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Abstract

The combination of maximal margin
classifiers and k-nearest neighbors rule
constructing an SVM on the neighbor-
hood of the test sample in the fea-
ture space (called kNNSVM), was pre-
sented as a novel promising classifier.
Since no extensive validation was per-
formed yet, we test here kNNSVM on
13 widely used datasets obtaining sta-
tistically significant better classifica-
tion results with respect to SVM for
linear and polynomial kernels. For
RBF kernels the advantages seems not
to be substantial, but we present two
toy datasets in which kNNSVM per-
forms much better than SVM with
RBF kernel. The empirical results sug-
gest to use kNNSVM for specific prob-
lems in which high classification accu-
racies are crucial and motivates further
refinements of the approach.

1 Introduction

The idea of combining directly the state-of-
the-art classification method of SVM with the
simple but still popular and effective method
of kNN has been presented by Blanzieri and
Melgani (2008). The algorithm is called
kNNSVM, and it builds a maximal margin
classifier on the neighborhood of a test sam-
ple in the feature space induced by a kernel
function. kNNSVM belongs to the class of lo-
cal learning algorithms (Bottou and Vapnik,
1992) for which the locality parameter permits
to find a lower minimum of the guaranteed risk
as demonstrated in (Vapnik and Bottou, 1993;
Vapnik, 2000). Zhang et al. (2006) proposed a
similar method in which however the distance
function for the nearest neighbors rule is per-

formed in the input space and it is approxi-
mated in order to improve the computational
performances. A method that includes local-
ity in kernel machines has been presented also
for regression (He and Wang, 2007).

Even if the kNNSVM has been successfully
applied on two specific classification tasks (re-
mote sensing by Blanzieri and Melgani (2006)
and visual category recognition by Zhang et
al. (2006)), no extensive testing has been per-
formed in order to assess the classification per-
formance of the method against SVM for gen-
eral classification problems and for different
kernels. The issue is theoretically relevant
because it would indicate that the properties
of local learning algorithms stated in (Bottou
and Vapnik, 1992; Vapnik and Bottou, 1993)
are effective in combination with a local max-
imal margin principle. Moreover, assessing
the better classification accuracy of kNNSVM,
would suggest to investigate more in depth the
convergence between kNN and SVM and in
particular some approximations of kNNSVM
in order to make it scalable for large and very
large datasets and applicable in online and/or
active learning settings.

In this work, we empirically compare
the classification performances of SVM and
kNNSVM on 13 datasets taken from different
application domains and with 4 kernel func-
tions and further analyse the kNNSVM and
SVM behaviours in combination with the RBF
kernel. The paper is organized as follows.
After preliminaries on kNN and SVM (Sec-
tion 2) we describe the kNNSVM classifier
(Section 3). Then we detail the comparison
of kNNSVM and SVM on real datasets (Sec-
tion 4) and for the RBF kernel by means of
two toy datasets (Section 4). Finally, we draw
some conclusions and discuss future works.
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2 Nearest neighbors and SVM

k nearest neighbors classifier. Let as-
sume to have a classification problem with
samples (xi, yi) with i = 1, . . . , N , xi ∈ Rp and
yi ∈ {+1,−1}. Given a point x′, it is possible
to order the entire set of training samples X
with respect to x′. This corresponds to define
the function rx′ : {1, . . . , N} → {1, . . . , N} as:

rx′(1) = argmin
i=1,...,N

‖xi − x′‖
rx′(j) = argmin

i=1,...,N
‖xi − x′‖

i 6= rx′(1), . . . , rx′(j − 1)
for j = 2, . . . , N

In this way, xrx′ (j) is the point of the set X in
the j-th position in terms of (Euclidean) dis-
tance from x′, namely the j-th nearest neigh-
bor, ‖xrx′ (j) − x′‖ is its distance from x′ and
yrx′ (j) is its class with yrx′ (j) ∈ {−1, 1}. In
other terms: j < k ⇒ ‖xrx′ (j) − x′‖ ≤
‖xrx′ (k) − x′‖. Given the above definition, the
majority decision rule of kNN is defined by

kNN(x) = sign

(
k∑

i=1

yrx(i)

)
.

