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ABSTRACT

Motivated by applications in areas such as patient monitoring,
tele-rehabilitation and ambient assisted living, analyzing ac-
tivities of daily living is an active research topic in computer
vision and image processing. In this paper we address the
problem of everyday activity recognition from unlabeled data
proposing a novel multi-task clustering (MTC) approach. Our
intuition is that, when analyzing activities of daily living, we
can take advantage of the fact that people tend to perform the
same actions in the same environment (e.g. people working
in an office environment use to read and write documents).
Thus, even if labels are not available, information about typi-
cal activities can be exploited in the learning process. Arguing
that the tasks of recognizing activities of specific individuals
are related, we resort on multi-task learning and rather than
clustering the data of each individual separately, we also look
for clustering results which are coherent among related tasks.
Extensive experimental results show that our method outper-
forms several state-of-the-art approaches by up to 11% on the
Rochester activities of daily living dataset.

Index Terms— Multi-Task Clustering, Activities of
Daily Living Analysis

1. INTRODUCTION

Activities of daily living (ADL) are defined as “the things we
normally do on a daily basis for self-care such as feeding our-
selves, bathing, dressing, grooming, work, homemaking, and
leisure”1. In the last few years, automatic analysis of ADL
has received an increasing interest in the computer vision and
image processing community [1, 2]. The problem of every-
day activity recognition poses several challenges, mostly im-
plying the engineering of discriminative features and scalable
recognition algorithms. A further problem arises as, indepen-
dently of the considered scenario, several hours of videos are
usually collected. This generates a large amount of data for
which annotation is typically not available requiring a great
human labeling effort.

1http://en.wikipedia.org/wiki/Activities of daily living#cite note-MN-2
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1. Data from each single task must be clustered appropriately.
2. Coherence among partitions of related tasks should be enforced.

In the morning, 
you do ...

No matter 
where you are

Fig. 1. Overview of the considered problem: no matter where
you are, in the morning you probably have breakfast and use
a knife to cut food into pieces. In this paper we exploit this
and other information about people habits to perform ADL
analysis proposing a novel multi-task clustering approach.

In this paper, we consider the problem of everyday activ-
ity recognition from unlabeled data under a novel perspective
(see Fig.1). People working in an office environment tend
to perform the same kind of activities (e.g. working in front
of a personal computer, reading documents). Similarly, most
people when they wake up in the morning use to drink coffee
and brush their teeth. In other words, the tasks of recogniz-
ing everyday activities of different individuals are related. In
this paper we treat ADL analysis as a multi-task clustering
problem, and we show that exploiting the relations between
data associated to different people more accurate recognition
models can be obtained with respect to considering each user
separately or to naively combining data from different peo-
ple together. In particular if there are limited data for a sin-
gle person, traditional clustering methods applied to this data
fail to discover the correct clusters and using data from other
people as an auxiliary source of information is beneficial, in-
ducing the correct space partitioning. On the other hand, sim-
ply combining data from different people and clustering them
also does not lead to accurate results as the data distributions
associated to some targets can be very different. Oppositely,



Fig. 2. Rochester ADL dataset: a sequence depicting the ac-
tivity ‘answering phone’ and the computed body parts.

with the proposed MTC solutions the degree of similarity be-
tween different tasks (data from different people) is taken into
account during learning.

To summarize, the contributions of this paper are the fol-
lowing. We address the problem of everyday activity recogni-
tion proposing a MTC approach. A novel MTC optimization
problem is introduced and an efficient algorithm is proposed
for solving it. We demonstrate the effectiveness of our ap-
proach on the Rochester ADL dataset, comparing it with sev-
eral single task and MTL methods.

2. RELATED WORKS

ADL Analysis. In the last few years, several works have con-
sidered the problem of everyday activity recognition, not only
in computer vision and image processing but also in other re-
lated research areas, e.g. ubiquitous computing [3, 4]. Many
of these recent works are based on the use of RFID tags or in-
ertial sensors. However, systems based on cameras still have
an important role being generally cheap and easy to deploy.
A survey of recent works on activity recognition is presented
in [5]. Some recent publications have addressed specifically
the task of ADL analysis [1, 3]. Messing et al. [1] pro-
posed an approach based on features computed from the ve-
locity history of tracked keypoints for recognizing complex
everyday activities performed in a kitchen environment. In
[2], Rohrbach et al. also considered a kitchen scenario but
focused on a more difficult problem of fine-grained activity
recognition. Other works (see e.g. [3]) exploited the use of the
novel RGB-D sensors showing improved performance with
respect to the use of traditional cameras alone. In this paper
we address the problem of analysing activities of daily liv-
ing under the perspective of MTC. However, while multi-task
learning have already been exploited for visual based activity
recognition [6, 7, 8], we are not aware of works which address
simultaneously the problem of lack of annotated data.
Multi-task Learning. Multi-task learning (MTL) approaches
have received considerable attention in the last few years.
Learning from data of multiple related tasks simultaneously
is greatly advantageous in terms of performance with respect
to learning on every single task independently. The effective-
ness of MTL has been demonstrated in several applications in
computer vision and image processing [9, 10, 11, 12]. Most
existing works on MTL methods tackle classification and re-
gression problems. Only few works have considered unsu-

