
Security-By-Contract for the Future Internet ?

Fabio Massacci1, Frank Piessens2, and Ida Siahaan1

1 Universita‘ di Trento, Italyname.surname@disi.unitn.it
2 Katholieke Universiteit Leuven, Belgiumname.surname@cs.kuleuven.be

1 The Future Internet

With the advent of the next generation java servlet on the smartcard, the Future Internet
will be composed by web servers and clients silently yet busily running on high end
smart cards in our phones and our wallets. Thus we can no longer accept the current
security model where programs can be downloaded on our machines just because they
are vaguely “trusted”. We need to know what they do in more precise details.

The End of Trust in the Web.The World Wide Web evolved rapidly in 90’s and the
notion has changed from a network to a platform where people migrate desktop appli-
cations. The security model of the current version of the web is based on an assumption
that the good guys develop their application, expose it on the web, and then let other
good guys using it while stopping bad guys from misusing it.

The business trend of outsourcing processes or the construction of virtual organi-
zations have slightly complicated this initially simple picture. Now running a “service”
means that different service (sub)components can be dynamically chosen and different
partners are chosen to offer those (sub)services. Hence we need different trust estab-
lishment mechanisms (see e.g. [10]).

This assumption is no longer true for the new world of Web 2.0 and the Future In-
ternet. Even now a user downloads a multitude of communicating applications ranging
from P2P clients to desktop search engines, each of them ploughing through the user’s
platform, and springing back with services from and to the rest of the world. To deal
with the untrusted code either .NET or Java can exploit the mechanism of permissions.
Permissions are assigned to enable execution of potentially dangerous or costly func-
tionality, such as starting various types of connections. The drawback of permissions
is that after assigning a permission the user has very limited control over how the per-
mission is used. Conditional permissions that allow and forbid use of the functionality
depending on such factors as bandwidth or the previous actions of the application itself
(e.g. access to sensitive files) are also out of reach. Once again the consequence is that
either applications are sandboxed (and thus can do almost nothing), or the user decided
that they are trusted and then they can do almost everything.

The mechanism of signed assemblies from trusted third parties does not solve the
problem either. Currently a signature on a piece of code only means that the application

? Research partly supported by the Projects EU-FP6-IST-STREP-S3MS, EU-FP6-IP-
SENSORIA, and EU-FP7-IP-MASTER. We would like to thank Eric Vetillard for pointing
to us the domain of Next Generation Java Card as the Challenge for the Future Internet.



comes from the software factory of the signatory, but there is no clear definition of what
guarantees it offers. It essentially binds the software with nothing. We built our security
models on the assumption that we could trust the vendors (or at least some of them).
The examples from reputable companies such as Channel 4 (or BBC, Sky TV etc.) show
that this is no longer possible. Still we really want to download a lot of software.

The Smart(Card) Future of the Web.The model that we have described above is es-
sentially the web of the personal computers. None of the users complaining about 4oD
[14] have considered their PC or their Web platform “broken” because it allowed other
people to make use of it. They did not consider returning their PC for repair. They
considered themselves being gullible users ripped off by an untrusted vendor.

Another domain at the opposite side of the psychological spectrum is smartcard
technology. The technology enjoyed worldwide deployment in 90’s with Java Card Ap-
plets and their strict security confinement. At the beginning of the millennium, many
applications such as large SIM cards and identity management businesses are imple-
mented on smart-cards to address mobile devices security challenges.

The smartcard technology evolved with larger memories, USB and TCP/IP support
and the development of the Next-Generation Java Card platform with Servlet engine.
The Future Internet will be composed by those embedded Java Card Platforms running
on high end smart cards in our phones and our wallets, each of them connecting to
the internet and performing secure transactions with distributed servers and desktop
browsers without complicated middleware or special purpose readers.

We still want to download a huge amount of software on our phones but there is
a huge psychological difference from a consumer perspective. If our PC is sluggish in
responding,wedid something wrong or downloaded the wrong software, if our phone
is sluggish,it is broken. Moreover, in the realm of next generation Java card platforms
we cannot just download a software without knowing what it does. The smart card web
platform must have a way to check what is downloading.

2 Security by Contract for the Smart Future Internet

In the previous FLACOS workshop we [11] have proposed the notion of Security-by-
Contract (S×C)[5, 4]. In S×C we augment mobile code with a claim on its security
behavior (anapplication’s contract) that could be matched against a mobileplatform’s
policy before downloading the code. A digital signature does not just certify the origin
of the code but also bind together the code with a contract with the main goal to pro-
vide a semantics for digital signatures on mobile code. This framework is a step in the
transition from trusted code to trustworthy code.

