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ABSTRACT

This work proposes a boosting-based transfer learning ap-
proach for head-pose classification from multiple, low-
resolution views. Head-pose classification performance is
adversely affected when the source (training) and target (test)
data arise from different distributions (due to change in face
appearance, lighting, etc). Under such conditions, we employ
Xferboost, a Logitboost-based transfer learning framework
that integrates knowledge from a few labeled target samples
with the source model to effectively minimize misclassifi-
cations on the target data. Experiments confirm that the
Xferboost framework can improve classification performance
by up to 6%, when knowledge is transferred between the
CLEAR and FBK four-view headpose datasets.

Index Terms— Multi-view headpose classification, low-
resolution, Xferboost, boosting-based transfer learning

1. INTRODUCTION

Despite much progress in head-pose estimation and tracking
(see [1] for a detailed survey), most methods and benchmark-
ing datasets [2, 3, 4] focus on determining pose from high-
resolution imagery. However, recent works have actively at-
tempted head-pose recovery from surveillance videos [5, 6,
7, 8] where faces are blurred and are at low resolution. These
approaches classify head-pose to one of many discrete classes
denoting a range of orientations.

This paper deals with head-pose classification as a per-
son is imaged with multiple, large field-of-view cameras in
a closed setting. Also, we seek to adapt existing models de-
rived from available data to new situations through transfer
learning. Figure 1 shows multiple instances of persons cap-
tured in two distinct settings. Images on the left are from
the CLEAR07 [9] head-pose dataset, which contains around

27000 4-view images with pose ground-truth. Likewise, 4-
view images from the FBK dataset captured under different
camera, illumination and environmental settings are shown on
the right. Head-pose comprises pan and tilt1, which denote
out-of-plane horizontal and vertical head rotation, and exam-
ples with downward, frontal and upward head-tilt are respec-
tively shown in the top, middle and bottom rows of Figure 1.

The rest of this paper discusses how models learnt from
extensive source (CLEAR) data can be adapted to effectively
work on novel target (FBK) data. As a preliminary step, we
divided the CLEAR, FBK data into three parts correspond-
ing to downward ([−90o,−20o]), frontal ([−20o, 20o]) and
upward ([20o, 90o]) tilt, and then attempted eight-class head-
pan classification (Figure 2) fixing the head-tilt. Apart from
simplifying the pose-labeling problem to pan classification,
fixing the head-tilt range allowed us to explore the adaptation
problem under realistic settings. E.g., how labeled head-pose
examples acquired from boardroom meeting scenes (where
head-tilt is typically frontal) can be utilized to determine what
attracts peoples’ attention in a supermarket/museum setting
(where downward/upward head-tilt is generally expected).

Secondly, we trained a state-of-the-art ARCO descriptor
[7] model for each of the source subsets, and tested these
models on the different source and target subsets. Training
and test data sizes for the considered source/target subsets
are specified in Table 1. Table 2 lists classification accuracies
obtained with the ARCO models for these combinations. It is
evident from the tabulated results that while high accuracies
are observed when training and test set distributions are the
same (i.e., same dataset, similar head-tilt), a significant drop
in performance is observed even as the training and test set
distributions vary. This is the case when (i) the face appear-
ance changes due to head-tilt differences (even for the same
dataset) and (ii) training and test data attributes vary (as for
CLEAR and FBK).

To counter this problem, we propose Xferboost, a boosting-
1We ignore roll (in-plane head rotation) here
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Fig. 1. Examples from the CLEAR (source) and
FBK (target) head-pose datasets. We employ trans-
fer learning to adapt source-based models for target
data classification.

Fig. 2. Discretization of head-pan (8 classes) and tilt (up,
frontal and down). In our experiments, we attempted 8-
class pan classification with ARCO [7] on the tilt-based
subgroups.

based transfer learning approach. Transfer learning [10,
11] allows for adaptation of models learnt from available
source data to novel target data, using additional knowl-
edge from a few labeled target samples. Xferboost integrates
Tradaboost [11], which ‘tunes’ the source model to the
target data by assigning greater importance to target samples,
with the Logitboost learner employed by ARCO. Experimen-
tal results reveal that this tuning is more effective than simply
learning a model with many source and few target samples,
and can improve classification performance by more than 6%.

