1 is T -satisfiable, that is there is some Σ-structure M a
model of Σ-theory T and there exists some assignment α such that (M, α) |= ei+1.

A finite symbolic run is denoted by 〈s0e1s1e2s2 . . . sn−1ensn〉. An infinite symbolic
run is denoted by 〈s0e1s1e2s2 . . .〉. A finite run is accepting if the last state goes through
some accepting state, that is sn ∈ F . An infinite run is accepting if the automaton goes
through some accepting states infinitely often.

In order to capture the actual system invocations we introduce another type of run
called concrete run which is defined over valuations that represent actual system traces.
A valuation ν consists of interpretations and assignments which are actual system traces.

Definition 3.3 (AMT concrete run) Let A = 〈E, T ,Σ, S, s0,∆, F 〉 be an AMT . A
concrete run of A is a sequence of states alternating with a valuation σC = 〈s0ν1s1ν2s2 . . .〉,
such that:

1. s0 = s0

2. there exists expressions ei+1 ∈ E such that (si, ei+1, si+1) ∈ ∆ and there is some
Σ-structure M a model of Σ-theory T such that (M, αi+1) |= ei+1, where νi+1

represents αi+1 and I(ei+1).

A finite concrete run is denoted by 〈s0ν1s1ν2s2 . . . sn−1νnsn〉. An infinite concrete run
is denoted by 〈s0ν1s1ν2s2 . . .〉. A finite run is accepting if the last state goes through
some accepting state, that is sn ∈ F . An infinite run is accepting if the automaton
goes through some accepting states infinitely often. The trace associated with σC =
〈s0ν1s1ν2s2 . . .〉 is the sequence of valuations in the run. Thus a trace is accepting when
the corresponding run is accepting.

We use definition of run as in [14] which is slightly different from the one we use in [32],
where we use only states.

Example 3.3 An example of an accepting symbolic run of AMT rule from Exam-
ple 2.2 shown in Figure 4b is

c0 Jop(jop,file,permission) c1 Joc(joc,url)∧p(url)=“https′′ c1 Jop(jop,file,permission) c1 Joc(joc,url)∧p(url)=“https′′ ...

that corresponds with a non empty set of accepting concrete runs for example

c0(jop,PIM.CONTACT LIST,PIM.READ WRITE) c1 (joc,“https://www.esse3.unitn.it/′′)

c1(jop,PIM.CONTACT LIST,PIM.READ ONLY ) c1 (joc,“https://online.unicreditbanca.it/login.htm′′) ...

11



Remark 3.1 A symbolic run defined in Definition 3.2 is interpreted by a non empty
set of concrete runs in Definition 3.3. This is a nature of our application domain
where security policies define AMT in symbolic level and the system to be enforced has
concrete runs. In other domains where we need the converse, namely to define symbolic
runs from concrete runs, then a symbolic run defined in Definition 3.2 can be considered
as an abstraction of concrete runs by Definition 3.3.

In AMT a system uses variables that represent parameters over invoked methods.
Hence, variables are only environment variables, and we can represent them as edge
variables without memory. This observation leads to a subtle difference between tradi-
tional state variables in infinite systems and edge variables. For example, a guard x < 3
in classical hybrid automata for state variable x means that, after taking the transition,
x must be smaller than 3. In our case, since x is some external parameter of a Java
method, this means that this edge is taken each time the Java method is invoked with
a value of x smaller than 3.

The alphabet of AMT is defined as a set of valuations V that satisfy E. A finite
sequence of alphabet of A is called a finite word or word or trace denoted by w =
〈ν1ν2 . . . νn〉 and the length of w is denoted by |w|. An infinite sequence of alphabet
of A is called an infinite word or infinite trace is denoted by w = 〈ν1ν2 . . .〉. The set
of infinite words recognized by an automaton A, denoted by Lω(A), is the set of all
accepting infinite traces in A. Lω(A) is called the language accepted by A.

As we have noted already, the intuitive idea behind concrete runs is that they are
sequences of models of the expressions of the abstract specification of the automaton
modulo theory. In the practical setting, for example security policies over midlets, we
want to capture sequences of API calls then this general theory can be actually narrowed.

Example 3.4 A possible alternative is to use a predicate name corresponding to each
api call (such as joc(url, port), jop(), etc.) and then introduce a theory that specify that
predicates are mutually exclusive.

This formalization would correspond essentially to the guard-and-condition representa-
tion of Schneider’s security automata.

Example 3.5 Another alternative is to use predicate API(APIsymbol, parameters)
with the first argument the API name itself as a constant symbol to identify different
methods. For example joc(url, port) is denoted as Joc(joc, url, port) and jop(x1, . . . , xn)
is denoted as Jop(jop, x1, . . . , xn) imposing each constant as unique, i.e. joc 6= jop.

Both formalizations capture the same concrete behavior in terms of API calls. Our
current implementation uses the second option as the unique name assumption was
built-in the SMT solver implementation and therefore it could be used more efficiently.

The transition relation of A may have many possible transitions for each state and
expression, i.e. A is potentially non-deterministic.

Definition 3.4 (Deterministic AMT ) A = 〈E, T ,Σ, S, s0,∆, F 〉 is a deterministic
automaton modulo theory T , if and only if, for every s ∈ S and every s1, s2 ∈ S and
every e1, e2 ∈ E, if (s, e1, s1) ∈ ∆ and (s, e2, s2) ∈ ∆, where s1 6= s2 then the expression
(e1 ∧ e2) is unsatisfiable in the Σ-theory T .
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3.3 Operations in Automaton Modulo Theory

In order to define the test for language inclusion we introduce the operation of comple-
ment and intersection of AMT operations at the concrete level, for example API calls,
and then we give the notion of symbolic operations as in [22].

In this paper we consider only the complementation of deterministic AMT , for all
security policies in our application domain are naturally deterministic because a platform
owner should have a clear idea on what to allow or disallow.

Complementation of AMT AMT automaton can be considered as a Büchi au-
tomaton where infinite transitions are represented as finite transitions. Therefore, for
each deterministic AMT automaton A there exists a (possibly nondeterministic) AMT
that accepts all the words which are not accepted by automaton A. The Ac can be con-
structed in a simple approach as in [48] as follows:

Definition 3.5 (AMT Complementation) Given a deterministic AMT
A = 〈E, T ,Σ, S, s0,∆, F 〉 the complementAMT automaton Ac = 〈E, T ,Σ, Sc, s0c,∆c, F c〉
is:

1. Sc = S × {0} ∪ (S − F )× {1}, s0c = (s0, 0), F c = (S − F )× {1},

2. and for every s ∈ S and e ∈ E

((s, 0), e, s′) ∈ ∆c, s′ =
{
{(t, 0)} (s, e, t) ∈ ∆ and t ∈ F
{(t, 0), (t, 1)} (s, e, t) ∈ ∆ and t /∈ F

((s, 1), e, s′) ∈ ∆c, s′ = {(t, 1)} if (s, e, t) ∈ ∆ and t /∈ F

To apply complementation in Definition 3.5, the deterministic automata has to be
completed, meaning the sum of the transitions labels covers all the set of formulas in E.
Return to our Example 2.1 shown in Figure 4a, the automaton is complete.

Proposition 3.1 Let A be an AMT over a set of valuations V. Then a (possibly
nondeterministic) AMT Ac constructed by Definition 3.5 accepts all the concrete runs
which are not accepted by A, that is Ac is a complement automaton such that Lω(Ac) =
Vω − Lω(A).

