
Simulating Midlet’s Security Claims with Automata Modulo
Theory ∗

Fabio Massacci Ida Siahaan

DISI, Universit́a di Trento, - Italy

name.surname@unitn.it

Abstract
Model-carrying code and security-by-contract have pro-
posed to augment mobile code with a claim on its security
behavior that could be matched against a mobile platform
policy before downloading the code. In order to capture real-
istic scenarios with potentially infinite transitions (e.g. ”only
connections to urls starting with https”) we have proposed to
represent those policies with the notion ofAutomata Mod-
ulo Theory(AMT), an extension of B̈uchi Automata (BA),
with edges labelled by expressions ina decidable theory.

Our objective is the run-time matching of the mobile’s
platform policy against the midlet’s security claims ex-
pressed asAMT . To this extent the use of on-the-fly prod-
uct and emptiness test from automata theory may not be
effective. In this paper we present an algorithm extending
fair simulation between B̈uchi automata that can be more
efficiently implemented.

Keywords Automata, Security Policy

1. Introduction
Pervasive services (Bacon 2002) envisions a nomadic user
traversing a variety of environments and seamlessly and con-
stantly receiving services from other portables, handhelds,
embedded or wearable computers. The nomadic user does
not only invoke services in push or pull mode but also down-
loadnewapplications that are locally available. Theseperva-
sive client downloadswill appear because service providers
will try to exploit the computational power of the nomadic
devices to make a better use of the services available in the
environment (Dragoni et al. 2007b).

∗Research partly supported by the Projects EU-FP6-IST-STREP-S3MS,
EU-FP6-IP-SENSORIA, and EU-FP7-IP-MASTER

[Copyright notice will appear here once ’preprint’ option is removed.]

Managing security of services in this scenario is a major
challenge as the current security model adopted for mobile
phones (the JAVA MIDP 2.0) is the exact negation of this
business idea: mobile code is run if its origin is trusted (i.e.
digitally signed by a trusted party). The level of trust of
determines the privileges of the code and untrusted code is
forbidden to have any interaction with the environment.

Even if we accept the signature, we still have another
problem: there is no semantics attached to the signature.
This is a problem for both code producers and consumers.
From the point of view of mobile code consumers they
must essentially accept the code as-is without the possibility
of making informed decisions, while from code producer
they produce code with unbounded liability. They cannot
declare which security actions the code will do, because by
signing the code they essentially declare that they did it.
Consequently, injecting an application in the mobile market
is a time consuming operation as developers must convince
the operators that their code is not harmful.

We can apply asecurity reference monitorwhich ob-
serves execution of a target system and halts that system
whenever it is about to violate some security policy of con-
cern (Schneider et al. 2001; Erlingsson 2004). While secu-
rity monitors remains the bottom-line action, we could be
more effective if we start asking some questions about the
code.

The first question is whether the code satisfies some
pre-defined policy. The Bytecode verifier in Java does ex-
actly this first preliminary check. More advanced techniques
based on Proof-Carrying Code (Necula and Lee 1996; Nec-
ula 1997) extend the scope of what can be actually checked.
One of the limitation of the approaches based on language-
based security is that the policy is tied to the programming
language, therefore it is difficult to customize the policy on
a per-user base.

We need to lift the question to a more flexible one: does
the code satisfy a user-defined policy? In general case this
is equivalent to arbitrary software verification which is not
practical for pervasive downloads. However the idea behind
model-carrying code (Sekar et al. 2003) and security by
contract (Dragoni et al. 2007a) is that code should come

1 2009/5/21

accompanied with a ”digest” (a security model or a security
contract) that represents its essential security behavior. Then
one only needs to check the latter against the user predefined
security policies.

The interesting problem which is the focus of our re-
search it matching the security claims of the code with
the security desires of the platform. Matching can be done
off-line (e.g. a developer checking its claims on a variety
of Vodafone’s default policies) or on-line (e.g. a user who
downloads a midlet and runs it).

In this paper we build on the concept ofAutomata Modulo
Theory(AMT) proposed in (Massacci and Siahaan. 2007).
AMT generalize the finite state automata of model-carrying
code (Sekar et al. 2003) and extends Büchi Automata (BA).
It is suitable for formalizing systems with finitely many
states but infinitely many transitions by leveraging on the
power of satisfiability-modulo-theory (SMT for short) deci-
sion procedures.AMT enables us to define very expres-
sive and customizable policies as a model forsecurity-by-
contract as in (Dragoni et al. 2007a) and model-carrying
code (Venkatakrishnan et al. 2002) by capturing the infinite
transition into finite transitions labeled as expressions in de-
fined theories.

Since our goal is to provide this midlet-contract vs
platform-policy matching on-the-fly (during the actual down-
load of the midlet) issues like small memory footprint, and
effective computations play a key role. In (Massacci and
Siahaan. 2007) we showed that the tractability limit is the
complexity of the satisfiability procedure for the underly-
ing theories used to describe labels: we use NLOGSPACE
and linear time algorithms for the automata theoretic part
(Holzmann 2004) with oracle queries to a decision proce-
dure solver1.

This however requires to complement the policy of
the mobile platform and if we assume a general non-
deterministic automaton this complementation might lead
to an exponential blow-up. A second problem is that in this
way we need two representations of the policy: a direct rep-
resentation of the policy as an automata that we can use
for run-time monitor (Vanoverberghe et al. 2007) and the
complemented representation that we use for matching.

1.1 The contribution of this paper

We propose to use the notion of simulation for matching the
security policy of the platform against the security claims of
the midlet. Simulation is stronger than language inclusion
(i.e. less midlets will obtain a green light) but they coincide
for deterministic policies.