Support vector machines. SVMs (Cortes
and Vapnik, 1995) are classifiers with
sound foundations in statistical learning the-
ory (Vapnik, 2000). The decision rule is
SV M(x) = sign(〈w, Φ(x)〉F + b) where Φ(x) :
Rp → F is a mapping in a transformed feature
space F with inner product 〈·, ·〉F . The pa-
rameters w ∈ F and b ∈ R are such that they
minimize an upper bound on the expected risk
while minimizing the empirical risk. The min-
imization of the complexity term is achieved
by minimizing the quantity 1

2 · ‖w‖2, which is
equivalent to maximizing the margin between
the classes. The empirical risk term is con-
trolled through the following set of constraints:

yi (〈w,Φ(xi)〉F + b) ≥ 1− ξi (1)

with ξi ≥ 0, i = 1, . . . , N and where yi ∈
{−1, +1} is the class label of the i -th nearest
training sample. The slack variables ξi’s al-
low some misclassification on the training set
and are set accordingly to the regularization
parameter C. Reformulating such an opti-
mization problem with Lagrange multipliers

αi (i = 1, . . . , N), and introducing a posi-
tive definite (PD) kernel function1 K(·, ·) that
substitutes the scalar product in the feature
space 〈Φ(xi),Φ(x)〉F the decision rule can be
expressed as:

SV M(x) = sign

(
N∑

i=1

αiyiK(xi, x) + b

)
.

The kernel trick avoids the explicit definition
of the feature space F and of the mapping
Φ (Schölkopf and Smola, 2002; Cristianini and
Shawe-Taylor, 1999). Popular kernels are the
linear kernel, the Gaussian radial basis func-
tion kernel (σ is the width), the homogeneous
and inhomogeneous polynomial kernels (δ is
the degree) defined as:

klin(x, x′) = 〈x, x′〉
krbf (x, x′) = exp ‖x−x′‖2

σ
khpol(x, x′) = 〈x, x′〉δ
kipol(x, x′) = (〈x, x′〉+ 1)δ

3 The kNNSVM classifier

The method (Blanzieri and Melgani, 2006;
Blanzieri and Melgani, 2008) combines local-
ity and searches for a large margin separat-
ing surface by partitioning the entire trans-
formed feature space through an ensemble of
local maximal margin hyperplanes. In order
to classify a given point x′ of the input space,
we need first to find its k nearest neighbors
in the transformed feature space F and, then,
to search for an optimal separating hyperplane
only over these k nearest neighbors.

kNNSVM tackles the classification problem
differently from traditional supervised learn-
ing and SVM in particular. In fact instead
of estimating a global decision function with a
low probability of errors on all possible unseen
samples, kNNSVM tries to estimate a decision
function with a low probability of error on la-
beling a given point. Notice that for kNN (the
simplest local learning algorithm) this learning
statement is crucial because the majority rule
is effective only locally (globally it reduces to
the class with the highest cardinality). With
respect to global SVM, the possibility of esti-
mating a different maximal margin hyperplane

1For convention we refer to kernel functions with the
capital letter K and to the number of nearest neighbors
with the lower-case letter k.
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for each test point can thus achieve a lower
probability of misclassification on the whole
test set. These considerations are formalized
in the theory of local structural risk minimiza-
tion for local learning algorithms (Vapnik and
Bottou, 1993) which is a generalization of the
structural risk minimization (Vapnik, 2000).
The main idea is that, in addition to the com-
plexity of the class of possible functions and
of the function itself, the choice of the locality
parameter (k for kNNSVM) can help to lower
the guaranteed risk.

kNNSVM builds an SVM over the neighbor-
hood of each test point x′. Accordingly, the
constraints in (1) become:

yrx(i)