Proof.
Correctness.
“⊇” we take an arbitrary concrete run not accepted by A that corresponds to a word

w = 〈ν1ν2ν3 . . .〉, meaning w ∈ Vω − Lω(A), so there is a unique concrete run
σC = 〈s0ν1s1ν2s2 . . .〉 of A. Hence, there is some k such that ∀i > k, si /∈ F , meaning
that σc

C = 〈(s0, 0)ν1 . . . (sk, 0)νk+1(sk+1, 1) . . .〉 is an accepting concrete run of Ac.
“⊆” we take an arbitrary concrete run accepted by Ac that corresponds to a word

w = 〈ν1ν2ν3 . . .〉, meaning that w ∈ Lω(Ac), so there is a unique concrete run
σc

C = 〈(s0, 0)ν1 . . . (sk, 0)νk+1(sk+1, 1) . . .〉 of Ac, corresponds to a concrete run
σ

′
C = 〈s0ν1 . . . skνk+1sk+1 . . .〉of A on w but this concrete run is rejecting.

Termination This construction terminates because our states in S and formulas in
E are finite.
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Complexity The time and space complexity of the construction is linear. 2

The construction in Definition 3.5 can be optimized if our security policy is a pure
security automaton à la Schneider. The policy automaton for safety properties has
all (but one) accepting states. The complementation will result in only one accepting
state which is (err, 1). However, the state can be collapsed with a non accepting state
(err, 0). Hence, no need to mark states with 0 and 1; and the only accepting state is
(err). Furthermore, the complementation transitions remain as the original transitions.

Intersection of AMT AMT automaton can be considered as a Büchi automaton
where infinite transitions are represented as finite transitions. Therefore, for AMT
automata Aa, Ab, there is an AMT Aab that accepts all the words which are accepted
by both Aa, Ab synchronously. The Aab can be constructed in a simple approach as in
[48] as follows:

Definition 3.6 (AMT Intersection) Let 〈Ea, T a,Σa, Sa, s0a,∆a
T , F a〉 and〈

Eb, T b,Σb, Sb, s0b,∆b
T , F b

〉
be (non) deterministic AMT , the AMT intersection au-

tomaton Aab = 〈E, T ,Σ, S, s0,∆, F 〉 is defined as follows:

1. E = Ea ∪ Eb, T = T a ∪ T b, Σ = Σa ∪ Σb,

2. S = Sa × Sb × {1, 2}, s0 =
〈
s0a, s0b, 1

〉
, F = F a × Sb × {1},

3.

∆ =

〈
(sa, sb, x), ea ∧ eb, (ta, tb, y)

〉 ∣∣∣∣∣∣
(sa, ea, ta) ∈ ∆a and
(sb, eb, tb) ∈ ∆b and
DecisionProcedure(ea ∧ eb) = SAT



y =


2 if x = 1 and sa ∈ F a or

if x = 2 and sb 6∈ F b

1 if x = 1 and sa 6∈ F a or
if x = 2 and sb ∈ F b

Proposition 3.2 Let Aa, Ab be AMT over a set of valuations V. Then an AMT Aab

constructed by Definition 3.6 accepts all the concrete runs which are accepted by Aa, Ab,
that is Aab is an intersection automaton such that Lω(Aab) = Lω(Aa) ∩ Lω(Ab).

Proof.
Correctness.
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“⊇” we take an arbitrary concrete run accepted by Aab that corresponds to a word
w = 〈ν1ν2ν3 . . .〉, where for all i ≥ 1, νi satisfies (ea ∧ eb), thus νi satisfies both ea

and eb. Let the concrete run be
〈
(s0a, s0b, 1)ν1(sa

1, s
b
1, x)ν2(sa

2, s
b
2, x)ν3 . . .

〉
of Aab.

This concrete run corresponds to 〈s0aν1s
a
1ν2s

a
2ν3 . . .〉 of Aa, which is accepted by Aa

because it goes infinitely often through F a × Sb × {1} thus it goes infinitely often
through F a. And

〈
s0bν1s

b
1ν2s

b
2ν3 . . .

〉
of Ab is also accepting because whenever the

automaton goes through an accepting state of Ab, the marker changes to 1 again.
Thus, the acceptance condition guarantees that the run of the automaton visits
accepting states of Ab infinitely often.

“⊆” we take an arbitrary concrete run 〈s0aν1s
a
1ν2s

a
2ν3 . . .〉 accepted by Aa , where for all

i ≥ 1, νi satisfies ea. And an arbitrary concrete run
〈
s0bν1s

b
1ν2s

b
2ν3 . . .

〉
accepted

by Ab, where for all i ≥ 1, νi satisfies eb. Both runs correspond to a word w =
〈ν1ν2ν3 . . .〉. So, there is a concrete run

〈
(s0a, s0b, 1)ν1(sa

1, s
b
1, x)ν2(sa

2, s
b
2, x)ν3 . . .

〉
of

Aab on w, where for all i ≥ 1, νi satisfies (ea∧ eb) and whenever the automaton goes
through an accepting state, the marker changes. Thus, the acceptance condition
guarantees that the run of the automaton visits accepting states infinitely often,
since a run accepts if and only if it goes infinitely often through F a × Sb × {1}.

Termination This construction terminates because our states in S and formulas in
E are finite.

Complexity The construction uses an oracle to an SMT solver to solve DecisionProcedure(ea∧
eb) = SAT , where the theory T is decidable in the complexity class C. Hence, the time
and space complexity of the construction is O(|Sa| .

∣∣Sb
∣∣ . |∆a

T | .
∣∣∆b

T
∣∣)C . 2

Intersection of automata illustrates another subtle difference with lazy satisfiability
approach (based on boolean abstraction in SMT). For example, in Figure 5a, classically
we have the result of automata intersection as in Figure 5c, however in AMT we have
more transitions, as shown in Figure 5b.

Definition 3.6 is a general construction, as depicted on Figure 6a (see abbreviations
on Fig. 6c). However, when we consider our domain of application, namely matching
a mobile’s policy and a midlet’s contract, then the fact that we intersect a contract
automaton with a special property (i.e. it has only one non accepting state (namely the
error state)) and a complement of policy automaton which has also a special property
(i.e. it has only one accepting state that is the error state), enable us to optimize the
intersection such that we only consider correct contract transitions (shown in Figure 6b).

Emptiness problem of AMT An AMT automaton A is not empty when there
exists some words accepted by A, meaning Lω(A) 6= ∅ if and only if there exists some
accepting concrete run as defined in Definition 3.3.

Proposition 3.3 Let the theory T be decidable with an oracle for the SMT problem in
the complexity class C then:

1. The non-emptiness problem for AMT is decidable in LIN − TIMEC.

2. The non-emptiness problem for AMT is NLOG− SPACEC-complete.
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(a) Example of Boolean Abstraction

(b) AMT Product (c) Normal Product

Figure 5: Boolean Abstraction

Proof. We proof Proposition 3.3 by showing that Lω(A) 6= ∅ if and only if there exists
some accepting state which is connected to the initial state and also connected to itself
as in [48]. Let A = 〈E, T ,Σ, S, s0,∆, F 〉.
Correctness.
“⊇” we assume that Lω(A) 6= ∅, meaning there exists an arbitrary concrete run σC =

〈s0ν1s1ν2s2 . . .〉 accepted by A that corresponds to a word w = 〈ν1ν2ν3 . . .〉. By
Definition 3.3 ∀i ≥ 0 state si is directly connected to state si+1. Thus, when i < k
then si is connected to sk. Furthermore, there exists some accepting state which is
visited infinitely often, meaning that there is some st ∈ F and there are i, k where
0 < i < k such that st = si = sk. Hence, st is connected to the initial state s0 and
also connected to itself.