In the next section we present an overview of security-
by-contract framework providing a description of the over-

1 In a nutshellAMT makes reasoning about infinite state systems possible
without symbolic manipulation procedures of zones and regions or finite
representation by equivalence classes (Henzinger et al. 2005) which would
not be suitable for our intended application i.e. checking security claims
before a pervasive download on a mobile phone.

all life-cycle of mobile code in this setting and we also de-
scribe mobile applications security requirements and con-
tract specification as motivations forAMT . Then, we in-
troduceAMT and the corresponding automata operation
(§3) and some specific issues to be considered inAMT . We
describe simulation, symbolic simulation and fair simulation
for AMT (§4). Finally, we present algorithm for lifting fi-
nite state tools toAMT simulation (§5).

2. Intuitions and Motivations
To understand better the motivation behind this work we
consider how a midlet-lifecycle would be in the security-by-
contract (SxC for short) paradigm (Dragoni et al. 2007a).

After, or better during the application development, the
mobile code developers are responsible to provide a descrip-
tion of the security behavior that their code finally provides.
Such a code can then undergo a formal certification process
which can be done by the developer’s own company, the mo-
bile operator or any other third party for which the applica-
tion has been developed. By using suitable techniques such
as static analysis or monitor in-lining or proof carrying code
the code is certified to comply with the developer’s contract.
Subsequently the code and the security claims are sealed to-
gether with a digital signature and shipped for deployment
as shown on Fig.1.

EXAMPLE 2.1. The Personal Information Management (PIM)
system on the phone has the ability to manage appoint-
ment books, contact directories, etc. in electronic form.
A privacy conscious user may restrict network connectiv-
ity by stating a policy rule: “After PIM was opened no
connections are allowed”. This contract permits executing
Connector.open() method only ifPIM.openPIMList()
method was never called before.

REMARK 2.1. We use the wordpolicy for a platform se-
curity policy. We use the wordcontractfor security claims
made by a midlet.

At deployment time the target platform will follow the
workflow that we have sketched in Fig.2 (see also (Vanover-
berghe et al. 2007). At first it checks that the evidence is
correct. Such evidence could be a trusted signature as in
standard mobile applications (Yee 1999). An alternative ev-
idence could be a proof that the code satisfies the contract
(and then one could use PCC techniques to check it (Necula
1997).

Once we have evidence that the contract is trustworthy
the platform will check that the claimed policy is actually
compliant with the policy that our platform would like to be
enforced. If this si the case, then the application can be run
without further ado Fig.2. This might be a significant saving
from in-lining a security monitor.

EXAMPLE 2.2. The policy of an operator may only require
that “After PIM was accessed only secure connections can

2 2009/5/21

Figure 1. Mobile Code Components with Security-by-Contract

Figure 2. SxC Workflow

be opened”. This policy permits executing
Connector.open(string url) method only if the started
connection is a secure one i.e.url starts with ”https://”.

Matching should succeed if and only if by executing an
application on the platform every behavior of the application
that satisfies its contract also satisfies the platform’s policy. If
matching fails but we still want to run the application, then
we use either a security monitor in-lining into the code or
run-time enforcement of the policy by running the applica-
tion in parallel with a reference monitor that intercepts all
security relevant actions. However with a constrained device
where CPU cycles means also battery consumption, we need
to minimize the run-time overheads as much as possible.

Typically the policy will cover a number of issues such as
file access, network connectivity, access to critical resources

or secure storage. A single contract can be seen as a list
of disjoint claims (for instance rules for connections). An
example of rule for sessions regarding PIM and connection
is shown in Ex. 2.1, it could be one of the rules of a contract.
Another example is rule for a the methods invocation of
a Java object as shown in Ex. 2.2. This example can be
one of the rules of a policy. Both examples describe safety
properties, which are the common properties we want to
verify.

Although most properties are safety properties, liveness
properties also exist as shown in Ex. 2.3.

EXAMPLE 2.3. If the application should use all the per-
missions it requests then for each permissionp at least one
reachable invocation of a method permitted byp must ex-
ist in the code. For example ifp is io.Connector.http

3 2009/5/21

then a call to methodConnector.open() must exist in
the code and theurl argument must start with ”http”. Ifp is
io.Connector.https then a call to methodConnector.open()
must exist in the code and theurl argument must start with
”https” and so on for other constraints e.g. permission for
sending SMS.

The security behaviors provided by the contract and de-
sired by the policy can be represented as automata where
transitions corresponds to invocation of APIs as suggested
by Erlingsson (Erlingsson 2004, p.59) and Sekar et al. (Sekar
et al. 2003). Then the operation of matching the midlet’s
claim with platform policy can be mapped into classical
problems in automata theory.

One possible alternative islanguage inclusion: given two
automata AutC and AutP representing respectively the for-
mal specification of a contract and of a policy, we have a
match when the execution traces of the midlet described by
AutC is a subset of the acceptable traces for AutP . To check
this property we can complement the automaton of the pol-
icy, thus obtaining the set of traces disallowed by the policy
and check its intersection with the traces of the contract. If
the intersection is not empty, any behavior in it corresponds
to a security violation. We have pursued this avenue in (Mas-
sacci and Siahaan. 2007).

The other alternative is the notion ofsimulation: we have
a match when every APIs invoked by AutC can also be
invoked by AutP . In other words, every behavior of AutC

is also behavior of AutP . Simulation is usually a stronger
notion than language inclusion as it requires that the policy
allows the actions of the midlet’s contract in a ”step-by-step”
fashion, whereas language inclusion looks at an execution
trace as a whole.