(
w · Φ(xrx(i)) + b

) ≥ 1− ξrx(i),

with i = 1, . . . , k and where rx′ : {1, . . . , N} →
{1, . . . , N} is a function that reorders the in-
dexes of the training points defined as:

rx′(1) = argmin
i=1,...,N

‖Φ(xi)− Φ(x′)‖2

rx′(j) = argmin
i=1,...,N

‖Φ(xi)− Φ(x′)‖2

i 6= rx′(1), . . . , rx′(j − 1)
for j = 2, . . . , N

In this way, xrx′ (j) is the point of the set X in
the j-th position in terms of distance from x′

and the thus j < k ⇒ ‖Φ(xrx′ (j)) − Φ(x′)‖ ≤
‖Φ(xrx′ (k))−Φ(x′)‖ because of the monotonic-
ity of the quadratic operator. The computa-
tion is expressed in terms of kernels as:

||Φ(x)− Φ(x′)||2 = 〈Φ(x),Φ(x)〉F+
+〈Φ(x′), Φ(x′)〉F − 2〈Φ(x), Φ(x′)〉F =
= K(x, x) + K(x′, x′)− 2K(x, x′).

(2)

For the RBF kernel or any polynomial kernels
with degree 1, the ordering function is equiv-
alent to using the Euclidean metric. For some
non-linear kernels (other than the RBF kernel)
the ordering function can be different to that
produced using the Euclidean metric.

The decision rule becomes: kNNSVM(x) =

sign

(
k∑

i=1

αrx(i)yrx(i)K(xrx(i), x) + b

)
For k = N , the kNNSVM method is the usual
SVM whereas, for k = 2, the method imple-
mented with the LIN kernel corresponds to the
standard 1NN classifier.

Table 1: The 13 datasets used in the experi-
ments. Number of classes, training set cardi-
nality and number of features are reported.

name source #cl #tr #f

iris UCI 3 150 4
wine UCI 3 178 13

leukemia TG99 2 38 7129
liver UCI 2 345 6

svmguide2 CWH03a 3 391 20
vehicle Statlog 4 846 18
vowel UCI 11 528 10
breast UCI 2 683 10

fourclass TKH96a 2 862 2
glass UCI 6 214 9
heart Statlog 2 270 13

ionosphere UCI 2 351 34
sonar UCI 2 208 60

In this work we use a simple C++ imple-
mentation of kNNSVM using LibSVM (Chang
and Lin, 2001) for training the local SVM
models, and a brute-force implementation of
the kNN procedure used to retrieve the neigh-
borhoods, since in this work the focus is not
on computational performances. A fast exact
kNNSVM implementation, called FkNNSVM,
is available in FaLKM-lib by Segata (2009), a
library for fast local kernel machines, freely
available for research and education pur-
poses at http://disi.unitn.it/~segata/
FaLKM-lib.

4 Empirical testing of kNNSVM

We tested the performances of the kNNSVM
classifier in comparison with the performances
of SVM on the 13 datasets listed in Table 1.
They are datasets extensively used in the ma-
chine learning community and belong to dif-
ferent research fields and application domains;
they are retrieved from the website of Lib-
SVM (Chang and Lin, 2001) and their orig-
inal references are: UCI (Asuncion and New-
man, 2007), TG99 (Golub and others, 1999),
Statlog (King et al., 1995), CWH03a (Hsu et
al., 2003), TKH96a (Ho and Kleinberg, 1996).
Seven datasets are for binary classification,
while the others are multiclass with a number
of classes ranging from 3 to 11. The cardinal-
ity of the training set is always under 1000 and
the number of features varies from 2 to 7129.

We evaluate the performances using the 10-
fold cross validation (CV) classification accu-
racies considering the linear kernel (LIN), the
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Table 2: 10 fold CV accuracies for SVM and
kNNSVM with the LIN kernel.