S×C Workflow. At development timethe mobile code developers are responsible for
providing a description of the security behavior that their code finally provides. Such a
code might also undergo a formal certification process by the developer’s own company,
the smart card provider, a mobile phone operator, or any other third party for which the
application has been developed. By using suitable techniques such as static analysis,
monitor in-lining, or general theorem proving, the code is certified to comply with the



Fig. 1.SxC Workflow

developer’s contract. Subsequently, the code and the security claims are sealed together
with the evidence for compliance (either a digital signature or a proof) and shipped
for deployment. Atdeployment time, the target platform follows a workflow similar to
the one depicted in Fig.1 (see [19]). First, it checks that the evidence is correct. Such
evidence can be a trusted signature or a proof that the code satisfies the contract (one
can use Proof-Carrying-Code (PCC) techniques to check it.

As we have evidence that the contract is trustworthy, the platform checks, that the
claimed policy is compliant with the policy that our platform wants to enforce. If it
is, then the application can be run without further ado. It is a significant saving from
in-lining a security monitor. In case that atrun-timewe decide to still monitor the ap-
plication then, as with vaccination, we inline a number of checks into the application so
that any undesired behavior can be immediately stopped or corrected.

Contract for the Smart Future Internet.A contract is a formal complete and correct
specification of the behavior of an application for what concerns relevant security ac-
tions (Virtual Machine API Calls,Web Messages etc). By signing the code the developer
certifies that the code complies with the stated claims on its security-relevant behavior.
A policy is a formal complete specification of the acceptable behavior of applications
to be executed on the platform for what concerns relevant security actions.

Technically, a contract can be a security automaton in the sense of Schneider [8],
and it specifies an upper bound on the security-relevant behavior of the application:
the sequences of security-relevant events that an application can generate are all in the
language accepted by the security automaton. We can have a slightly more sophisticated
approach using B̈uchi automata [18] if we also want to cover liveness properties that can
be enforced by Edit automata. This definition can be sufficient for theoretical purposes
but it is hardly acceptable for any practical use.

A variant of the PSLANG language [1] has been proposed forS×C for mobile code
(.NET and Java). The formal counterpart of the language is the notion ofautomata
modulo theory[12] where atomic actions are replaced by expressions that can finitely



capture infinite values of API parameters. For the smart future internet, we need to
identify a suitable language for the specification of contracts and policies at a level of
abstraction that is suitable and can be used forall S×C phases (Fig.1)

Application-contract compliance.Static analysis can be used at development time to
increase confidence in the contract. With static analysis, program analysis and verifica-
tion algorithms are used in an attempt toprovethat the application satisfies its contract.

The major advantage of static analysis is that it does not impose any runtime over-
head, and that it shows that all possible executions of a program comply with the con-
tract. The major disadvantage is that the problem of checking application-contract com-
pliance is in general undecidable, and so automatic static analysis tools will typically
only support restricted forms of contracts, or restricted forms of applications, or the
tool will be conservativein the sense that it will reject applications that are actually
compliant, but the tool fails to find a proof for this.

The programs and services running on the embedded servlet will be significantly
more complex and have actions at different level of abstractions whose full security
implications can be understood by considering all abstraction levels at once. The chal-
lenges for static analysis is that with expressive notions of security contracts, verifying
application-contract compliance is actually as hard as verifying compliance with an
arbitrary specification [16]. Moreover, contracts for applications in the Smart Future
Internet will have a complexity that is comparable to the level of abstractions of current
concurrent models that are used for model checking hardware and software systems (in
1010 states or transitions and beyond).

A standard approach to make program verification and analysis algorithms scale to
large programs is to make themmodularof the program independently. This is partic-
ularly hard for application-contract compliance checking, because the security state of
the contract is typically a global state, and the structure of the contract and its security
state might not align with the structure of the application. Annotations are required on
all methods to specify how they interact with the security state, and not only on meth-
ods that are relevant for the contract at hand. This annotation overhead is prohibitive,
so a key challenge is to look for ways to reduce the annotation burden. An interesting
research question is whether a program transformation (similar to the security-passing
style transformation used for reasoning about programs sandboxed by stack inspection
[17]) can improve this situation.