Fig. 3. Rochester ADL dataset: feature representation for a
single frame.

pervised approaches to MTL [13, 14], i.e. the scenario where
the data of each task are unlabeled and the aim is to predict
the cluster labels in each task. In [13] the authors proposed
to learn a subspace shared by all the tasks, through which
the knowledge of one task can be transferred to all the others.
Zhang and Zhang [14] introduced a MTC approach based on a
pairwise agreement term which encourage coherence among
clustering results of multiple tasks. Our approach is inspired
by [14], but it is based on another objective function and thus
on a radically different optimization algorithm. Furthermore,
in the considered application, it provides superior accuracy
with respect to [14].

3. MULTI-TASK CLUSTERING FOR ADL ANALYSIS

The proposed approach articulates in two main phases: first
features are extracted from video sequences, then our MTC
algorithm is used for recognizing each individual’s activities.

3.1. Features Extraction

In this paper we consider the Rochester ADL dataset [1]. It
consists of a set of pre-segmented video clips, each depicting
10 different activities performed 3 times by 5 different peo-
ple. Typical activities are answering a phone, drinking water,
eating a snack, or peeling a banana. The recorded people have
different appearance, genders and ethnicity. Each video clip
is on average 3-50s long. The frame size is 1280 × 720 and
the frame rate is 30 frames/s.

We follow one of the most recent works on this dataset
[15] and we first extract features on a frame-basis (at rate of
one frame/s) considering a combination of both low-level and
high-level cues. Specifically to compute high-level cues we
adopt the pictorial deformable model for body pose estima-
tion proposed in [16] and detect the location of 18 body-parts.
Fig.2 shows an example of body parts extracted on a sequence
of the activity ‘answering phone’. To extract low-level cues,
we compute the optical flow using the Lucas-Kanade algo-
rithm and we quantize it into 8 possible directions. Then we
construct a descriptor for each body part, represented by an
eight bin histogram computed from the optical flow informa-
tion. Finally, we concatenate all the histograms and create
a 144 bin histogram for each frame (Fig.3). To compute the
video clips descriptors we adopt two different approaches as



Algorithm 1 Algorithm for solving (2)
Input: Data matrices X1,X2; numbers of clusters k1, k2; λ.

1: Initialize F as an identity matrix.
2: Initialize W > 0 with l1 normalized columns and P > 0

with l1 normalized rows.
3: Repeat until convergence

Compute F using a linear programming solver.
Compute W using a projected gradient method:
Wk+1 = max(0,Wk − αk∇W∆(Pk,Wk,Fk)).
Compute P using a projected gradient method:
Pk+1 = max(0,Pk − αk∇P∆(Pk,Wk,Fk)).
Normalize P by Pij ← Pij∑

j
Pij

.

Output: The optimized matrices W, P.

suggested in [15]: one consisting in accumulating frame fea-
tures, the other in using a Fisher-Kernel representation.

3.2. EMD Regularized Multi-task Clustering

As the tasks of recognizing activities of each person are re-
lated, we propose a MTL algorithm. Formally, we are given
T related data sources (corresponding to different individu-
als), each one consisting of data samples in the set Xt =
{xt

1,x
t
2, ...,x

t
Nt
}, where xt

j ∈ IRd is a d-dimensional feature
vector extracted from a video clip, Nt is the number of sam-
ples associated to the t-th data task (person). We want each
data source to be partitioned into kt clusters, where the num-
ber of required partitions can be different in different tasks.
As we assume the tasks to be related, we also require that the
resulting partitions are consistent with each other. Defining
N =

∑T
i=1Ni, k =

∑T
i=1 ki we consider the data matrix

X ∈ IRN×d, X = [X1; . . . ;XT ], obtained by concatenating
the individual matrices Xt = [xt