While this idea of the security-digest is almost a decade
old (Sekar et al. 2003; Erlingsson 2004) the practical real-
ization has been hindered by a significant technical hurdle:
we cannot use the naive encoding into automata for practical
policies. Even the basic policies in Ex. 2.1 and Ex. 2.2 will
lead to automata with infinitely many transitions.

Fig.3(a) represents an automaton for Ex. 2.2. Starting
from statep0, we stay in this state while PIM is not ac-
cessed (jop). As PIM is accessed we move to statep1 and
we stay in statep1 only if the started connectionConnec-
tor.open(string url) method is a secure one i.e.url starts with
“https://” or we keep accessing PIM (jop). We enter stateep

if we start an unsecure connectionConnector.open(string
url) e.g. url starts with “http://”or “sms://” etc. These ex-
amples are from a Java VM. Since we do not consider
useful to invent our own names for API calls we use the
javax.microedition APIs (though a bit verbose) for the
notation that is shown in Fig.3(b).

3. Automata Modulo Theory
The theory ofAutomata Modulo Theory(AMT for short) is
a combination of the formal notion of B̈uchi Automata (BA)
with the notion of Satisfiability Modulo Theories (SMT).

The intuition is that we represent a security policy as BA
automaton where edges are not labeled by atomic actions
but rather by expressions in a suitable theory. We prefer
to use BA, rather than classical security automata, as there
are some liveness properties which have to be verified, e.g.
Ex 2.3.

The real scientific trick is the use of satisfiability modulo
theory for reasoning about allowed APIs.

EXAMPLE 3.1. When comparing a policy asking that
protocol(url)=‘‘https’’ and port(url)=‘‘8080’’

with a contract claiming to use only connections where
protocol(url)=’’https’’ or protocol(url)=‘‘http’’
we do not need to extract a protocol from theurl. It is
enough that we deal withprotocol andport as uninterpreted
functions and apply the theory of equality and uninterpreted
functionsEUF .

Return to our examples Ex. 2.1 and Ex. 2.2. Figure3(d)
shows an automaton modulo theory corresponding to policy
of Ex. 2.2 and the automaton with infinitely many transitions
from Fig.3(a). Fig. 3(c) corresponds to the contract from
Ex. 2.1. The notation is the same from Fig.3(b).

EXAMPLE 3.2. We can use the quantifier-free fragment of
Linear Arithmetic over the integersLA(Z) when the actions
of the policy or the contract sets limits on resources such as
downloading a file of at most 50KB as opposed to to 100KB.

Some theories of interest are the theory of difference logic
DL the theoryEUF of equality and uninterpreted functions,
LA(Q) and the integersLA(Z). As in (Bozzano et al. 2005)
we are particularly interested in the combination of two or
more simpler theories. While this is a not complete list, our
only requirement for a theoryT is that theT -satisfiability
of conjunctions of ground literals is decidable by aT -solver
(Nieuwenhuis et al. 2006).

We assume the usual notion of signatureΣ with variables
V = {x, y, z, v, ...}, function symbolsF = {c, d, f, g, ...}
and predicate symbolsP = {p, q, ...}. Terms and formulae
are defined in the usual way over the boolean connectives
¬,∨,∧. A first-orderΣ-structureA consists of a setA of el-
ements asdomain, a mapping of eachn-ary function symbol
f ∈ Σ to a total functionfA : An → A, a mapping of each
n-ary predicate symbolp ∈ Σ to a relationpA ⊆ An.

Let A denote a structure,φ a formula, andT a theory,
all of signatureΣ. We use the notation(A, α) |= φ when
φ evaluates to true inA under the variable assignmentα :
V → A. We say thatφ is satisfiable inA if there exists
someα such that(A, α) |= φ. We denote byE as a set of
formulae.

DEFINITION 3.1 (Automaton Modulo Theory).A tupleA =
〈E,S, q0,∆T , F 〉 whereE is a set of formulae in the lan-
guage of the theoryT , S is a finite set of states,q0 ∈ S is
the initial state,∆T : S × E → 2S is labeled transition
function, andF ⊆ S is a set of accepting states.

4 2009/5/21

(a) Infinite Transitions Security Policies

joc(vjoc,1)
.
= io.Connector.open(url)

jop
.
= pim.PIM.openPIMList(. . .)

q
.
= io.Connector.type

is protocol type e.g. “http”

pr(q) = type
.
= permissionqis for protocoltype

p(url) = type
.
= url.startsWith(type)

(b) Abbreviations for Java APIs

(c) AMT rule of a contract from Ex. 2.1 (d) AMT rule of a policy from Ex. 2.2

Figure 3. AMT Examples

We say that(s, e, t) ∈ ∆T whent ∈ ∆T (s, e). The in-
tuition is that variables represent parameters over invoked
methods. For example a guardx < 3 wherex is some exter-
nal parameter of a Java method means that this edge will be
taken each time the Java method is invoked with a value of
x smaller than3. This is different from traditional state vari-
ables in classical hybrid automata for state variablex where
the ”same” guard means that after taking the transitionx
must be smaller than 3.

The runs of the system are the traces of actual values of
invoked APIs, represented by assignments.

DEFINITION 3.2 (AMT concrete run).LetA = 〈E,S, q0,∆T , F 〉
be an automaton modulo theoryT . A concrete run modulo
T of A is a sequence of states alternating with assignments
γ = 〈s0α0s1α1s2α2, . . .〉, such that:

1. s0 = q0

2. there exists expressionsei ∈ E such that si+1 ∈
∆T (si, ei) and(A, αi) |= ei holds for all i ∈ [0 . . . |w|]
(resp.i ∈ N).