In summary, this paper represents one of the first works
to explore a transfer-learning approach for multi-view head-
pose classification. The next section evaluates related work
to motivate the proposed approach, while Section 3 discusses
Xferboost in detail. Experimental results are presented in Sec-
tion 4 and we end with concluding remarks in Section 5.

2. RELATED WORK

We now review related work in (i) head-pose classification
from low-resolution images and (ii) transfer learning.

2.1. Pose classification from low-resolution views

Recent and popular head-pose classification algorithms that
work on low-resolution images are [8, 7]. In [8], a Kullback-
Leibler (KL) distance-based facial appearance descriptor
is found to be effective for pose classification on the i-
LIDS dataset comprising footage of an underground scene.
In [7], array-of-covariance (ARCO) descriptors, robust to
scale/lighting variations and occlusions, produce 11% bet-
ter classification on i-LIDS as compared to [8]. Combining
a dynamic Bayesian network with Gaussian mixture-cum-
Hidden Markov models, a visual focus-of-attention (VFOA)
estimation algorithm for multiple subjects moving in front of
a surveillance camera is proposed in [5]. However, all these
works address head-pose estimation from a single view.

Among multi-view pose-estimation works, a robust ap-
proach to positional variations is proposed in [6], where face
texture is mapped onto a spherical head model, and head-pose

is determined from the face location on the unfolded texture
map. Nevertheless, many cameras are required to generate an
accurate texture map, while we explore a purely image-based
approach for multi-view head-pose classification.

2.2. Transfer learning approaches

There are several approaches to transfer learning. Instance-
transfer [11] involves reuse of source data in a related tar-
get domain assuming that certain parts of the source data
are still useful in the target scenario. Feature-representation-
transfer [12] involves finding a ‘good’ feature representation
that reduces differences between the source and target data.
Parameter-transfer [13] involves discovery of shared parame-
ters or priors between the source and target models which can
benefit from transfer learning. Transfer learning approaches
have become very popular in computer vision- a transferable
distance function is learned with sparse training data for ac-
tion detection in [14]. We propose a transfer learning for pose
classification in this work.

3. LOGITBOOST-BASED TRANSFER LEARNING

This section describes in detail, (i) the pre-processing steps
involved (ii) the array of covariance descriptors (ARCO) al-
gorithm and (iii) Xferboost, the proposed Logitboost-based
transfer learning algorithm for head-pose classification.

3.1. Pre-processing

As large field-of-view cameras are used to acquire both source
(CLEAR) and target (FBK) datasets, the first step involves fa-
cial appearance extraction in each of the camera views. To
this end, we employ a multi-view color-based particle fil-
ter [15] which can handle multiple, moving subjects without
manual initialization. Upon estimating the 3D body-centroid
and height of the moving subject(s) with the tracker, parti-
cles are sampled around the 3D head-position within a search
window. Assuming a spherical model of the head, a contour
likelihood is computed for each particle by projecting a 3D



(a) (b) (c)
Fig. 3. (a-c) illustrate facial appearance extraction- (a) Es-
timated particles and target positions, (b) Edge image and
search region for the yellow track in (a). (c) Determined face
location with highest likelihood estimate.

sphere onto each view employing camera calibration infor-
mation. Finally, the sample with the highest likelihood sum
is determined as the head location. Upon face localization,
the face crop is resized to 20 × 20 resolution prior to ARCO
feature computation. Facial appearance extraction process is
outlined in Figure 3.

3.2. Array of covariance descriptors (ARCO)

The state-of-the-art ARCO algorithm [7] employs covariance
features, robust to occlusions as well as scale and lighting
variations, for head-pose classification from low-resolution
images. Upon dividing the image into a number of over-
lapping patches, ARCO computes covariance-based patch de-
scriptors. Subsequently, a multi-class Logitboost classifier is
learnt for each patch, and the test sample is assigned a label
based on majority vote of the patch-based classifiers.