1; xt
2; ... ;xt

Nt
] associated

to each task t. We are interested in finding the centroid ma-
trix C = [C1; . . . ;CT ], C ∈ IRk×d,Ct ∈ IRkt×d, and the
cluster indicators matrix W = blkdiag(W1, ...,WT ), W ∈
IRN×k, Wt ∈ IRNt×kt , by solving the following optimiza-
tion problem:

min
C1,...,CT ,
W1,...,WT ,fij≥0

T∑
t=1

‖Xt −WtCt‖2F

+λ
T∑

t,s=1

kt∑
i=1

ks∑
j=1

fij [(Ct)i. − (Cs)j.]
′[(Ct)i. − (Cs)j.]

s.t.



ks∑
j=1

fij =
Nt∑
n=1

(Wt)ni (1 ≤ i ≤ kt)
kt∑
i=1

fij =
Ns∑
n=1

(Ws)nj (1 ≤ j ≤ ks)

kt∑
i=1

ks∑
j=1

fij = 1 (1 ≤ i ≤ kt, 1 ≤ j ≤ ks)

(1)

where (·)′ denotes the transpose operator, (Ct)i. and (Cs)j .
denote the i-th row of Ct and j-th row of Cs respectively.
The first term in the objective function is a relaxation of

the traditional k-means objective function for T separated
data sources. The second term is added to explore the rela-
tionships between clusters of two different data sources and
it consists of the popular Earth Mover’s Distance (EMD)
[17] computed considering the signatures S and T ob-
tained by clustering the data associated to task t and s sep-
arately, i.e., T = {((Ct)1., w

1
t ), . . . ((Ct)kt ., w

kt
t )}, wi

t =∑Nt

n=1(Wt)ni, and S = {((Cs)1., w
1
s), . . . ((Cs)ks

., wks
s )},

wi
s =

∑Ns

n=1(Ws)ni. In practice (Ct)i. and (Cs)j . are the
cluster centroids and ws

i , wt
i denote the weights associated

to each cluster (reflecting somehow the number of datapoints
of each cluster). In practice the second term represents a
distance between two distributions and minimizing it we im-
pose the found partitions between two related tasks to be
consistent. The variables fij are a set of EMD flows.

In (1) there are no constraints on the C values. In this pa-
per we also impose that the vectors defining C lie within the
column space of X, i.e. the columns of C are a weighted sum
of certain data points. In other words, we define C = PX
where P = blkdiag(P1 . . .PT ), P ∈ IRk×N . In the fol-
lowing, for the sake of simplicity and easy interpretation, we
consider only a two tasks problem. The extension to T tasks
is straightforward. As typical in many learning algorithm, we
also introduce the mapping X → φ(X) and the associated
kernel matrix KX = φ(X)φ(X)′. The objective function of
(1) becomes:

∆ = ‖φ(X)−WP φ(X)‖2F + λtr(MPφ(X)φ′(X)P′M′F)

= tr( KX − 2KXP′W′+WPKXP′W′ + λMPKXP′M′F )

Defining A = WPKX − 2KX, the proposed optimization
problem is:

min
P>0,W>0,F>0

tr( KX + AP′W′ + λMPKXP′M′F )

s.t. ‖(Pt)i.‖1 = 1, ∀i ∀ t = 1, 2 (2)

tr(IjF) =

N1+N2∑
i=1

Wij , j = 1, ..., k1 + k2

tr(F) = 1

with F = diag(f11 . . . fk1k2), F ∈ IRk1k2×k1k2 , and

Ij =


1 0 · · · 0
0 1 · · · 0
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,

Ij ∈ IRk1k2×k1k2 and M ∈ IRk1k2×(k1+k2), are appropriately
defined selection matrices.

To solve (2), we first note that the optimal solution can be
found adopting an alternating optimization scheme, i.e. op-
timizing separately (2) first with respect to P and then with
respect to W and F jointly. In both cases, a non-negative
least square problem with constraints arises, for which stan-
dard solvers can be employed. However, due to computa-
tional efficiency, in this paper we consider an approximation
of (2), replacing the constraints (3) with tr(IjF) = e, where



Table 1. Clustering results on Rochester ADL dataset: comparison
of different methods using accumulation features.

Acc NMI
Task 1 Task 2 Avg Task 1 Task 2 Avg

KM 0.523 0.513 0.518 0.671 0.646 0.659
KKM 0.545 0.537 0.541 0.689 0.672 0.681
SemiNMF [18] 0.556 0.526 0.541 0.604 0.637 0.621
SemiEMD-MTC [14] 0.580 0.533 0.557 0.658 0.655 0.657
KSemiEMD-MTC [14] 0.602 0.561 0.581 0.686 0.689 0.688
LSMTC [13] 0.480 0.503 0.492 0.598 0.621 0.610
CNMF [18] 0.607 0.647 0.627 0.746 0.772 0.759
CEMD-MTC 0.693 0.627 0.660 0.827 0.842 0.835
KCEMD-MTC 0.700 0.770 0.735 0.853 0.883 0.868

Table 2. Clustering results on Rochester ADL dataset: comparison
of different methods using fisher kernel features.