The trace associated withγ is sequence of assignments
w = 〈α0, α1, α2, . . .〉. A finite run is accepting ifs|w| goes
through some accepting states. An infinite run is accepting if
the automaton goes through some accepting states infinitely
often as in BA.

We use definition of run as in (Etessami et al. 2005) which
is slightly different from the one we use in (Massacci and
Siahaan. 2007), where we use only states, in order to accom-
modate simulation.

The notion of symbolic run is what would correspond to
the traditional notion of run in automata.

DEFINITION 3.3 (AMT symbolic run).LetA = 〈E,S, q0,∆T , F 〉
be an automaton modulo theoryT . A symbolic run modulo
T of A is a sequence of states alternating with expressions
σ = 〈s0e0s1e1s2e2, . . .〉, such that:

1. s0 = q0

2. 〈si, ei, si+1〉 ∈ ∆T andA, αj |= ei holds for somej

The trace associated withσ is sequence of assignmentsw =
〈e0, e1, e2, . . .〉.

5 2009/5/21

REMARK 3.1. The condition thatA, αj |= ei holds for
somej implies that every expression in the trace must be sat-
isfiable and is necessary to guarantee that symbolic traces
correspond to at at least one real, concrete execution.

In order to understand better the semantics of an automa-
ton modulo theory we can consider the corresponding con-
crete automaton which is constructed by replacing each tran-
sition labeled with an expression from the theory with the in-
finitely many transitions labeled by the corresponding satis-
fying assignments. Automata that are different at the theory
level might have the same concrete representation.

For example the two automata modulo theory from
Fig.4(a) have the same concrete model Fig.4(b).

Such equivalence is obvious because at the concrete level
if the assignmentα1i is such that(A, α1i) |= joc&protocol(url) =
“http′′ or (A, α2i) |= joc&protocol(url) = “https′′

then clearly(A, αi) |= joc ∧ (protocol(url) = “http′′ ∨
protocol(url) = “https′′). In other words,∨ has the max-
imal model and thus in the transitions corresponding to the
disjunction in the theory it is the union of all assignments in
the concrete automaton.

4. Simulation
At first we introduce the notion of simulation at the concrete
level, among assignments i.e. API calls and then we give
the notion of symbolic simulation as in (Hennessy and Lin
1995). The actual notion of fair simulation is adapted from
(Etessami et al. 2005; Gurumurthy et al. 2002; Henzinger
et al. 1997).

In the sequel we will uses to denote states of the applica-
tion’s contract andt to denote state of the platform’s policy.

DEFINITION 4.1 (Concrete Fair Compliance Game).LetAc

andAp beAMT with initial statess0 and t0 respectively.
A Concrete Fair Compliance GameGC

Ac,Ap(s0, t0) is played
by two players,Contract andPolicy, in rounds.

1. In the first roundContract is on the initial states0 ∈ Sc

andPolicy is on the initial statet0 ∈ Sp.
2. Contract chooses a transition〈si, e

c
i , si+1〉 ∈ ∆c

T and
an assignmentαi such that(A, αi) |= ec

i) and moves to
si+1.

3. Policy responds by a transition〈ti, ep
i , ti+1〉 ∈ ∆p

T
such that(A, αi) |= ep

i) and moves toti+1.

The winner of the game is determined by the following
rules:

• If theContract cannot move thenPolicy wins.
• If thePolicy cannot move thenContract wins.
• Otherwise there are two infinite concrete runs

→
s= 〈s0α0s1α1s2α2, . . .〉

and
→
t = 〈t0α0t1α1t2α2, . . .〉 respectively ofAc andAp.

If
→
s= 〈s0α0s1α1s2α2, . . .〉 is an accepting concrete run

for Ac and
→
t = 〈t0α0t1α1t2α2, . . .〉 is not an accepting

concrete run forAp thenContract wins. In other cases,
Policy wins.

Intuitively in the compliance game, theContract tries to
make a concrete move and thePolicy follows accordingly
to show that theContract move is allowed. If thePolicy
cannot move thenContract is not compliant: there is a
move that thePolicy could not do, i.e. that particular action
is a violation.

EXAMPLE 4.1. In a game between theContract from
Fig.3(c) and thePolicy from Fig.3(d), theContract can
choose to invoke the url “http://www.google.com” and the
Policy can respond by selecting the appropriate expression
which is also satisfied by the same assignment.

A more complex situation presents itself in the infi-
nite case. Infinite runs correspond to liveness properties,
e.g. something good happens infinitely often, for example
Ex. 2.3. Therefore, theContract only wins (i.e. it breaks
thePolicy) when according to its view of the world there
are infinitely many good things but not for thePolicywhich
after some initial good things is trapped in an endless se-
quence of unsatisfactory states.

EXAMPLE 4.2. In a game between theContract andPolicy
from Ex.2.3, theContract can choose to invoke the url
“https://sourceforge.net” in a certain step after in some pre-
vious steps it invokes permissionio.Connector.https.
The Policy can respond by selecting the appropriate ex-
pression which is also satisfied by the same assignment,
which is possible in the game ifPolicy has requested per-
missionio.Connector.https in some previous steps.

Now we can introduce the notion ofconcrete strategy
for Policy in gameGC

Ac,Ap(s0, t0) which is just a partial
function which determines the next move ofPolicy given
the history of the concrete game up to a certain point.