dataset svm knnsvm diff p < 0.05

iris 0.967 0.960 −0.007
wine 0.966 0.983 +0.017

leukemia 0.950 0.925 −0.025
liver 0.681 0.739 +0.058

√
svmguide2 0.816 0.859 +0.043

√
vehicle 0.799 0.861 +0.061

√
vowel 0.837 0.998 +0.161

√
breast 0.968 0.966 −0.001

fourclass 0.768 1.000 +0.232
√

glass 0.622 0.692 +0.071
√

heart 0.826 0.822 −0.004
ionosphere 0.869 0.929 +0.060

√
sonar 0.779 0.875 +0.096

√

radial basis function kernel (RBF), the homo-
geneous polynomial kernel (HPOL) and the in-
homogeneous polynomial kernel (IPOL). The
folds were randomly chosen during preprocess-
ing. The model selection (on each fold) was
performed with 10-fold CV splitting randomly
the data at each application. The regulariza-
tion parameter C of SVM is chosen in {1, 5, 10,
25, 50, 75, 100, 150, 300, 500}, σ of the RBF
kernel among {2−10, 2−9, . . . , 29, 210} and the
degree of the polynomial kernels is bounded
to 5. The dimension of the neighborhood for
the kNNSVM classifier, i.e. k, is chosen in
{1, 3, 5, 7, 9, 11, 15, 23, 39, 71, 135, 263, 519,
|training set|}. In case of multi-class datasets
we adopt the one-against-all strategy (both for
SVM and kNNSVM) that does not require the
generalization of the binary class case formal-
ized in Section 2. To assess the statistical sig-

Table 3: 10-fold CV accuracies for SVM and
kNNSVM with the RBF kernel.

dataset svm knnsvm diff p < 0.05

iris 0.947 0.960 +0.013
wine 0.994 0.989 −0.006

leukemia 0.708 0.925 +0.217
√

liver 0.722 0.728 +0.006
svmguide2 0.836 0.844 +0.008

vehicle 0.849 0.840 −0.008
vowel 0.992 0.998 +0.006
breast 0.968 0.971 +0.003

fourclass 0.999 1.000 +0.001
glass 0.687 0.674 −0.013
heart 0.830 0.819 −0.011

ionosphere 0.937 0.935 −0.003
sonar 0.894 0.904 +0.010

Table 4: 10-fold CV accuracies for SVM and
kNNSVM with the HPOL kernel.

dataset svm knnsvm diff p < 0.05

iris 0.973 0.960 −0.013
wine 0.966 0.989 +0.023

√
leukemia 0.950 0.925 −0.025

liver 0.713 0.739 +0.026
√

svmguide2 0.816 0.841 +0.026
vehicle 0.837 0.857 +0.020

√
vowel 0.979 0.998 +0.019

√
breast 0.968 0.965 −0.003

fourclass 0.811 1.000 +0.189
√

glass 0.720 0.720 +0.001
heart 0.822 0.822 0.000

ionosphere 0.892 0.929 +0.037
√

sonar 0.880 0.890 +0.010

nificance of the differences between SVM and
kNNSVM we use the two-tailed paired t-test
(α = 0.05) on the two sets of fold accuracies.
For SVM we used the LibSVM (Chang and
Lin, 2001).

The 10-fold CV accuracy results for the four
kernels are reported in Tables 2, 3, 4 and 5.
The best achieved accuracy results for each
dataset are in bold. In case of multiple best
results the simpler method is considered (with
SVM simpler than kNNSVM and LIN kernel
simpler than RBF, HPOL and IPOL kernels).

kNNSVM performs substantially better
than SVM in a considerable number of
datasets without cases of significant accuracy
losses. Considering all kernels, kNNSVM im-
proves the SVM performances in 34 cases
(65%) and the improvements are significant
in 19 cases (37%) while for the 15 cases in

Table 5: 10 fold CV accuracies for SVM and
kNNSVM with the IPOL kernel.

dataset svm knnsvm diff p < 0.05

iris 0.973 0.967 −0.007
wine 0.966 0.994 +0.028

√
leukemia 0.950 0.925 −0.025

liver 0.701 0.733 +0.032
√

svmguide2 0.826 0.857 +0.031
√

vehicle 0.847 0.848 +0.001
vowel 0.989 0.998 +0.009

√
breast 0.968 0.962 −0.006

fourclass 0.998 1.000 +0.002
glass 0.701 0.706 +0.006
heart 0.822 0.822 0.000

ionosphere 0.912 0.929 +0.017
sonar 0.875 0.890 +0.015
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Figure 1: The DECSIN dataset. The black lines denote the limit of the points of the two classes
without noise, the dotted line denotes the optimal separation of the two classes.

which it reduces the accuracies of SVM the
differences are never significant. Considering
all datasets at the best of the kernel choice,
kNNSVM produces 8 times the best result
against the 5 of SVM. For kNNSVM with
the LIN kernel we have 9 datasets in which
kNNSVM achieves better 10-fold CV accura-
cies (8 significant), and 8 for the polynomial
kernels (6 significant for the HPOL kernel and
4 for the IPOL kernel). In the case of RBF
kernel we have 8 improvements but only one
is significant; this is due both to the fact that
in two cases we reach the perfect classification
without the possibility to improve significantly
the SVM results and to the fact that the SVM
with RBF kernel has already a high classifi-
cation accuracy. We further discuss SVM and
kNNSVM with RBF kernel in the next section.