The ARCO algorithm has many advantages. Firstly, co-
variance matrices are flexible, low-dimensional features. A
requisite number of image features can be combined to gener-
ate covariance descriptors, which can effectively describe vi-
sual objects at prohibitively low resolutions. Also, each patch
descriptor is only a d × d matrix, where d denotes the num-
ber of image features used. This can be further reduced to
a d(d + 1)/2 dimensional vector upon projecting covariance

CLEAR
frontal

CLEAR
up

CLEAR
down

FBK
frontal

FBK
up

FBK
down

Train 7490 3013 2451 50 50 50

Test 7481 3010 2444 12406 7077 5941

Table 1. Source (CLEAR) and Target (FBK) training and test
data sizes for the different tilt classes.

CLEAR
frontal

CLEAR
up

CLEAR
down

FBK
frontal

FBK
up

FBK
down

CLEAR
frontal 91.9 85.5 54.1 57.2 62.7 34.2

CLEAR
up 72.5 93.1 22.5 58 72.3 28.8

CLEAR
down 58.2 34.8 93.2 25.3 36.1 38.4

Table 2. Classification accuracies with ARCO for various
train (along rows)/test (along columns) combinations.

features, originally spanning a Riemannian manifold, onto the
Euclidian tangent space.

For all the results presented in this paper,
we used the 12-dimensional feature set ϕ =
[x, y,R,G,B, Ix, Iy, OG,Gabor{0,π/6,π/3,4π/3},KL].
Here, x, y and R,G,B denote spatial positions and color
values, while Ix, Iy and OG respectively denote intensity
gradients and gradient orientation of the pixels. Gabor
is the set of coefficients obtained from Gabor filtering at
aforementioned orientations (frequency = 16 Hz), while KL
denotes maximal divergence between corresponding patches
in the target face image and different pose-class templates
computed as described in [8]. Also, 8×8 overlapping patches
were used in all experiments.

3.3. Xferboost

The main contribution of this work is that we seek to adapt
an existing model derived from many source training samples
to novel target data, using additional knowledge from a few
target training samples and minimizing the effort required to
label target samples in the process. ARCO employs a multi-
class Logitboost learner (strong classifier) {Fl} for each
image patch, comprising l = 1..L weak classifiers. Given
a training set {xi} with N samples corresponding to class
labels 1..J , the Logitboost algorithm iteratively re-weights
training samples most difficult to classify, through a set of
weights wi and posterior probabilities, Pj(xi). Each weak
learner solves a weighted-regression problem, whose good-
ness of fit is measured by the response value vector for the
ith training sample, zi = {zij}Jj=1.

The Logitboost learner learns until most training sam-
ples are classified correctly. Therefore, when presented with
a training set containing many source and few target sam-
ples, the model could still be source-oriented, given varying
attributes of the source and target. Instead, we adopt the
methodology employed in Tradaboost [11], which priori-
tizes misclassified target samples in the boosting framework,
so that the resulting model is ‘tuned’ to the target.

Given N +M training data, with N source (Src) and M
target (Tgt) samples, where N >> M , the Xferboost algo-
rithm proceeds as follows. At every step, upon normalizing
wi’s, the error on target, ϵt (ϵt < 0.5) is computed for the
misclassified target samples. Also, αs and αt, which are re-
spectively the attenuating and boosting factors for misclas-
sified source and target samples, are determined. Finally,
weights of misclassified target data are boosted by a factor of
eαt , so that more target-specific information can be learned,
while misclassified source weights are attenuated by a factor
of e−αs to discourage learning of these samples. The pro-
posed Xferboost algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

To evaluate Xferboost performance, we compiled the FBK
multi-view headpose dataset. Head pan, tilt and roll measure-



ments for various poses were recorded for 16 subjects using
an accelerometer, gyro, magnetometer platform. The FBK
data differs from CLEAR with respect to distance of cam-
eras from the person, relative camera positions and illumina-
tion conditions. The FBK dataset contains over 25000 exam-
ples (Table 1), out of which 50 random samples were used for
training while the remainder were used for testing.