DEFINITION 4.2 (Concrete Strategy).A partial function
f : Sc × (Sp × α × Sc)∗ → Sp is a concrete strategyif
for any sequence〈s0α0s1α1 . . . siαisi+1〉 which is a valid
concrete run forAc

• f(s0) = t0
• f(〈s0t0α0s1 . . . sitiαisi+1〉) = ti+1 such that〈ti, ep

i , ti+1〉 ∈
∆p
T and(A, αi) |= ep

i .

A concrete strategyf of the game is aPolicy win-
ning strategyif and only if whenever aPolicy select the
moves of game defined in Definition 4.1 according tof then
Policy wins the game.

DEFINITION 4.3 (AMT Concrete Fair Simulation Relation).
An automatonAp concretely fair simulatesan automatonAc

if and only if there is a concrete winning strategy forAp we
denote asAc v Ap. We also say thatAc complies withAp.

We have now the machinery to generalize the notion of
simulation to symbolic level, among expressions.

6 2009/5/21

(a) Splitting Edges (b) Disjuncting Expressions

Figure 4. Symbolic vs Concrete Automaton

DEFINITION 4.4 (AMT Fair Compliance Game).A Fair
Compliance GameGAc,Ap(s0, t0) is played by two players,
Contract andPolicy, in rounds.

1. In the first roundContract is on the initial states0 ∈ Sc

andPolicy is on the initial statet0 ∈ Sp.
2. Contract chooses a transition〈si, e

c
i , si+1〉 ∈ ∆c

T such
thatec

i is satisfiable and moves tosi+1.
3. Policy responds by a transition∆p

T (ti, e
p
i , ti+1) such

thatec
i → ep

i is valid and moves toti+1.

The winner of the game is determined by the rules as in
Definition 4.1 with the difference in run where we define run
over expressions instead of assignments.

The intuition is similar to concrete game:Contract tries
to make a symbolic move and thePolicy follows suit in
order to show that theContract move is allowed. If the
Policy cannot move this means that theContract may
not be compliant because there is a symbolic move that the
Policy could not do. However, as we shall see this might
not imply that at the concrete level theContract is really
non-compliant.

DEFINITION 4.5 (Strategy).A partial functionf : Sc ×
(Sp × E × Sc)∗ → Sp is a symbolic strategyiff for any
sequence〈s0e

c
0s1e

c
1 . . . sie

c
isi+1〉 which is a valid symbolic

run for Ac

• f(s0) = t0
• f(〈s0t0e

c
0s1t1e

c
1 . . . sitie

c
isi+1〉) = ti+1 such that∆p

T (ti, e
p
i , ti+1)

andec
i → ep

i is valid.

A strategyf of the game is aPolicy winning strategy
if and only if whenever aPolicy select the moves of game

defined in Definition 4.4 according tof thenPolicy wins
the game.

DEFINITION 4.6 (AMT Fair Simulation Relation).An au-
tomatonAp fair simulatesan automatonAc if and only if
there is a winning strategy forAp we denote asAc ≤ Ap.
We also say thatAc complies withAp.

THEOREM 4.1. If Ac ≤ Ap is anAMT fair simulation
relation thenAc v Ap is a concrete fair simulation relation.

Proof. We sketch a proof of Prop. 4.1 by showing the cor-
rectness of our construction. In order to show the correct-
ness of our construction, we first assumeAc ≤ Ap is an
AMT fair simulation relation. By Definition 4.6 there is a
winning strategy forAp, such that whenever aPolicy se-
lect the moves of game defined in Definition 4.4 according
to strategyf thenPolicy wins the game. By Definition 4.4
there are two cases wherePolicy wins the game:

• Finite game: If theContract cannot move thenPolicy
wins.
Contractmoves by choosing a transition〈si, e

c
i , si+1〉 ∈

∆c
T such thatec

i is satisfiable.Contract cannot move
means that there exists no assignments and by Defini-
tion 4.1 in concrete gameContract cannot move either.

• Infinite game: There are infinitely manyj such thattj ∈
F p or there are only finitely manyi such thatsi ∈ F c.
The compliance game has infinitely manyj such that
tj ∈ F p whenPolicy is able to respond infinitely often
by a transition∆p

T (tj , e
p
j , tj+1) such thatec

j → ep
j is

valid, meaning for allαj , (A, αj) |= ec
j → ep

j and by
Definition 4.1 with(A, αj) |= ep

j), Policy can respond
by a transition

〈
tj , e

p
j , tj+1

〉
∈ ∆p

T . Furthermore, finitely

7 2009/5/21

manyi such thatsi ∈ F c occurs when there is somek
such that∀i > k, si /∈ F c, meaningContract moves
by choosing a transition〈si, e

c
i , si+1〉 ∈ ∆c

T such thatec
i

is satisfiable, i.e. there existαi where(A, αi) |= ec
i) and

by Definition 4.1Contract can also move in concrete
game.

The concrete strategyf ′ constructed is a winning strategy
for Ap in concrete compliance game, hence by Definition 4.3
Ac v Ap. �

In contrast to the simulation notions of (Hennessy and Lin
1995) the converse of Theorem 4.1 does not hold in general.

PROPOSITION4.1.AMT fair simulation is stronger than
AMT language inclusion.

The pair of automata in Figure4(b) and Fig.4(a) is a sim-
ple counter example. We can see this from concrete au-
tomata in Fig.4(a) and Fig.4(b) where both are the same
thus having not just simulation but also bi-simulation. How-
ever, theAMT on Fig.4(a) cannot simulate theAMT on
Fig.4(b). The second consequence of this maximal model
is that inAMT simulation is stronger than language in-
clusion. For example if we have policy represented as
Fig. 4(b) and contract represented as Fig. 4(a), where both
automata accept the same language but according to simula-
tion V ALID(e1 → e2) does not hold, thus we do not have
simulation. Technically this is a consequence of the maximal
model for∨.