“⊆” we assume that there exists some accepting state st ∈ F which is connected to
the initial state and also connected to itself. So, there is a sequence of states
〈ss0ss1ss2 . . . ss2〉 from the initial state to ssk = st that corresponds to a word
〈νs1νs2νs3 . . . νsk〉 and ∀i ≥ 0 state ssi is directly connected to state ssi+1. Fur-
thermore, there are also sequences of states 〈st0st1st2 . . . stl〉 from st0 = st to stl = st

that corresponds to a word 〈νt1νt2νt3 . . . νtl〉 and ∀i ≥ 0 state sti is directly con-
nected to state sti+1. Thus 〈νs1νs2νs3 . . . νsk〉〈νt1νt2νt3 . . . νtl〉ω is accepted by A and
Lω(A) 6= ∅.

Complexity The emptiness problem of AMT can be reduced to graph reachability.
A combination of an algorithm based on Nested DFS [41] with a decision procedure for
SMT can solve this problem. The algorithm takes as input the an AMT automaton
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A and starts a depth first search procedure check safety (s0) (Algorithm 1) over the
initial state s0. When an accepting state in AMT is reached, we start a new depth first
search (Algorithm 2)from the candidate state to determine whether it is in a cycle, in
other words if it is reachable from itself. If it is, then report the automaton is non-empty.

When a state is first generated, it is marked as safe. During an unfinished search
in Algorithm 1, a state is marked as in current path. When a state has finished its
Algorithm 1 and not yet processed in Algorithm 2, it is marked as safety checked.
Finally, a state is marked availability checked after processed by both algorithms.

This algorithm needs linear time on the size of A’s states and an oracle to an SMT
solver is used to solve DecisionProcedure(e) = SAT . Hence, it is in LIN−TIMEC . It
needs only a logarithmic memory, since at each step it needs to remember fewer states
than the number of its total states and there are only two bits added to each state for
the marker. Also, an SMT solver is used to solve DecisionProcedure(e) = SAT and
Jones [27] showed that graph reachability problem is NLOG − SPACE-hard. Hence,
the emptiness problem of AMT is NLOG− SPACEC-complete. 2

Language inclusion problem of AMT Language of an AMT automaton Aa is
subsumed by the language of an AMT automaton Ab when for all the words w =
〈ν1ν2 . . .〉 (as defined in Definition 3.3) accepted by Aa, w is also accepted by Ab.

Proposition 3.4 Let Aa, Ab be AMT over a set of valuations V. Then LAa ⊆ LAb

such that Ab accepts all the concrete runs which are accepted by Aa is decidable.

Proof. We proof Proposition 3.4 by showing that LAa ⊆ LAb if and only if the lan-
guage of Aa ×Ab is empty that is:
LAa ⊆ LAb ⇔ LAa ∩ LAb = ∅ ⇔ LAa ∩ L

Ab = ∅ ⇔ L
Aa×Ab = ∅.

Correctness.
“⊇” we assume that there exists some concrete run which is accepted by Aa but not by

Ab. Thus, L
Aa×Ab is not empty, which is a contradiction.

“⊆” we assume that L
Aa×Ab is not empty, meaning there exists some concrete runs

accepted by Aa × Ab. Thus, this run is accepted by both Aa and Ab. Because
Lω(Ab) = Vω − Lω(Ab), thus there exists some concrete run which is accepted by
Aa but not by Ab, which is a contradiction.

Complexity Language inclusion problem of AMT is decidable follows from Proposi-
tion 3.1, Proposition 3.2, and Proposition 3.3 and derived the complexity from the afore
mentioned propositions. 2

The language inclusion problem of AMT (Proposition 3.4) is defined over concrete
runs, thus in AMT symbolic language inclusion coincides with concrete one.

4 On-the-fly Language Inclusion Matching

In order to do matching between a contract with a security policy, our algorithm takes
as input two automata AutC and AutP representing respectively the formal specification
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of a contract and of a policy. A match is obtained when the language accepted by AutC

(the execution traces of the midlet) is a subset of the language accepted by AutP (the
acceptable traces for the policy). The matching problem can be reduced to an emptiness
test: LAutC ⊆ LAutP ⇔ LAutC ∩LAutP = ∅ ⇔ LAutC ∩L

AutP = ∅ ⇔ L
AutC×AutP = ∅. In

other words, there is no behavior of AutC which is disallowed by AutP . If the intersection
is not empty, then any behavior in it corresponds to a counterexample.

Constructing the product automaton explicitly is not practical for mobile devices.
First, this can lead into an automaton too large for the mobile limited memory footprint.
Second, to construct a product automata we need software libraries for the explicit
manipulation and optimizations of symbolic states, which are computationally heavy
and not available on mobile phones. Furthermore, we can exploit the explicit structure
of the contract-policy as a number of separate requirements. Hence, we use on-the-fly
emptiness test (constructing product automaton while searching the automata). The
on-the-fly emptiness test can be lifted from the traditional algorithm by a technique
from Coucubertis et al. [10] while modification of this algorithm from Holzmann et al’s
[25] is considered as state-of-the-art (used in Spin [26]). Gastin et al [16] proposed two
modifications to [10] for finding faster and minimal counterexample.

Remark 4.1 Our algorithm is tailored particularly for contract-policy matching, as
such, it exploits a special property of AMT representing security policies, namely each
automaton has only one non accepting state (the error state). The algorithm can be
generalized by removing all specialized tests, for example on line 8 from Algorithm 3
· · · ∧ sP = errP ∧ . . . can be replaced by accepting states from AutP , and reporting only
availability violation (corresponding to a non-empty automaton). This generic algorithm
corresponds to on-the-fly algorithm for model checking of BA.

We are now in the position to state our contract-policy matching’s result using
language inclusion:

Proposition 4.1 Let the theory T be decidable with an oracle for the SMT problem in
the complexity class C then:

1. The contract-policy matching problem for AMT using language inclusion is de-
cidable in LIN − TIMEC.

2. The contract-policy matching problem for AMT using language inclusion is de-
cidable in NLOG− SPACEC-complete.

Proof. We proof Proposition 4.1 by showing that L
AutC×AutP = ∅ if and only if there

exists no accepting state of AutC×AutP which is connected to the initial state of AutC×
AutP and also connected to itself where AutC ×AutP = A = 〈E, T ,Σ, S, s0,∆, F 〉. Let
A accepts all the concrete runs which are accepted by AutC and AutP , that is A is an
intersection automaton such that Lω(A) = Lω(AutC) ∩ Lω(AutP ).

Correctness.
The proof is similar to Proof 3.3, however we consider the product of two automata.
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“⊇” we assume that Lω(A) 6= ∅, meaning there exists an arbitrary concrete run σC =
〈s0ν1s1ν2s2 . . .〉 accepted by A that corresponds to a word w = 〈ν1ν2ν3 . . .〉 where
for all i ≥ 1, νi satisfies (eC∧ eP), thus νi also satisfies eC and eP. By Definition 3.3
∀i ≥ 0 state si is directly connected to state si+1. Thus, when i < k then si

is connected to sk. Furthermore, there exists some accepting state which is visited
infinitely often, meaning that there is some st ∈ F and there are i, k where 0 < i < k
such that st = si = sk. Hence, st is connected to the initial state s0 and also
connected to itself.

“⊆” we assume that there exists some accepting state st ∈ F which is connected to
the initial state and also connected to itself. So, there is a sequence of states
〈ss0ss1ss2 . . . ss2〉 from the initial state to ssk = st that corresponds to a word
〈νs1νs2νs3 . . . νsk〉, where for all i ≥ 1, νsi satisfies (eC ∧ eP), thus νsi also satisfies
eC and eP, and ∀i ≥ 0 state ssi is directly connected to state ssi+1. Furthermore,
there are also sequences of states 〈st0st1st2 . . . stl〉 from st0 = st to stl = st that
corresponds to a word 〈νt1νt2νt3 . . . νtl〉, where for all i ≥ 1, νti satisfies (eC ∧ eP),
thus νti also satisfies eC and eP, and ∀i ≥ 0 state sti is directly connected to state
sti+1. Thus 〈νs1νs2νs3 . . . νsk〉〈νt1νt2νt3 . . . νtl〉ω is accepted by A and Lω(A) 6= ∅.