5 kNNSVM and the RBF kernel

In order to study the situations in which
kNNSVM improves on SVM with RBF ker-
nel we built two toy datasets. Our inten-
tion is to show that there are cases in which
kNNSVM is able to build decision functions
that are much closer to the optimal one with
respect to SVM with RBF kernel. The follow-
ing two toy datasets are thus used to graphi-
cally compare the decision function of the two
methods without explicit classification accu-
racies. Moreover, we also highlight the abil-
ity of kNNSVM of setting locally the kernel
parameters further increasing the local adap-
tation of the decision function. In particular,
the local choice of σ is performed using the 0.1

percentile of the distribution of the distances
between every pair of the k samples nearest
to the testing point. The choice of k in this
section is arbitrary since our purpose here is
to show that kNNSVM on these two datasets
has the potentialities of approaching the per-
fect decision function while no choices of SVM
parameters permits a similar behaviour.

The 2SPIRAL dataset. The first toy
dataset is based on the two spiral problem, a
recurrent artificial benchmark problem in ma-
chine learning, see for example (Ridella et al.,
1997; Suykens and Vandewalle, 1999):

{
x(1)(t) = c · td · sin(t)
x(2)(t) = c · td · cos(t)

d = 2.5,
t ∈ [0, 10π]

using c = 1/500 for the first class (yi = +1)
and c = −1/500 for the second class (yi = −1).
The points are sampled every t · π/30.

Figure 2 shows the application of SVM and
kNNSVM with RBF kernel on the 2SPIRAL
dataset. Although no noise is added to the
data, RBF-SVM exhibits problems of under-
and over-fitting whereas kNNSVM is able to
find a separating function very close to the op-
timal one (details in the caption of Figure 2).

The DECSIN dataset. The second toy
dataset (Figure 1) is a two feature dataset
built starting from the models of Park et al.
(2004) and Adibi and Safabakhsh (2007) and
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Figure 2: The decision function of SVM and kNNSVM with RBF kernel on the 2SPIRAL
dataset (the dotted line denotes the optimal separation). In the first row we have RBF SVM
with σ = 1/50, in the second RBF SVM with σ = 1/10000, in the third row RBF kNNSVM
with σ = 1/50. The right columns report the same classifiers on the same dataset but reducing
the resolution to the [-0.2, 0.2] interval on both axes. The underfitting problems of large σ values
and overfitting problems of low σ values for SVM are evident. Intermediate values of σ are not
resolutive because, even if it is not clear from the picture, also σ = 1/10000 gives underfitting
problems in the central region in fact the perfect training set separation is achievable only with
σ < 1/77750. On the contrary, kNNSVM (last row) does not show evident over or under-fitting
problems with the same σ that causes underfitting of the central region with SVM.
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Figure 3: The behaviour of SVM and kNNSVM with RBF kernel on the DECSIN dataset
(reported here on the [−1.5, 1.5] interval on the y axis). We can notice that SVM has problems
of under- or over-fitting depending on the σ parameter. In fact, if the σ parameter is too
high (σ = 1, first row) the separating hyperplane is close to the optimal separation in the
leftmost region of the dataset, but it reduces to a straight line in the rightmost region clearly
underfitting the data. Conversely, if the width parameter is too low (σ = 1/50, second row)
there are problems of overfitting in the leftmost region. An intermediate value of the width
parameter (σ = 1/10, third row) reaches an unsatisfactory compromise because, even if the
central region of the dataset is correctly separated, there are both problems of underfitting (in
the leftmost region) and underfitting (in the rightmost region). Acting on the C parameter of
SVM is not resolutive because in all the three cases the number of misclassified points is very
low. kNNSVM with the local choice of σ and setting C=1 and k=100 (last row) has instead a
decision function close to the optimal separation in every region of the dataset.
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with the following parametric function:
u(t) =