In order to show thatAMT simulation coincides with
concrete simulation we must impose some additional syn-
tactic constraints on the automaton.

DEFINITION 4.7 (NormalizedAMT). A = 〈E,S, q0,∆T , F 〉
is a normalized automatonmodulo theoryT iff for every
q, q1 ∈ S there is at most one expressione1 ∈ E such that
q1 ∈ ∆T (q, e1).

For example Fig. 4(a) is a normalized automaton while
Fig. 4(b) is not normalized.

We cannot always normalize an automaton by consider-
ing the disjunction of all expressions going to the same state
as it may change nondeterministic automata into determin-
istic automata (see Fig. 5). However, if automata are in nor-
malized form then we have the following theorem:

THEOREM 4.2. For normalizedAMT Ac ≤ Ap is a
AMT fair simulation iffAc v Ap is a concrete fair simu-
lation.

Proof. The first direction of Theorem 4.2 follows from
Proof 4. We sketch proof for the second direction by first
assumingAc v Ap is a concrete fair simulation relation.
We have to show that for every step in the game where
Policy in concrete game moves according to a transition
〈ti, ep

i , ti+1〉 ∈ ∆p
T such that(A, αi) |= ep

i) and moves to
ti+1, then in symbolic levelV ALID(ec → ep) holds. This
follows as for normalizedAMT by Definition4.7 there is at

most one expressione1 ∈ E such thatq1 ∈ ∆T (q, e1), such
that concrete level represents maximal model for∨. �

5. A Decision Procedure for Run-Time
Simulation

In order to check the compliance of the policy on the actual
device as defined on Fig.2 a number of preliminary steps is
necessary: we must check the digital signature on the device,
compare the various security rules of the contract and the
policy in order to identify the correct pair ofAMT that
need to be matched. We refer to (Dragoni et al. 2007a) for
the overall algorithm and to (Massacci and Siahaan. 2007;
Bielova et al. 2008) for the matching implementation using
language inclusion.

However, the procedure for matching using language in-
clusion amongAMT proposed in (Massacci and Siahaan.
2007) limited the generality of the policy in order to avoid
the exponential blow-up that occurs when one complements
a BA.

So here we propose a different algorithm that uses the
concepts of fair simulation for matching and adapts the Jur-
dzinski’s algorithm on parity games (Jurdzinski 2000).

DEFINITION 5.1 (Compliance Graph).Let V0 and V1 be
two disjoint sets, acompliance graphG is a tuple〈V1, V0, E, l〉,
where

• V = V0 ∪ V1

• E ⊆ V × V
• l : V → {0, 1, 2}

wherel is the compliance level of the game.

Intuitively the compliance levellv is 0 whenPolicy ac-
cepts, 1 whenContract accepts (butPolicy have not ac-
cepted yet) and 2 when neither of them accepts.

A compliance game onG starting atv0 ∈ V , P (G, v0)
by two playersPolicy and Contract. The game starts
by placing pebble onv0. At round i with pebble onvi,
vi ∈ V0(V1), Policy (Contract resp.) plays and moves
the pebble tovi+1 such that(vi, vi+1) ∈ E. The player
who cannot move loses. For infinite playπ = v0v1v2 . . .,
the winner defined as the minimum compliance level that
occurs infinitely often, namely if the minimum compliance
level is 0 or 2 thenPolicy wins, otherwiseContract wins.

We apply this compliance game toAMT such that given
anAMT 〈E,Sc, qc

0,∆
c
T , F c〉 and anAMT 〈E,Sp, qp

0 ,∆p
T , F p〉,

we construct a〈V1, V0, E, l〉 as follows:

• V1= {v(qc,qp,ec,c)|qc ∈ Sc, qp ∈ Sp,∃q′′c.qc ∈ ∆c
T (q′′c, ec)}

• V0= {v(qc,qp,ep,p)|qc ∈ Sc, qp ∈ Sp,∃q′′p.qp ∈ ∆p
T (q′′p, ep)}

• E= {(v(qc,qp,ep,p), v(qc,q′p,ec,c))|q′p ∈ ∆p
T (qp, ep) ∧

V ALID(ec → ep)} ∪
{(v(qc,qp,ec,c), v(q′c,qp,ep,p))|q′c ∈ ∆c

T (qc, ec)}

8 2009/5/21

(a) Nondeterministic Automaton (b) Deterministic Automaton af-
ter Normalization

Figure 5. Normalization changes Determinism of an Automaton

Algorithm 1 Simulation Algorithm
Require: twoAMT automata (contractContract, policy

Policy)
1: Create compliance game graphG = 〈V1, V0, E, l〉
2: µ(v) := 0 for all v ∈ V
3: while µ(v) 6= µnew(µ, v) for somev ∈ V do
4: µ := µnew(µ, v)
5: if µ < ∞ then
6: Simulation exists

•

l(v) =

 0 if v = v(qc,qp,ec,c) andqp ∈ F p

1 if v = v(qc,qp,ec,c) andqc ∈ F c andqp /∈ F p

2 otherwise

Next, we define a compliance value asMG = {x|x ≤ |V1|}∪
{∞} and acompliance measureµ : V → MG. We use or-
dering relation> such thatµ(v) > µ(w) if l(v) = 1 and
µ(v) ≥ µ(w) if l(v) = 2 or l(v) = 0.