A second approach to address scalability is to give up soundness of the analysis,
and to use the contract as a model of the application in order to generate security tests
by applying techniques from Model Based Testing [20]. Losing soundness is a major
disadvantage: an application may pass all the generated tests and still turn out to violate
the contract once fielded. However, the advantages are also important: no annotations
on the application source code are needed, and the tests generated from the contract can
be easily injected in the standard platform testing phase, thus making this approach very
practical. A challenge to be addressed here is how to measure the coverage of such se-
curity tests. When are there enough tests to give a reasonable assurance about security?
It is easy to automatically generate a huge amount of tests from the contract. Hence it
is important to know how many tests are sufficient, and whether a newly generated test
increases the coverage of the testing suite.



Matching Contract and Policy on the Smart Future Internet.We must show that the
behavior described by the contract is acceptable according to our platform policy. The
operation of matching the application’s claim with the platform policy requires that the
contract is trustworthy, i.e. the application and the contract are sealed together with a
digital signature when shipped for deployment or by shipping a proof that can checked
automatically. A simple solution is to build upon automata theory, interpret contract
and policy as automata and use language inclusion . Given two such automata AutC

(representing the contract) and AutP (representing the policy), we have a match when
the language accepted by AutC is a subset of the language accepted by AutP .

Once the policy and the contract are represented as automata then one can either use
language inclusions [12] or simulation [13] to check whether the contract is acceptable
according our platform policy. This solution is only partial because the automata that we
have envisaged do not store the values of the arguments of allowed/disallowed APIs. In
order to do this Contracts and policies for the future internet must be history-dependent:
the arguments of past allowed actions (API calls, WS invocations, SOAP messages)
may influence the evolution of future access control decision in a policy.

Further, in our current implementation of the matcher that runs on a mobile phone,
security states of the automata are represented by variables over finite domains e.g.
smsMessagesSent ranges between 0 to 5. [1, 2]. A possible solution could be to extend
the work on finite-memory automata [9] by Kaminski and Francez or other works [15]
that studied automata and logics on strings over infinite alphabets.

An approach to address scalability is to give up soundness of the matching and use
algorithms for simulation and testing. A challenge to be addressed is how to measure
the coverage of approximate matching. Which value should give a reasonable assurance
about security? Should it be an absolute value? Should it be in proportion of the number
of possible executions? In proportion to the likely executions? An interesting approach
could be to recall to life a neglected section on model checking by Courcoubetis et al
[3] in which they traded off a better performance of the algorithm in change for the
possibility of erring with a small probability.

Inlining a monitor on Future Internet Applications.What happens if matching fails?
or what happens if we do not trust the evidence that the code satisfies the contract? If
we look back at Fig.1 monitor inlining of thecontractcan provide strong assurance of
compliance. Withmonitor inlining[7], code rewriting is used to push contract checking
functionality into the program itself. The intention is that the inserted code enforces
compliance with the contract, and otherwise interferes with the execution of the target
program as little as possible. Monitor inlining is a well-established and efficient ap-
proach [6] however a major open question is how to deal with concurrency efficiently.

Servents in the Smart Future Internet will need to monitor the concurrent inter-
actions of tens of untrusted multithreaded programs. An inliner needs to protect the
inlined security state against race conditions. So all accesses to the security state will
happen under a lock. A key design choice for an inlining algorithm is whether to lock
across security relevant API calls, or to release the lock before doing the API call, and
reacquiring it when the API call returns.

The first choice (locking across calls) is easier to get secure, as there is a strong
guarantee that the updates to the security state happen in the correct order. This is much



trickier for an inliner that releases the lock during API calls. However, an inliner that
locks across calls can introduce deadlocks in the inlined program, because some of
the security relevant API calls will themselves block. And even if it does not lead to
deadlock, acquiring a lock across a potentially blocking method call can cause serious
performance penalties. A partial solution is by partitioning the security state into dis-
joint parts, and replacing the global lock, by per-part locks. This improves efficiency,
but depending on application and policy, it can still introduce deadlocks. The challenge
is how to inline a monitor into a concurrent program so that it cannot create a deadlock
in future interactions with other unknown programs yet to be downloaded.

The ability to resist to changes in context (i.e. new concurrent programs downloaded
after the inlined program) is essential for usability. The inlined version of 4oD should
not get in the way if later on I want to download a (inlined) role-playing game. It is
possible that two malicious software downloaded at different instants try to cooperate
in order to steal some data. The security monitor should be able to spot them but not
be deadlocked by them. If inlining is performed by the code producer, or by a third
party, the code consumer (client that runs the application) needs to be convinced that
inlining has been performed correctly. Without a secure transfer of the guarantees of
application-contract compliance to the client, it is easy for an attacker to modify either
the application or the contract, or for an application developer to lie about the contract.