We compared Xferboost accuracies against the Logitboost
learner fed with both source and target training data (base-
line/no Xferboost condition). We analyzed the effect of vary-
ing the number of weak learners L and target training set
size (with 5-30 target samples/class) on classification perfor-
mance (Figure 4). Each point on the graph denotes mean ac-
curacy obtained from five independent trials (employing ran-
domly generated target training sets) for the given condition.
Also, since we used multiple views for pose classification, we
compared performance considering (i) one-view accuracy or
the mean accuracy obtained using only one of the 4 views and
(ii) four-view accuracy, the accuracy obtained upon feeding
features from all views to the classifier.

Notice from Figure 4 that much higher accuracies are ob-
tained employing features from all views instead of only one
view, implying that multi-view information is more robust
compared to single-view for head-pose classification on low-
resolution images. Higher improvements in classification per-
formance are obtained with Xferboost when a) fewer patch
learners (implying less computation resources) and b) fewer
target training samples are employed. Also, higher improve-
ments are obtained with Xferboost when the source and target
distributions vary significantly (e.g., CLEAR up- FBK down
combination), as compared to cases where they are similar
(e.g., CLEAR up- FBK up). Target-specific information is
most beneficial when the source and target have minimal sim-
ilarity, and transfer learning works best in such cases.

Table 3 presents the best improvements obtained with
Xferboost when only 5 labeled target samples/class (¡0.5%
of the target size) are employed for transfer learning. In the
fourth and sixth columns, the Xferboost accuracies are pre-
sented along with the baseline accuracies (within parenthe-
ses). Here again, the maximum improvements with Xferboost
are obtained for those cases where the source and target dis-
tributions vary significantly. Also, single-view improvements
are higher as compared to employing all 4 views, suggesting
that transfer learning perhaps works better when less infor-
mation is available. Overall, a maximum performance gain of
6.2% is obtained with the Xferboost approach for the CLEAR
down- FBK up combination.

5. CONCLUSIONS

The paper proposes Xferboost, a boosting-based transfer
learning approach for pose classification from multiple, low-
resolution views. Experimental results confirm that the effec-
tiveness of Xferboost, which improves classification perfor-

Algorithm 1 Xferboost- Transfer learning with Logitboost
Input: Combined Src (xi, yi ∈ Ts), Tgt (xi,yi ∈ Tt) train set
T = {(x1, y1), . . . (xN , yN ), (xN+1,yN+1), . . . , (xN+M ,yN+M )},
where {yi}, {yi} = 1..J , number of learners L.
For i = 1..N +M , initialize weights wi =

1
N+M

and posterior
probabilities Pj(xi) =

1
J

, set of learners {Fl} = ϕ,

Set αs = 1
2
ln(1 +

√
2lnN

L
)

for l = 1 . . . L
Compute response values zi and weights wi from Pj(xi)
if L > 1
Normalize the weight vector w1, . . . , wN+M

Compute the error on Tgt, ϵt =
∑J

j=1

wj [yj ̸=h(xj)]∑N+M
i=1 wi

,

where xj = {xi ∈ j} with weights wj

Set αt =
1
2
ln( 1−ϵt

ϵt
), ϵt <

1
2

Update weights
wi ← wie

−αs(yj ̸=h(xj)) (modify misclassified Src weights)
wi ← wie

αt(yj ̸=h(xj)) (modify misclassified Tgt weights)
end if
Compute learner Fl using least-square regression with zij’s
and modified wi’s.
Compute new Pj(xi)’s and classifier labels h(xi).

end for
Output: Set of learners {Fl} (for each image patch)

mance significantly when the source and target distributions
are very different. Future work involves integrating informa-
tion from multiple sources for transfer learning, and exploit-
ing temporal constraints for efficient head-pose tracking.
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