The update procedureµnew(µ, v)(u) is defined as follows:

• µ(u) if u 6= v

• µ(v) if u = v andl(v) = 0
• max{µ(v),max{µ(u)⊕ 1}} if u = v andl(v) = 1
• max{µ(v),min{µ(u)}} if u = v andl(v) = 2

wherei⊕ 1 = i + 1 if i < |V1| and∞ otherwise.
We are now in the position to state our algorithmic results:

THEOREM 5.1. Let the theoryT be decidable with an ora-
cle for the SMT problem in the complexity classC then Alg.1
decides fair simulation forAMT in timePOL− TIMEC

and in spaceO(|Sc| . |Sp| . |∆p
T + ∆c

T |)C .

6. Conclusion and Related Work
Model-carrying code (Sekar et al. 2003) and security-by-
contract (Dragoni et al. 2007a) proposed to augment mo-
bile code with a claim on its security behavior that can be
matched against a mobile platform policy before code down-
loading. In (Sekar et al. 2003) and in other companion papers

only finite automata have been proposed and they are too
simple to express even the most basic security requirement
occurring in practice: a basic security policy such as only
allows connections starting with ”https://” already generates
an infinite automaton.

Automata Modulo Theory (AMT) (Massacci and Sia-
haan. 2007) enables systems formalization with finitely
many states but infinitely many transitions. As we already
showed in (Massacci and Siahaan. 2007), it is possible to
define very expressive (essentially infinite) policies that can
capture realistic scenarios while keeping the task of match-
ing computationally tractable.AMT maps the problem into
a variant of on-the-fly product and emptiness test from au-
tomata theory, without symbolic manipulation procedures
of zones and regions nor finite representation of equivalence
classes. The tractability limit is essentially the complexity
of the satisfiability procedure for the theories, called as sub-
routines. The prototype for matching policies with secu-
rity claims of mobile applications usingAMT appeared in
(Bielova et al. 2008).

Matching using language inclusion as in (Massacci and
Siahaan. 2007) has a limitation in the structure of the pol-
icy automaton, i.e. only deterministic automaton. The con-
straint arises from theAMT complementation, where as
BA complementation, the nondeterminic complementation
is complicated and exponentially blow-up in the state space
(Büchi 1962). Safra in (Safra 1988), gives a better lower
bound (2O(n log n)) for nondeterministic BA complementa-
tion, however it is still exponential(see (Vardi 2006)). This
limitation does not evolve in matching using simulation as
presented in this paper, because using simulation approach
we can also deal with nondeterministic automata.

Infinite numbers of transitions in security policies by
labeling each transition with a computable predicate instead
of an atomic symbol has been studied in (Schneider 2000).
Security automatáa la Schneider can also be mapped to
a particular form ofAMT (with all accepting states and
an error absorbing state) for which particular optimizations
are possible. Security automata specified transitions as a
function of the input symbols which can be the entire system

9 2009/5/21

state. However,AMT differs from security automata in
transitions which are environmental parameters rather than
system states.

Security monitors were implemented in several systems
for example PoET/PSLang toolkit (Erlingsson and Schnei-
der 2000), which can enforce security policies whose tran-
sitions pattern-match event symbols using regular expres-
sions. Edit automata (Bauer et al. 2002) are another model
for achieving this. Edit automata was implemented in the
Polymer system (Bauer et al. 2005) to dynamically com-
pose security automata. Most recently, the Mobile system
(Hamlen et al. 2006) implements a linear decision algorithm
that verifies that annotated .NET binaries satisfy a class of
policies that includes security automata and edit automata.
All mentioned approaches focus on the relations between
code and security claims on the code (which we call con-
tract), whileAMT focuses between the security claims of
the code and the platform desired security behavior. Other
works fit into in-lining and run-time monitoring in our work-
flow whileAMT falls into matching contract and policies.

A theory of symbolic bi-simulation for theπ-calculus
was proposed in (Hennessy and Lin 1995) which has the
advantage of expressing the operational semantics of many
value-passing processes in terms of finite symbolic transi-
tion graphs despite the infinite underlying labeled transitions
graph.

A new view of fair simulation by extending the local
definition of simulation to account for fairness (Henzinger
et al. 1997) proposed the notion of simulation game. A
system fairly simulates another system if and only if in the
simulation game, there is a strategy that matches with each
fair computation of the simulated system a fair computation
of the simulating system. Efficient algorithms for computing
a variety of simulation relations on the state space of a
Büchi automaton were proposed in (Etessami et al. 2005)
using parity game framework, based on solving parity games
using small progress measures as appeared in (Jurdzinski
2000). An algorithm based on the notion of fair simulation
was presented in (Gurumurthy et al. 2002) applied for the
minimization of B̈uchi automata.

In order to capture realistic scenarios with potentially
infinite transitions (e.g. ”only connections to urls starting
with https”) we have proposed to represent those policies
with the notion ofAutomata Modulo Theory(AMT), an
extension of B̈uchi Automata (BA), with edges labelled by
expressions ina decidable theory and defined the theory and
algorithm for extending simulation results toAMT .

Our final objective is do the run-time matching of the
mobile’s platform policy against the midlet’s security claims
expressed asAMT . We have already done this for the
matching with language inclusion (we have a working .NET
prototype working on a PDA HTC P3600), we plan to do
the porting also for the algorithm extending fair simulation
between B̈uchi automata that we have presented in the paper.

References
J. Bacon. Toward pervasive computing.IEEE Pervasive Comp.

Magazine, 1(2):84, 2002. ISSN 1536-1268.

L. Bauer, J. Ligatti, and D. Walker. More enforceable security
policies. InFound. of Comp. Security, 2002.

L. Bauer, J. Ligatti, and D. Walker. Composing security policies
with polymer. InProc. of the ACM SIGPLAN 2005 Conf. on
Prog. Lang. Design and Implementation, pages 305–314. ACM
Press, 2005. ISBN 1-59593-056-6.