Complexity. The matching between a contract with a security policy problem can
be reduced to an emptiness test of the product automaton of between a contract with
a complement of security policy. A combination of an algorithm based on Nested DFS
[41] with a decision procedure for SMT can solve this problem. The algorithm takes as
input the midlet’s claim and the mobile platform’s policy and starts a depth first search
procedure check safety (s0C, s0P, 1) (Algorithm 3) over the initial state (s0C, s0P, 1).
When an accepting state in AMT is reached, we have two cases. First, when the state
contains an error state of complemented policy (errP), then we report a security policy
violation without further ado.2 Second, the state does not contain an error state of
complemented policy (SP\{errP}). Then, we start a new depth first search (Algorithm
4)from the candidate state to determine whether it is in a cycle, in other words if it is
reachable from itself. If it is, then we report an availability violation.

We use the same marking as in AMT emptiness check, namely when a state is first
generated, it is marked as safe. During an unfinished search in Algorithm 3, a state
is marked as in current path. When a state has finished its Algorithm 3 and not yet
processed in Algorithm 4, then it is marked as safety checked. Finally, a state is
marked availability checked when it has been processed by both Algorithm 3 and
Algorithm 4. We also apply function condition(s, t, x, F1, F2) that implements marker
signing of y given x and current states from the Definition 3.6 of AMT intersection.

This algorithm can be solved in linear time on the size of the number of the states of
the product. In addition an oracle to an SMT solver is used to solve DecisionProcedure(eC∧
eP) = SAT . Hence, its complexity is LIN − TIMEC .

The algorithm needs only a logarithmic memory, since at each step it needs to
remember fewer states than the number of the total product states and there are

2The Error state is a convenient mathematical tool, but the trust assumption of the matching algo-
rithm is that the code obeys the contract and therefore, it should never reach the error state where any
action is permitted.

19



only two bits added to each state for the marker. Also, an SMT solver is used to
solve DecisionProcedure(eC ∧ eP) = SAT and as in non-emptiness of AMT we have
NLOG−SPACE-hardness follows from Jones [27] who showed that graph reachability
problem is NLOG − SPACE-hard. Hence, the contract-policy matching problem of
AMT is NLOG− SPACEC-complete. 2

As we have shown, matching between a contract with a security policy problem can
be reduced to an emptiness test of the product automaton of between a contract with
a complement of security policy: LAutC ⊆ LAutP ⇔ L

AutC×AutP = ∅. Furthermore, the
set of infinite words recognized by an automaton A, denoted by Lω(A), is the set of all
accepting infinite traces in A (w = 〈ν1ν2 . . .〉). Because the language of an automaton
A is defined in concrete level, thus the symbolic language coincides with the concrete
language. Therefore, contract-policy matching using language inclusion in symbolic and
concrete notion coincides.

5 Simulation

On the previous section we have seen on-the-fly matching using language inclusion and
this approach requires complementation of the policy of the mobile platform. How-
ever, matching using language inclusion as in presented in Section 3 has a limitation
in the structure of the policy automaton, i.e. only deterministic automaton. The con-
straint arises from the AMT complementation, where as BA complementation, the
non-deterministic complementation is complex and exponentially blow-up in the state
space [8]. Safra in [39], gives a better lower bound (2O(n log n)) for nondeterministic
BA complementation, however it is still exponential(see [49]). This limitation does not
evolve in matching using simulation as presented in this chapter, because using simula-
tion approach we can also deal with nondeterministic automata.

The notion of simulation in AMT is both fair and symbolic. The fairness in AMT
is similar to fair simulation in Büchi automata as in [23]. A system fairly simulates
another system if and only if in the simulation game, there is a strategy that matches
each fair computation of the simulated system with a fair computation of the simulating
system. Efficient algorithms for computing a variety of simulation relations on the state
space of a Büchi automaton were proposed in [14] using parity game framework, that is
based on small progress measures [28]. Another algorithm based on the notion of fair
simulation was presented in [18]. The symbolism in AMT is similar to the theory of
symbolic bi-simulation for the π-calculus [22]. This symbolic representation can express
the operational semantics of many value-passing processes in terms of finite symbolic
transition graphs despite the infinite underlying labeled transitions graph.

In the sequel we will use s to denote states of the application’s contract and t to
denote state of the platform’s policy.

Definition 5.1 (Concrete Fair Compliance Game) Let Ac and Ap be AMT with
initial states s0 and t0 respectively. A Concrete Fair Compliance Game GC

Ac,Ap(s0, t0) is
played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state s0 ∈ Sc and Policy is on the
initial state t0 ∈ Sp.
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2. Contract chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T with a valuation νi represents αi

and I(ei) such that (M, αi) |= ec
i and moves to si+1.

3. Policy responds by a transition 〈ti, ep
i , ti+1〉 ∈ ∆p

T such that (M, αi) |= ep
i and

moves to ti+1.

The winner of the game is determined by the following rules:

• If the Contract cannot move then Policy wins.

• If the Policy cannot move then Contract wins.

• Otherwise there are two infinite concrete runs
→
s= 〈s0ν1s1ν2s2 . . .〉 and

→
t = 〈t0ν1t1ν2t2 . . .〉 respectively of Ac and Ap. If

→
s=

〈s0ν1s1ν2s2 . . .〉 is an accepting concrete run for Ac and
→
t = 〈t0ν1t1ν2t2 . . .〉 is not

an accepting concrete run for Ap then Contract wins. In other cases, Policy
wins.

Intuitively in the compliance game, the Contract tries to make a concrete move
and the Policy follows accordingly to show that the Contract move is allowed. If the
Policy cannot move then Contract is not compliant, meaning there is a move that the
Policy can not do, that is that particular action is a violation.

Example 5.1 In a game between the Contract from Figure 4a and the Policy from
Figure 4b, the Contract can choose to invoke the url http: // www. google. com and
the Policy can respond by selecting the appropriate expression which is satisfied by that
valuation.

A more complex situation occurs in the infinite case where infinite runs correspond
to liveness properties, i.e. something good will eventually happen. An example of this
property is shown in Example 2.3. In this case, the Contract only wins (i.e. it breaks the
Policy) when according to its view of the world there are infinitely many good things
but not for the Policy which after some initial good things is trapped in an endless
sequence of unsatisfactory states.

Example 5.2 In a game between the Contract and Policy from Ex.2.3, the Contract
can choose to invoke the url https: // sourceforge. net in a certain step after in some
previous steps it invokes permission io.Connector.https. The Policy can respond by
selecting the appropriate expression which is also satisfied by the same valuation, which is
possible in the game if Policy has previously requested permission io.Connector.https.

The concrete strategy for Policy in game GC
Ac,Ap(s0, t0) is a partial function that

determines its next move given the history of the concrete game up to a certain point.

Definition 5.2 (Concrete Strategy) A partial function f : Sc× (Sp×ν×Sc)∗ → Sp

is a concrete strategy if for any sequence 〈s0ν1s1ν2 . . . siνisi+1〉 which is a valid concrete
run for Ac

• f(s0) = t0
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• f(〈s0t0ν1s1 . . . sitiνi+1si+1〉) = ti+1 such that 〈ti, ep
i , ti+1〉 ∈ ∆p

T and (M, αi) |= ep
i ,

where νi represents αi and I(ei).

A concrete strategy f of a game is a Policy winning strategy if and only if whenever
a Policy selects the moves of game as in Definition 5.1 according to f then Policy
wins.

Definition 5.3 (AMT Concrete Fair Simulation Relation) An automaton Ap con-
cretely fair simulates an automaton Ac if and only if there is a concrete winning strategy
for Ap we denote as Ac v Ap. We also say that Ac complies with Ap.