t

1 + c · t
v(t) =

sin(t)
1 + c · t

c =
1

5 · π , t ∈ [0, 20π]

considering yi = +1 if x
(1)
i = u(t) and x

(2)
i >

v(t), and yi = −1 if x
(1)
i = u(t) and x

(2)
i < v(t)

where x
(j)
i denotes the j-th component of the

vector xi = (u(t), v(t)). The points are defined
with a minimum distance of 1

1+c·t from v(t),
increase the resolution as 1

1+c·t on both axes
and are modified by a Gaussian noise with zero
mean and variance of 0.25

1+c·t .
The application of SVM and kNNSVM with

the RBF kernel using the local choice of σ
on the DECSIN dataset is shown in Figure 3.
Also in this case, RBF-SVM has serious prob-
lem of under- and over-fitting depending on
the value of σ while the separation produced
by kNNSVM is close to the optimal separation
in every region of the dataset without (details
in the caption of Figure 3).

So, even if the classification performances
of kNNSVM with RBF kernel was not partic-
ularly positive for the benchmark datasets of
Section 4, we showed here that there are cased
in which it can have substantial advantages
with respect to SVM with RBF kernel.

6 Conclusions and future works

In this paper we empirically tested the classifi-
cation performances of kNNSVM which can be
seen as a SVM classifier built on the neighbor-
hood in the feature space of the testing sam-
ple. We found that, in comparison with SVM,
kNNSVM introduces a significant gain in the
classification accuracy in a considerable num-
ber of datasets using the linear and polyno-
mial (homogeneous and inhomogeneous) ker-
nels. The strategy to find the k parameter
proved to be effective enough to reach the the-
oretical advantage of a lower minimum of the
guaranteed risk for local learning algorithms.
For the RBF kernel the improvements are less
marked, but we presented two toy datasets
in which kNNSVM with RBF kernel behaves
substantially better than SVM with the same
kernel. So kNNSVM has the possibility to sen-
sibly improve the classification accuracies of a
wide range of classification problems.

Apart the suggestion to apply kNNSVM
on specific problems in various domains, this
empirical study motivates us to further de-
velop the approach. Numerous research direc-
tions can in fact be identified. First, multi-
ple local SVMs (for example varying k) can
be used to predict the label of a test point,
in a local ensemble fashion. Second, simi-
larly to the kNN, automatic and robust ap-
proaches to set the locality parameter k are
desirable. Third, specific data-structures to
speed up the k-NN operations needed to re-
trieve the neighborhood of test points (like
Cover Trees by Beygelzimer et al. (2006) that
can be applied in general metric spaces thus
also in Hilbert features spaces) can dramati-
cally increase the computational performances
of kNNSVM. Forth, it would be interesting
to asses the level of influence of the curse of
dimensionality on kNNSVM (it is well know
that kNN, but not SVM, suffers in high-
dimensional spaces). Fifth, in order to unbur-
den the prediction phase, a set of local SVMs
can be pre-computed in the training set (it is
not necessary to build a local SVM for each
training point because a single local SVM can
be built for small clusters of close points) thus
reducing the prediction step to select the near-
est local SVM and use it to predict the label
of the test point.

Very recently, some of these aspects have
been implemented obtaining a fast exact ver-
sion of kNNSVM, called FkNNSVM, the
so-called FaLK-SVM classifier (Segata and
Blanzieri, 2009) which is based on the last
point discussed in the previous paragraph and
it is much faster from a computational view-
point of both kNNSVM and SVM (more than
one order of magnitude faster than SVM on
the very large CoverType dataset) maintain-
ing a generalization ability very similar to
kNNSVM, and two algorithms for performing
noise reduction for data cleansing and com-
petence enhancing of case-based reasoning ap-
proaches called LSVM noise reduction (Segata
et al., 2008) and FaLKNR (Segata et al.,
2009). The source code of all these implemen-
tations can be found in FaLKM-lib by Segata
(2009), a library for fast local kernel machines,
freely available for research purposes at http:
//disi.unitn.it/~segata/FaLKM-lib.
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