N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching
policies with security claims of mobile applications. InProc.
of the 3rd Int. Conf. on Availability, Reliability and Security
(ARES’08). IEEE Press, 2008.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise,
P.v. Rossum, and R. Sebastiani. Efficient satisfiability modulo
theories via delayed theory combination. In K. Etessami and
S.K. Rajamani, editors,Proc. of the 17th Int. Conf. on Computer
Aided Verification (CAV’05), volume 3576 ofLNCS, pages 335–
349. Springer-Verlag, 2005.

J.R. B̈uchi. On a decision method in restricted second-order arith-
metic. In E. Nagel et al., editor,Int. Cong. on Logic, Methodol-
ogy and Philosophy of Science, pages 1–11. Stanford University
Press, 1962.

N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-
Contract: Toward a Semantics for Digital Signatures on Mobile
Code. InProc. of the 4th European PKI Workshop Theory and
Practice (EUROPKI’07). Springer-Verlag, 2007a.

N. Dragoni, F. Massacci, C. Schaefer, T. Walter, and E. Vetillard.
A security-by-contracts architecture for pervasive services. In
Proc. of the 3rd Int. Workshop on Security, Privacy and Trust in
Pervasive and Ubiquitous Computing. IEEE Press, 2007b.

U. Erlingsson.The Inlined Reference Monitor Approach to Secu-
rity Policy Enforcement. PhD thesis, Department of Computer
Science, Cornell University, 2004.

U. Erlingsson and F.B. Schneider. IRM enforcement of Java stack
inspection. InProc. of the 2000 IEEE Symp. on Security and
Privacy, pages 246–255, 2000.

K. Etessami, T. Wilke, and R. Schuller. Fair simulation relations,
parity games, and state space reduction for büchi automata.
SIAM J. on Comp., 34(5):1159–1175, 2005. ISSN 0097-5397.

S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation mini-
mization. InProc. of the 14th Int. Conf. on Computer Aided Veri-
fication (CAV’02), pages 610–624. Springer-Verlag, 2002. ISBN
3-540-43997-8.

K.W. Hamlen, G. Morrisett, and F.B. Schneider. Certified in-lined
reference monitoring on .net. InProc. of the 2006 workshop on
Prog. Lang. and analysis for security, pages 7–16. ACM Press,
2006.

M. Hennessy and H. Lin. Symbolic bisimulations. InMFPS’92:
Selected papers of the meeting on Math. Foundations of Pro-
gramming Semantics, pages 353–389. Elsevier Sci. Publishers
B. V., 1995.

T.A. Henzinger, O. Kupferman, and S.K. Rajamani. Fair simula-
tion. In Proc. of of the 8th Int. Conf. on Concurrency Theory,
pages 273–287. ACM Press, 1997.

10 2009/5/21

T.A. Henzinger, R. Majumdar, and J.F. Raskin. A classification of
symbolic transition systems.ACM Trans. Comput. Logic, 6(1):
1–32, 2005. ISSN 1529-3785.

G.J. Holzmann.The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2004.

M. Jurdzinski. Small progress measures for solving parity games.
In STACS ’00: Proc. of the 17th Annual ACM Symposium
on Theoretical Aspects of Computer Science, pages 290–301.
Springer-Verlag, 2000. ISBN 3-540-67141-2.

F. Massacci and I. Siahaan. Matching midlet’s security claims
with a platform security policy using automata modulo theory.
In Proc. of the 12th Nordic Workshop on Secure IT Systems
(NordSec’07), 2007.

G.C. Necula. Proof-carrying code. InProc. of the 24th ACM
SIGPLAN-SIGACT Symp. on Princ. of Prog. Lang., pages 106–
119. ACM Press, 1997. ISBN 0-89791-853-3.

G.C. Necula and P. Lee. Safe kernel extensions without run-
time checking. InProc. of the 7th USENIX symposium on
Operating Systems Design and Implementation, pages 229–243.
ACM Press, 1996. ISBN 1-880446-82-0.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-
Loveland Procedure to DPLL(T).J. of the ACM, 53(6):937–977,
2006.

S. Safra. On the Complexity of omega-Automata. InIEEE Symp.
on Found. Comp. Science (FOCS’88), pages 319–327, White
Plains, New York, USA, 1988. IEEE Press.

F.B. Schneider. Enforceable security policies.ACM Trans. on Inf.
and Syst. Security, 3(1):30–50, 2000.

F.B. Schneider, J.G. Morrisett, and R. Harper. A language-based
approach to security. InInformatics - 10 Years Back. 10 Years
Ahead., pages 86–101. Springer-Verlag, 2001. ISBN 3-540-
41635-8.

R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C.
DuVarney. Model-carrying code: a practical approach for safe
execution of untrusted applications. InProc. of the 19th ACM
Symp. on Operating Syst. Princ., pages 15–28. ACM Press,
2003. ISBN 1-58113-757-5.

D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen,
F. Piessens, K. Naliuka, and F. Massacci. A flexible security ar-
chitecture to support third-party applications on mobile devices.
In Proc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

M.Y. Vardi. Büchi complementation a 40-year saga, March 2006.

V.N. Venkatakrishnan, R. Peri, and R. Sekar. Empowering mobile
code using expressive security policies. InProc. of the 2002
workshop on New security paradigms, pages 61–68, 2002.

B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D.
Jensen, editors,Secure Internet Programming, pages 261–273.
Springer-Verlag, 1999.

11 2009/5/21