Acc NMI
Task 1 Task 2 Avg Task 1 Task 2 Avg

KM 0.533 0.537 0.535 0.682 0.656 0.669
KKM 0.555 0.552 0.554 0.704 0.694 0.699
SemiNMF [18] 0.581 0.531 0.556 0.634 0.639 0.637
SemiEMD-MTC [14] 0.595 0.567 0.581 0.678 0.675 0.677
KSemiEMD-MTC [14] 0.621 0.584 0.603 0.699 0.702 0.701
LSMTC [13] 0.501 0.525 0.513 0.602 0.634 0.618
CNMF [18] 0.621 0.644 0.633 0.755 0.782 0.769
CEMD-MTC 0.713 0.653 0.683 0.833 0.852 0.843
KCEMD-MTC 0.741 0.765 0.753 0.874 0.888 0.881

e ∈ IRk1k2 , (e)i = 1
k1

, if i ≤ k1, (e)i = 1
k2

otherwise.
This approximation implies that for each task the same num-
ber of datapoints is assigned to all the clusters. In this way
an efficient solver can be devised. Specifically, we adopt an
alternating optimization strategy, i.e. we optimize (2) sepa-
rately with respect to F, W and P until convergence. The
algorithm for solving (2) is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

We perform a series of experiments randomly selecting two
targets out of five from the Rochester ADL dataset. Thus, two
tasks are considered. Experiments are run 10 times and the
average results are reported. Table 1 and 2 show the results
of different clustering methods applied on the the accumu-
lation and the fisher kernel representations respectively. We
compare our approach (EMD Regularized Multi-task Clus-
tering with linear and rbf kernel denoted as CEMD-MTC,
KCEMD-MTC respectively) with single task clustering ap-
proaches, e.g. the k-means (KM), kernel k-means (KKM),
convex (CNMF) and semi (SemiNMF) nonnegative matrix
factorization [18]. We also consider recent MTC approaches
such as the SemiEMD-MTC proposed in [14], its kernel ver-
sion KSemiEMD-MTC and the LSMTC method in [13]. Ten
runs are performed corresponding to different initializations
conditions for all the methods. For each experiment the aver-
age results are considered. To evaluate the clustering results,
we adopt the popular clustering accuracy (Acc) and normal-
ized mutual information (NMI) metrics. The value of the reg-
ularization parameters λ of our approach is set in the range
{10−2, 10−1, ...102}. The reported results correspond to the
best clustering performance.
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Fig. 4. Performance variation at different value of λ for Task
2 of the Rochester ADL dataset.

From Table 1 and 2 several observations can be made.
First of all, independently on the adopted features representa-
tion, MTC approaches always perform better than single task
clustering methods (e.g. SemiEMD-MTC outperforms Sem-
iNMF, CEMD-MTC provide higher accuracy than CNMF).
An exception is represented by the LSMTC proposed in [13]
which performs quite poorly (worse than k-means) in the
considered application. Confirming the findings reported in
[15], we also observe that the Fisher Kernel representations
is advantageous with respect to features computed based on
a simple accumulation scheme. Noticeably, our methods are
among the best performers, with KCEMD-MTC reaching
the higher values of accuracy and NMI. This is somehow
expected probably due to both the use of kernels and the
adoption of the multi-task paradigm.

Finally, we investigate the effect of different values of the
regularization parameter λ in (2) on clustering performance
when Fisher Kernel features are used. As shown in Fig.4,
both accuracy and NMI values are sensitive to varying λ. The
best performance for CEMD-MTC and KCEMD-MTC are
obtained when λ = 1 and λ = 0.1 respectively. This clearly
confirms the advantage of using a MTC approach.

5. CONCLUSIONS

In this paper we consider the task of everyday activity recog-
nition from unlabeled data as a MTC problem. A novel MTC
algorithm has been proposed and evaluated extensively on
Rochester ADL dataset. Our results clearly demonstrate the
advantage of using a MTC approach (in particular KCEMD-
MTC) for ADL analysis. Future works include exploiting the
suitability of the proposed MTC algorithms for other vision
applications as well as investigating how to improve our MTC
methods (e.g. by detecting outlier tasks).
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