We have now the machinery to generalize the notion of simulation to symbolic level,
among expressions.

Definition 5.4 (AMT Fair Compliance Game) A Fair Compliance Game
GAc,Ap(s0, t0) is played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state s0 ∈ Sc and Policy is on the
initial state t0 ∈ Sp.

2. Contract chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T such that ec
i is satisfiable and

moves to si+1.

3. Policy responds by a transition ∆p
T (ti, e

p
i , ti+1) such that (ec

i → ep
i ) is valid and

moves to ti+1
3.

The winner of the game is determined by the rules as in Definition 5.1 with the difference
in run where we define run over expressions instead of assignments.

The intuition is similar to concrete game: Contract tries to make a symbolic move
and the Policy follows suit in order to show that the Contract move is allowed. If the
Policy cannot move this means that the Contract may not be compliant because there
is a symbolic move that the Policy could not do. However, as we shall see this might
not imply that at the concrete level the Contract is really non-compliant.

Definition 5.5 (Strategy) A partial function f : Sc × (Sp × E × Sc)∗ → Sp is a
symbolic strategy if and only if for any sequence 〈s0e

c
0s1e

c
1 . . . sie

c
isi+1〉 which is a valid

symbolic run for Ac

• f(s0) = t0

• f(〈s0t0e
c
0s1t1e

c
1 . . . sitie

c
isi+1〉) = ti+1 such that ∆p

T (ti, e
p
i , ti+1) and (ec

i → ep
i ) is

valid.

A strategy f of the game is a Policy winning strategy if and only if whenever a
Policy select the moves of game as in Definition 5.4 according to f then Policy wins.

3→ in (ec
i → ep

i ) represents implication symbol in first order logic.
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Definition 5.6 (AMT Fair Simulation Relation) An automaton Ap fair simulates
an automaton Ac if and only if there is a winning strategy for Ap we denote as Ac ≤ Ap.
We also say that Ac complies with Ap.

Proposition 5.1 If Ac ≤ Ap is an AMT fair simulation relation then Ac v Ap is a
concrete fair simulation relation.

Proof.
Assume that Ac ≤ Ap is an AMT fair simulation relation. By Definition 5.6 there is a
winning strategy for Ap, such that whenever a Policy select the moves of game defined
in Definition 5.4 according to strategy f then Policy wins the game. We construct a
concrete strategy f ′ from f .

By Definition 5.4 there are two cases where Policy wins the game:

• Finite game: If the Contract cannot move then Policy wins.
Contract moves by choosing a transition 〈si, e

c
i , si+1〉 ∈ ∆c

T such that ec
i is sat-

isfiable. Contract cannot move means that there exists no valuations and by
Definition 5.1 in concrete game Contract cannot move either.

• Infinite game: There are infinitely many j such that tj ∈ F p or there are only
finitely many i such that si ∈ F c.
The compliance game has infinitely many j such that tj ∈ F p when Policy is
able to respond infinitely often by a transition ∆p

T (tj , e
p
j , tj+1) where (ec

j → ep
j )

is valid, meaning for all αj , (M, αj) |= (ec
j → ep

j ). And by Definition 5.1 with

(M, αj) |= ep
j , Policy can respond by a transition

〈
tj , e

p
j , tj+1

〉
∈ ∆p

T .
Finitely many i occurs when there is some k such that ∀i > k, si /∈ F c, meaning
Contract moves by choosing a transition 〈si, e

c
i , si+1〉 ∈ ∆c

T such that ec
i is satis-

fiable, i.e. there exist αi where (M, αi) |= ec
i and by Definition 5.1 Contract can

also move in concrete game.

It is clear that the constructed concrete strategy f ′ is a winning strategy for Ap in
concrete compliance game, hence by Definition 5.3 Ac v Ap. 2

In contrast to the language inclusion approach discussed in Section 3.3, where sym-
bolic language inclusion coincides with concrete language inclusion, and also the simu-
lation notions of [22], the converse of Proposition 5.1 does not hold in general.

Proposition 5.2 AMT fair simulation is stronger than AMT language inclusion.

Proof. The pair of automata in Figure 7b and Figure 7a is a simple counter example.
We can see that both automata coincide with the same concrete automaton as in Fig-
ure 7c. Thus in concrete level the same automaton having not just simulation but also
bi-simulation to itself. However, the symbolic AMT on Figure 7a cannot simulate the
symbolic AMT on Figure 7b. For example if we have policy represented as Figure 7b
and contract represented as Figure 7a, where both automata accept the same language
but according to simulation V ALID(e2 → e11) does not hold nor V ALID(e2 → e12),
thus we do not have simulation (see abbreviation in Figure 7d). 2

In order to show that AMT simulation coincides with concrete simulation we must
impose some additional syntactic constraints on the automaton.
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Definition 5.7 (Normalized AMT ) A = 〈E, T ,Σ, S, s0,∆, F 〉 is a normalized au-
tomaton modulo theory T if and only if for every s, s1 ∈ S there is at most one expression
e1 ∈ E such that s1 ∈ ∆T (s, e1).

For example Figure 7a is a normalized automaton while Figure 7b is not normalized.

Lemma 5.1 It is possible to normalize an AMT automaton A = 〈E, T ,Σ, S, s0,∆, F 〉
when theory T is convex and closed under disjunction.

Proof. A theory T is convex [42] if all the conjunctions of literals are convex in theory
T . A conjunction of T -literals in a theory T is convex if for each disjunction (M, α) |=∨n

i=1 ei if and only if (M, α) |= ei for some i, where ei are equalities between variables
occurring in (M, α). If a theory T is convex then we can normalize an automaton by
considering the disjunction of all expressions going to the same state.

A theory T is called closed under disjunction if disjunctions of T -formulas
∨n

i=1 ei,
where ei are T -formulas, is also a T -formula. For most theories this closure holds. An
example where the closure does not hold is when a T consists of only Horn-formulas
that allows at most one positive literal. Suppose we have two Horn-formulas e1 and e2,
where e1

.= p1 ∧ p2 → p and e2
.= q1 ∧ q2 → q, then e1 ∨ e2

.= p1 ∧ p2 ∧ q1 ∧ q2 → p ∨ q
which is not a Horn-formula. 2

Lemma 5.2 Normalization preserves the determinism of an AMT .

Proof. By Definition 3.4 A = 〈E, T ,Σ, S, s0,∆, F 〉 is a deterministic automaton mod-
ulo theory T , if and only if, for every s ∈ S and every s1, s2 ∈ S and every e1, e2 ∈ E,
if (s, e1, s1) ∈ ∆ and (s, e2, s2) ∈ ∆, where s1 6= s2 then the expression (e1 ∧ e2) is
unsatisfiable in the Σ-theory T .

Let (s, e1j , s1) ∈ ∆ where j ∈ {1, . . . ,m}, and let (s, e2k, s2) ∈ ∆ where k ∈
{1, . . . , n}, and s1 6= s2. Thus, each expression (e1j∧e2k) is unsatisfiable in the Σ-theory
T . By normalization we have (

∨m
j=1 e1j) and (

∨n
k=1 e2k), where (

∨m
j=1 e1j)∧(

∨n
k=1 e2k) ⇔

∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . , n}, (e1j∧e2k). If each expression (e1j∧e2k) is unsatisfiable
then (

∨m
j=1 e1j) ∧ (

∨n
k=1 e2k) is also unsatisfiable when the theory T is convex. Thus,

normalization preserves the determinism of an AMT . 2

Proposition 5.3 For normalized AMT if Ac v Ap is a concrete fair simulation rela-
tion then Ac ≤ Ap is an AMT fair simulation relation.