Cryptographic signatures by a trusted (third) party is a first solution even if it
transfer the risk from the technical to the legal domain. The trusted party vouches for
application-contract compliance. Note the difference with the use of signatures in the
traditional mobile device security model. In the security-by-contract approach, a signa-
ture has a clear semantics [5]: the third party claims that the application respects the
supplied contract. Moreover, what is important is the fact that the decision whether the
contract is acceptable or not remains with the end user. If an application claims that it
will not connect to the internet and instead it does, at least you can bring the signatory
to the court for fraudulent commercial claims.

Another solution is whether we can use the techniques PCC for this. In PCC, the
code producer produces a proof that the code has certain properties, and ships this proof
together with the code to the client. By verifying the proof, the client can be sure that
the code indeed has the properties that it claims to have.

The difficulty of the endeavour is that the code has not been produced to be verified
compliant against a security property but usually to actually do some business. In other
words, the code producer is not aware of the property and the property producer is not
aware of the code. In this scenario verification is clearly an uphill path.

When we inline a contract we know precisely what code we are inlining and also
what property the inlined code should satisfy. So, we can ask the inliner to do this
automatically for us and ask them to generate the proof directly. This should make it
relatively easy to check that code complies with the contract: the generation of a proof
should be easier, and the size of the proof would also be acceptable for inlined programs.
The challenge is to identify automatic inlining mechanisms that inline a monitor for a
security contract and generate an easily checkable proof for industrial applications in
the Smart Future Internet.



References

1. I. Aktug and K. Naliuka. Conspec - a formal language for policy specification. Proc.
of the 1st Int. Workshop on Run Time Enforcement for Mobile and Distributed Systems
(REM2007), 2007.

2. N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching policies with security
claims of mobile applications. InProc. of the 3rd Int. Conf. on Availability, Reliability and
Security (ARES’08). IEEE Press, 2008.

3. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms
for the verification of temporal properties.Formal Methods in Sys. Design, 1(2-3):275–288,
1992.

4. L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and D. Vanover-
berghe. Security-by-contract on the .net platform.Elsevier Inform. Sec. Technical Report,
13(1):25–32, 2008.

5. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward a Se-
mantics for Digital Signatures on Mobile Code. InProc. of the 4th European PKI Workshop
Theory and Practice (EUROPKI’07). Springer-Verlag, 2007.

6. U. Erlingsson and F.B. Schneider. SASI enforcement of security policies: A retrospective.
In Proc. of the 1999 New Security Paradigms Workshop (NSPW’99).

7. U. Erlingsson and F.B. Schneider. IRM enforcement of Java stack inspection. InProc. of the
2000 IEEE Symp. on Security and Privacy, pages 246–255. IEEE Computer Society, 2000.

8. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforcement
mechanisms.TOPLAS, 28(1):175–205, 2006.

9. M. Kaminski and N. Francez. Finite-memory automata.Theor. al Comp. Sci., 134(2):329–
363, 1994.

10. Y. Karabulut, F. Kerschbaum, F. Massacci, P. Robinson, and A. Yautsiukhin. Security and
trust in it business outsourcing: a manifesto. In S. Etalle and P Samarati, editors,Proc. of the
2nd Int. Workshop on Security and Trust Management (STM’06), ENTCS. Elsevier, 2006.

11. F. Massacci, N. Dragoni, and I. Siahaan. A Security-by-Contracts Architecture for Pervasive
Services. 2007.

12. F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform security policy
using automata modulo theory. InProc. of The 12th Nordic Workshop on Secure IT Systems
(NordSec’07), 2007.

13. F. Massacci and I. Siahaan. Simulating midlet’s security claims with automata modulo the-
ory. InProc. of the 2008 workshop on Prog. Lang. and analysis for security, 2008. submitted.

14. CNET Networks. Channel 4’s 4od: Tv on demand, at a price.Crave Webzine, January 2007.
15. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alpha-

bets.TOCL, 5(3):403–435, 2004.
16. F.B. Schneider. Enforceable security policies.ACM Trans. on Inf. and Sys. Security, 3(1):30–

50, 2000.
17. J. Smans, B. Jacobs, and F. Piessens. Static verification of code access security policy com-

pliance of .net applications.J. of Object Technology, 5(3):35–58, 2006.
18. C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under memory-

limitation constraints.Inform. and Comp., 206(2-4):158–184, 2007.
19. D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens, K. Naliuka, and

F. Massacci. A flexible security architecture to support third-party applications on mobile
devices. InProc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

20. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model programs.
In Proc. of the 10th Eur. Software Eng. Conf. held jointly with 13th ACM SIGSOFT Int. Symp.
on Found. of Software Eng., pages 273–282. ACM Press, 2005.