Proof.
Assume that Ac v Ap is a concrete fair simulation relation. By Definition 5.3 there is a
winning strategy for Ap, such that whenever a Policy select the moves of game defined
in Definition 5.1 according to strategy f then Policy wins the game. We construct a
concrete strategy f ′ from f .

By Definition 5.1 there are two cases where Policy wins the game:

• Finite game: If the Contract cannot move then Policy wins.
Contract moves by choosing a transition 〈si, e

c
i , si+1〉 ∈ ∆c

T with a valuation νi

represents αi and I(ei) such that (M, αi) |= ec
i , meaning ec

i is satisfiable. Contract
cannot move means that there exists no valuations and by Definition 5.4 in com-
pliance game Contract cannot move either.
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• Infinite game: There are infinitely many j such that tj ∈ F p or there are only
finitely many i such that si ∈ F c.
The concrete compliance game has infinitely many j such that tj ∈ F p when
Policy is able to respond infinitely often by a transition ∆p

T (tj , e
p
j , tj+1) where

for all valuations νj represents αj and I(ej) such that (M, αj) |= (ec
j → ep

j ),
meaning (ec

j → ep
j ) is valid. And by Definition 5.4 Policy can respond by a

transition
〈
tj , e

p
j , tj+1

〉
∈ ∆p

T with a valuation νj represents αj and I(ej) such

that (M, αj) |= ep
j .

Finitely many i occurs when there is some k such that ∀i > k, si /∈ F c, meaning
Contract moves by choosing a transition 〈si, e

c
i , si+1〉 ∈ ∆c

T with a valuation νi

represents αi and I(ei) such that (M, αi) |= ec
i and by Definition 5.4 Contract

can also move in concrete game.

It is clear that the constructed strategy f ′ is a winning strategy for Ap in compliance
game, hence by Definition 5.6 Ac ≤ Ap. 2

If automata are in normalized form then we have the following theorem from [33]:

Theorem 5.1 For normalized AMT Ac ≤ Ap is an AMT fair simulation if and only
if Ac v Ap is a concrete fair simulation.

Proof.
“⊇” By Proposition 5.1.
“⊆” If a normalization that preserves automata determinism (Lemma 5.2) is possible

(Lemma 5.1), then By Proposition 5.3.
2

6 Simulation Matching

In this section we describe a different algorithm for matching from Section 4 that uses the
concepts of language inclusion. Here we use fair simulation for matching and adapts the
Jurdziński’s algorithm on parity games [28]. The simulation algorithm Algorithm 5 takes
as input two automata AutC and AutP representing respectively the formal specification
of a contract and of a policy. A match is obtained when every APIs invoked by AutC

can also be invoked by AutP . In other words, every behavior of AutC is also a behavior
of AutP .

At the first step (line 1) a compliance game graph G = 〈V1, V0, E, l〉 is constructed
out of automata AutC and AutP . A compliance game graph can be formally defined as
follows:

Definition 6.1 (Compliance Graph) Given 〈Ec, T c,Σc, Sc, s0c,∆c
T , F c〉 and〈

Ep, T p,Σp, Sp, s0p,∆p
T , F p

〉
, construct a 〈V1, V0, E, l〉 as follows:

• V1= {v(sc,sp)|sc ∈ Sc, sp ∈ Sp}

• V0= {v(sc,sp,ec)|sc ∈ Sc, sp ∈ Sp,∃rc.sc ∈ ∆c
T (rc, ec)}

• E= {(v(sc,sp,ec), v(sc,tp))|tp ∈ ∆c
T (sp, ep) ∧ V ALID(ec → ep)} ∪

{(v(sc,sp), v(tc,sp,ec))|tc ∈ ∆c
T (sc, ec)}
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•

l(v) =


0 if v = v(sc,sp) and sp ∈ F p

1 if v = v(sc,sp) and sc ∈ F c and sp /∈ F p

2 otherwise

A compliance graph G is the tuple 〈V1, V0, E, l〉

Intuitively the compliance level l(v) is 0 when the simulating automaton accepts, 1
when the simulated automaton accepts (but the simulating automaton has not accepted
yet) and 2 when neither of them accepts. V1 consists of v(sc,sp) where AutC is on sc and
AutP is on sp and it is Contract turn to move. V0 consists of v(sc,sp,ec) where AutC is
on sc and AutP is on sp, Contract just made a move ec and it is Policy turn to move
such that V ALID(ec → ep) by querying to an oracle for the SMT solver.

Lemma 6.1 Let AutC =
〈
EAutC , T AutC ,ΣAutC , SAutC , s0AutC ,∆AutC

T , FAutC
〉

and AutP =〈
EAutP , T AutP ,ΣAutP , SAutP , s0AutP ,∆AutP

T , FAutP
〉

be AMT automata and let the the-

ory T = T AutC∪T AutP be decidable with an oracle for the SMT problem in the complexity
class C

1. |G = 〈V1, V0, E, l〉| constructed out of automata AutC and AutP by Definition 6.1
is in
O(|Sc| . |Sp| . |∆c

T |)C

2.
∣∣l−1(1)

∣∣ defined as in Definition 6.1 is in O(|Sc| . |Sp|)

Proof. We prove part 1 by computing the vertices and edges of 〈V1, V0, E, l〉

• |V1| is in O(|Sc| . |Sp|)

• |V0| is in O(|Sc| . |Sp| . |∆c
T |)

• |E| is in O(|Sc| . |Sp| . |∆c
T |)C because an edge exists from a node in V0 to a node

in V1 when V ALID(ec → ep) that needs a call to oracle for the SMT solver.

Thus, we can conclude that |G = 〈V1, V0, E, l〉| is in O(|Sc| . |Sp| . |∆c
T |)C

For part 2 vetices with l = (1) are contained in V1, thus
∣∣l−1(1)

∣∣ is in O(|Sc| . |Sp|) 2

A compliance game P (G, v0) on G starting at v0 ∈ V is played by two players
Policy (for AutP ) and Contract (for AutC). The game starts by placing pebble on v0.
At round i with pebble on vi, vi ∈ V0(V1), Policy (Contract resp.) plays and moves
the pebble to vi+1 such that (vi, vi+1) ∈ E. The player who cannot move loses. For
infinite play π = v0v1v2 . . ., the winner defined as the minimum compliance level that
occurs infinitely often, namely if the minimum compliance level is 0 or 2 then Policy
wins, otherwise Contract wins.

Next, we define a compliance measure µ : V →
{
x|x ≤ |l−1(1)|

}
∪ {∞}. µ ranges

from 0 to |l−1(1)| because at l(v)=1 the simulated automaton (contract) accepts but
the simulating automaton (policy) has not accepted yet. Thus, progressing the measure
has the analogy of computing the pre-fixed point where the Contract remains winning
and ∞ shows that the µ keeps progressing beyond this limit, meaning Contract wins
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the game. If l(v) = 1, then µ(v) > µ(w), where |l−1(1)|+1 = ∞. If l(v) = 2 or l(v) = 0,
then µ(v) ≥ µ(w).

The compliance measure for each node is the number of potential bad nodes, namely
nodes where the contract accepts but the policy does not, that it can reach. Thus,
µ(v) = ∞ means that there is an infinite path where policy cannot return to compliance
level 0. We slighty modify the Jurdziński progress measure [28] to compliance measure
where instead of a pair (0, x) we only use x. This is due to our observation of our
domain where we only have three priorities, namely l(v) ∈ 0, 1, 2 thus for ordering
(0, x) ≥l(v) (0, x′) the first component will not effect the ordering.

Jurdziński’s algorithm on parity games [28] defines that Policy has a winning strat-
egy from precisely the vertices v where after its lifting algorithm halts has µ(v) < ∞.
However, in contract-policy matching we are interested when there is a winning strategy
from the initial vertex v(s0c,s0p), depicted in Algorithm 5 as µ(v(s0c,s0p)) < ∞.

Proposition 6.1 Let G be a parity game constructed from two AMT automata AutC

and AutP constructed as in Definition 6.1. Policy has a winning strategy from the
initial vertex v(s0c,s0p) when Algorithm 5 halts with µ(v(s0c,s0p)) < ∞.

Proof. Correctness.
The correctness derived from Jurdziński’s algorithm on parity games [28]. Jurdziński
defined a parity game between two players and defining and even player (in our case
Policy) wins when the lowest priority occuring infinitely often in the play is even (in our
case Policy can return to compliance level 0 infinitely often). He proposed computing
the game using progress measure which is defined as MG = [1]× [n1 + 1] [1]× [n3 + 1]×
. . . × [1] × [nd−1 + 1], where d is the maximum priority in the game. In our setting,
we slighty modify the Jurdziński progress measure [28] to compliance measure where
instead of a pair (0, x) we only use x. As we have mentioned afore, this is due to our
observation of our domain where we only have 3 priorities, namely l(v) ∈ 0, 1, 2 thus for
ordering (0, x) ≥l(v) (0, x′) the first component will not effect the ordering.

Jurdziński reasoned that each vertex can only be lifted |MG| times. This lifting
procedure is implemented in Algorithm 5 presented as a loop where compliance measure
progressing until reaching a pre-fixed point (µ = µnew). He also defined that Even has
a winning strategy from precisely the vertices v where after its lifting algorithm halts
has µ(v) < ∞. However, in contract-policy matching we are interested when there is
a winning strategy from the initial vertex v(s0c,s0p). Thus, in Algorithm 5 Policy wins
when µ(v(s0c,s0p)) < ∞.

Termination. This parity game terminates because each vertex can only be lifted
|MG| times.

Complexity. Lifting procedure in Jurdziński [28] has time complexity O
(∑

v∈V d.od(v).|MG|)
)

=
O(d.m.|MG|) where d is the maximum priority in the game, m the number of edges,
od(v) the degree outgoing edges from v, and V is the set of vertices in the game graph.
He reasoned that for every vertex v with outgoing edges degree od(v) and the tuple of
progress measure has the length of maximum priority d can only be lifted |MG| times:
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|MG| =
∏bd/2c

i=1 (n2i−1+1) ≤
(

n
bd/2c

)bd/2c
, where d is the maximum priority in the game.

In our setting, d equals to two, because our compliance measure is in {0, 1, 2}. Thus,
|MG| = [n1 + 1] = |l−1(1)| + 1 ≤ |V1| and from Lemma 6.1 |V1| = O(|Sc| . |Sp|). In
addition, the number of edges |E| is in O(|Sc| . |Sp| . |∆c

T |)C (from Lemma 6.1). Thus,
the time complexity of Algorithm 5 is O(2. |E| .|MG|)

Lifting procedure in Jurdziński [28] has space complexity O(dn) where d is the maxi-
mum priority in the game and n the number of vertices in the game graph. He reasoned
that every vertex v in the game graph only needs to keep the compliance measure,
which is a d-tuple of integers. In our setting, d equals to two because our compli-
ance measure is in {0, 1, 2}, however our compliance measure only use an integer x
instead of a 2-tuple (0, x). As we have mentioned afore, this is due to our observation
of our domain where we only have 3 priorities, namely l(v) ∈ 0, 1, 2 thus for ordering
(0, x) ≥l(v) (0, x′) the first component will not effect the ordering. In addition, from
Lemma 6.1 |V1| = O(|Sc| . |Sp|) and |V0| is in O(|Sc| . |Sp| . |∆c

T |) where the total number
of vertices equals to V = |V1| + |V0|. Thus, the space complexity of Algorithm 5 is
O(|V |). 2

We are now in the position to state our contract-policy matching’s result using fair
simulation:

Proposition 6.2 Let the theory T be decidable with an oracle for the SMT problem in
the complexity class C then:

1. The contract-policy matching problem for AMT using fair simulation is decidable
in time O(2. |E| .|MG|).

2. The contract-policy matching problem for AMT using fair simulation is decidable
in space O(|V |).

Proof. The matching between a contract with a security policy problem can be re-
duced to a fair simulation between a contract with a security policy. A combination of
an algorithm based on Jurdziński’s algorithm on parity games [28] with a decision proce-
dure for SMT given in Algorithm 5 can solve this problem in time O(2. |E| .|MG|) and in
space O(|V |). The algorithm takes as input the midlet’s claim and the mobile platform’s
policy and constructs compliance game graph G = 〈V1, V0, E, l〉. The correctness and
complexity follow from Proposition 6.1. 2

7 Related Work and Conclusions

Security monitors were implemented in several systems, for example the PoET / PSLang
toolkit [13], that can enforce security policies whose transitions pattern-match event
symbols using regular expressions. Edit automata [3] are another model for achieving
this. Edit automata are implemented in the Polymer system [4] to dynamically compose
security automata. Most recently, the Mobile system [21] implements a linear decision
algorithm that verifies that annotated .NET binaries satisfy a class of policies, which
includes security automata and edit automata. All mentioned approaches focus on the
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relations between code and security claims on the code (which we call contracts); AMT
focuses between the security claims of the code and the desired security behavior for the
platform. Other works fit into in-lining and run-time monitoring in our workflow, while
AMT falls into matching a contract and policies.

Model-carrying code [43] and security-by-contract [11] proposed to augment mobile
code with a claim on its security behavior that can be matched against a mobile platform
policy before downloading the code. In [43] and in other companion papers only finite
automata have been proposed and they are too simple to express even the most basic
security requirement occurring in practice: a basic security policy such as only allows
connections starting with “https://” already generates an infinite automaton.

Automata Modulo Theory (AMT ) [32] enables systems formalization with finitely
many states but infinitely many transitions. As we already showed in [32], it is possible
to define very expressive (essentially infinite) policies that can capture realistic scenar-
ios, while keeping the task of matching computationally tractable. AMT maps the
problem into a variant of on-the-fly product and emptiness tests from automata theory,
without symbolic manipulation procedures of zones and regions nor finite representation
of equivalence classes. The tractability limit is essentially the complexity of the satis-
fiability procedure for the theories, called as subroutines. The prototype for matching
policies with security claims of mobile applications using AMT appeared in [6].

Infinite numbers of transitions in security policies, by labeling each transition with a
computable predicate instead of an atomic symbol, have been studied in [40]. Security
automata á la Schneider can also be mapped to a particular form of AMT (with all
accepting states and an error absorbing state) for which particular optimizations are
possible. Security automata specify transitions as a function of the input symbols that
can be the entire system state. However, AMT dif and only ifers from security automata
in transitions which are environmental parameters rather than system states.

A theory of symbolic bi-simulation for the π-calculus was proposed in [22] which
has the advantage of expressing the operational semantics of many value-passing pro-
cesses in terms of finite symbolic transition graphs despite the infinite underlying labeled
transitions graph.

A new view of fair simulation by extending the local definition of simulation to ac-
count for fairness [23] proposed the notion of simulation game. A system fairly simulates
another system if and only if in the simulation game, there is a strategy that matches
with each fair computation of the simulated system a fair computation of the simulating
system. Efficient algorithms for computing a variety of simulation relations on the state
space of a Büchi automaton were proposed in [14] using parity game framework, based
on solving parity games using small progress measures as appeared in [28]. An algorithm
based on the notion of fair simulation was presented in [18] applied for the minimization
of Büchi automata.

7.1 Conclusions

In order to capture realistic scenarios with potentially infinite transitions (e.g. “only
connections to urls starting with https”) we have proposed to represent those policies
with the notion of Automata Modulo Theory (AMT ), an extension of Büchi Automata
(BA), with edges labeled by expressions in a decidable theory and defined the theory
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and algorithm for extending simulation results to AMT .
Matching using AMT language inclusion as in [32] has a limitation in the structure

of the policy automaton (only deterministic automaton). The constraint arises from the
AMT complementation. As BA complementation, the nondeterminic complementation
is complicated and demonstrates exponential blow-up in the state space [8]. Safra in
[39] gives a better lower bound (2O(n log n)) for nondeterministic BA complementation,
however it is still exponential(see [49]).

The determinism constraint complies to our domain of interest because the security
policies in our application domain are naturally deterministic, as the platform owner
should have a clear idea on what to allow or disallow. Furthermore, to cope with non-
deterministic AMT , we can use the approach as in [33].

AMT makes it possible to match the mobile’s policy and the midlet’s contract
by mapping the problem into a variant of the on-the-fly product and emptiness test
from automata theory, without symbolic manipulation procedures of zones and regions
nor finite representation of equivalence classes. The tractability limit is essentially the
complexity of the satisfiability procedure for the theories, called as subroutines, where
most practical policies require only polynomial time decision procedures.

A known problem with security automata and infinity yet to be addressed is the
encoding of policies such as “we must allow certain strings that we have seen in the
past”. If the set of strings is unbounded, then it is difficult (if not impossible) to
encode it with finite states. Finding a suitable approximation is the subject of current
investigations.

In our current implementation of the matcher that runs on a mobile phone, security
states of the automata are represented by variables over finite domains e.g. smsMes-
sagesSent ranges between 0 to 5. [2, 6]. A possible solution could be to extend the
work on finite-memory automata [29] by Kaminski and Francez or other works [36] that
studied automata and logics on strings over infinite alphabets.

An approach to address scalability (if our smart-phone must cope with the webap-
plications of its internal web server) is to give up soundness of the matching and use
algorithms for simulation and testing. A challenge to be addressed is how to measure
the coverage of approximate matching. Which value should give a reasonable assurance
about security? Should it be an absolute value? Should it be in proportion of the
number of possible executions? In proportion to the likely executions? An interesting
approach could be to recall to life a neglected section on model checking by Courcoubetis
et al [10] in which they traded off a better performance of the algorithm in change for
the possibility of erring with a small probability.

A second approach is to use the contract as a model of the application in order to
generate security tests by applying techniques from Model Based Testing [50]. Losing
soundness is a major disadvantage: an application may pass all the generated tests and
still turn out to violate the contract once fielded. However, the advantages are also
important: no annotations on the application source code are needed, and the tests
generated from the contract can be easily injected in the standard platform testing
phase, thus making this approach very practical. A challenge to be addressed here is
how to measure the coverage of such security tests. When are there enough tests to give
a reasonable assurance about security?

Another interesting problem for future work is a scenario when the claimed security
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contract is missing (as is the case for current MIDP applications). In that case, based on
the platform security policy, the “claimed” security contract could be inferred by static
analysis as an approximation automaton. If such an approximation is matched, then
monitoring the code becomes unnecessary. The feasibility of this approach depends on
the cost of inferring approximation automata on-the-fly.
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(a) Automata Intersection without Optimization

(b) Automata Intersection with Optimization
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= valid contract transition
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= invalid contract transition
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= invalid policy transition

shaded areas are accepting states

(c) Abbreviations

Figure 6: Automata Intersection
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Algorithm 1 check safety(s) Procedure
Input: state s;
1: map(s) := in current path;
2: for all ((s, e, t) ∈ ∆) do
3: if (DecisionProcedure(e) = SAT ) then
4: if (map(t) = in current path ∧ ((s ∈ F) ∨ (t ∈ F))) then
5: report non-empty;
6: else if (map(t) = safe) then
7: check safety(t);
8: if (s ∈ F ) then
9: check availability(s);

10: map(s) := availability checked;
11: else
12: map(s) := safety checked;

Algorithm 2 check availability(s) Procedure
Input: state s;
1: for all ((s, e, t) ∈ ∆) do
2: if (DecisionProcedure(e) = SAT ) then
3: if (map(t) = in current path) then
4: report non-empty;
5: else if (map(t) = safety checked) then
6: map(t) := availability checked
7: check availability(t);
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Algorithm 3 check safety(sC, sP, x) Procedure

Input: state sC, state sP, marker x;
1: map(sC, sP, x) := in current path;
2: for all ((sC, eC, tC) ∈ ∆C) do
3: for all ((sP, eP, tP) ∈ ∆P) do
4: if (DecisionProcedure(eC ∧ eP) = SAT ) then
5: y := condition(sC, sP, x, SC, SP)
6: if (map(tC, tP, y) = in current path ∧ ((sC ∈ SC ∧ sP = errP ∧ x = 1) ∨ (tC ∈

SC ∧ tP = errP ∧ y = 1))) then
7: report policy violation;
8: else if (map(tC, tP, y) = in current path ∧ ((sC ∈ SC ∧ sP ∈ (SP\{errP}) ∧ x =

1) ∨ (tC ∈ SC ∧ tP ∈ (SP\{errP}) ∧ y = 1))) then
9: report availability violation;

10: else if (map(tC, tP, y) = safe) then
11: check safety(tC, tP, y);
12: if (sC ∈ SC ∧ sP ∈ SP ∧ x = 1) then
13: check availability(sC, sP, x);
14: map(sC, sP, x) := availability checked;
15: else
16: map(sC, sP, x) := safety checked;

Algorithm 4 check availability(sC, sP, x) Procedure

Input: state sC, state sP, marker x;
1: for all ((sC, eC, tC) ∈ ∆C) do
2: for all ((sP, eP, tP) ∈ ∆P) do
3: if (DecisionProcedure(eC ∧ eP) = SAT ) then
4: y := condition(sC, sP, x, SC, SP)
5: if (map(tC, tP, y) = in current path) then
6: if (tP = errP) then
7: report policy violation;
8: else
9: report availability violation;

10: else if (map(tC, tP, y) = safety checked) then
11: map(tC, tP, y) := availability checked

12: check availability(tC, tP, y);

37



2010-01-08

s1

(Joc(url) ∧ p(url)=”http”)(Joc(url) ∧ p(url)=”https”)

s0

(a) Splitting Edges

s0

s1

(Joc(url) ∧ p(url)=”https”) ∨
(Joc(url) ∧ p(url)=”http”)

2010-01-08

(b) Disjuncting Expressions

Joc(”http://a2ω”)

Joc(”https://a11”)

Joc(”https://a1ω”)

Joc(”http://a21”)
s0

s1

2010-01-08

(c) Concrete Automaton

e11
.
= (Joc(url) ∧ p(url) = “https”)

e12
.
= (Joc(url) ∧ p(url) = “http”)

e2
.
= (Joc(url) ∧ p(url) = “https”)

∨(Joc(url) ∧ p(url) = “http”)

(d) Abbreviations for expressions
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Figure 8: Normalization of an automaton
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Algorithm 5 Simulation Algorithm

Input: two AMT automata AutC and AutP

1: Construct compliance game graph G = 〈V1, V0, E, l〉
2: for all v ∈ V do
3: µ(v) := µnew(v) := 0
4: repeat
5: µ := µnew

6: for all v ∈ V0 do

7: µnew(v) :=
{
∞ if {µ(w)|(v, w)} = ∅
min {µ(w)|(v, w)} otherwise

8: for all v ∈ V1 do
9: maxv := max {µ(w)|(v, w) ∈ E}

10: µnew(v) :=


∞ if maxv = ∞
0 if l(v) = 0
maxv + 1 if l(v) = 1
maxv if l(v) = 2

11: until µ = µnew

12: if µ(v(s0c,s0p)) < ∞ then
13: Simulation exists
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