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Weakly Supervised Photo Cropping
Luming Zhang, Mingli Song, Yi Yang, Qi Zhao, Chen Zhao, and Nicu Sebe

Abstract—Photo cropping is widely used in the printing indus-
try, photography, and cinematography. Conventional photo crop-
ping methods suffer from three drawbacks: 1) the semantics used
to describe photo aesthetics are determined by the experience of
model designers and specific data sets, 2) image global config-
urations, an essential cue to capture photos aesthetics, are not
well preserved in the cropped photo, and 3) multi-channel visual
features from an image region contribute differently to human
aesthetics, but state-of-the-art photo cropping methods cannot
automatically weight them. Owing to the recent progress in image
retrieval community, image-level semantics,i.e., photo labels
obtained without much human supervision, can be efficiently and
effectively acquired. Thus, we propose weakly supervised photo
cropping, where a manifold embedding algorithm is developed
to incorporate image-level semantics and image global configu-
rations with graphlets, or, small-sized connected subgraph. After
manifold embedding, a Bayesian Network (BN) is proposed. It
incorporates the testing photo into the framework derived from
the multi-channel post-embedding graphlets of the training data,
the importance of which is determined automatically. Based on
the BN, photo cropping can be casted as searching the candidate
cropped photo that maximally preserves graphlets from the
training photos, and the optimal cropping parameter is inferred
by Gibbs sampling. Subjective evaluations demonstrate that: 1)
our approach outperforms several representative photo cropping
methods, including our previous cropping model that is guided by
semantics-free graphlets, and 2) the visualized graphlets explicitly
capture photo semantics and global spatial configurations.

Index Terms—Photo cropping, Weakly supervised, Bayesian
network, Image-level Semantics

I. I

Photo cropping refers to removing unwanted subjects or
irrelevant details from a photo, changing its aspect ratio, or
adjusting its overall composition. Conventional photo cropping
methods have been applied in many fields. For example, in
printing industry, the visual attractiveness of a photo can be
increased by cropping it from a panoramic one; in telephoto
photography, an image is cropped to magnify the primary

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This work was supported in part by National Natural Science Foun-
dation of China(61170142), National Key Technology R&D Program
(2011BAG05B04), International Science & Technology Cooperation Program
of China (2013DFG12840), National High Technology Research and Devel-
opment Program of China (2013AA040601),and the Fundamental Research
Funds for the Central Universities.

L.Zhang and M. Song are with the College of Computer Science, Zhejiang
University, China.

Yi Yang is with the School of Information Technology and Electrical
Engineering, University of Queensland, Brisbane, Australia.

Q. Zhao is with the Department of Electrical and Computer Engineer-
ing,National University of Singapore, Singapore.

C. Zhao is with the School of Electrical Engineering and Computer Science,
Peking University, Beijing, China.

N. Sebe is with the Department of Information Engineering and Computer
Science, University of Trento, Italy.

subject; and in cinematography, film footage can be cropped
to change its aspect ratio, without stretching the image or
filling with the blank bars. However, photo cropping is still
a challenging problem due to the following three reasons:
• Semantics is an important cue to describe photo aes-

thetics, but state-of-the-art photo cropping models cannot
exhibit semantics effectively. Typically, a cropping system
only employs a small number of manually defined seman-
tics based on a specific data set. They are defined by de-
termining whether photos in the data set are covered with
sky, vegetation, water, etc. Additionally, the semantics is
usually detected using an auxiliary object detector,e.g.,
a human face detector. There is no guarantee that all the
pre-specified semantic objects can be accurately discov-
ered.

• Global spatial configurations, which reflects the spatial
arrangements of all components in a photo, play an
important role in photo aesthetics, but existing cropping
models cannot well preserve them. As shown in Fig. 1,
the relative displacement of water, sky, and sailboats
determines the photo global layout, but it cannot be
explicitly captured by the existing cropping models.

• Multi-channel visual features from an image region in-
fluence differently on human aesthetics. For example,
the texture channel is perceptually less dominant for a
textureless image region. Unfortunately, existing cropping
methods cannot automatically adjust the importance of
multi-channel visual features from an image region.

Fig. 1. Preserving the relative displacement of sky, water, and four sailboats
implicitly maintains global spatial configuration.

To resolve the above mentioned problems, we propose a
weakly supervised photo cropping method, which integrates
the strategy of transferring from image-level semantics to
region-level semantics, image global spatial configurations,
and multi-channel visual features weighting scheme, into
a graphlet-guided photo cropping framework. As shown in
Fig. 2, to capture the local composition of each photo, we
construct graphlets to model the spatial arrangements of local
atomic regions. To incorporate semantics and global spatial
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configurations into graphlets, a manifold embedding algorithm
is derived to maximally preserve the image-level semantics
of each photo and the Golub-Werman distances between all
pairwise graphlets in each photo. After sampling a number
of candidate cropped photos, we obtain the multi-channel
post-embedding graphlets from each candidate cropped photo.
Thereafter, we form a BN to measure the quality of each
candidate cropped photo, where the importance of each chan-
nel visual feature is adjusted automatically. Based on the new
photo quality measure, we cast photo cropping as seeking the
parameter of the candidate cropped photo with the maximum
posterior probability, and Gibb sampling is applied for param-
eter inference.

The contributions of this paper are three-fold:

• Weakly supervised photo cropping, a new approach to
improve photo cropping performance using image-level
semantics;

• Manifold graphlet embedding, a new algorithm to encode
image-level semantics and photo global spatial configu-
rations into graphlets;

• A BN which automatically weights multi-channel visual
cues in the post-embedding graphlets transferring process.

II. R W

A typical photo cropping algorithm contains three steps:
sampling a number of candidate cropped photos and scor-
ing the quality of each one based on some photo quality
measure; the most qualified one will then be selected. In
such an algorithm, candidate cropped photo evaluation is an
essential and indispensable procedure in the cropping process.
In recent years, several photo cropping and photo assessment
approaches have been proposed. Among them, two research
topics closely relate to the proposed method1.

A. Global Features-Based Approaches

Global features-based approaches design different types of
global low-level and high-level visual features to represent
photo aesthetics. These global features are typically concate-
nated into a long vector and used to train a classifier or
regression function for measuring photo quality. Luoet al. [1]
proposed a number of high-level semantic features based on
the division of the subjects and background. Keet al. [2]
designed a group of high-level image features, such as image
simplicity based on spatial distribution of edges, to imitate
people’s perception of photo quality. Dattaet al. [3] proposed
58 low-level visual features, such as shape convexity, to
capture photo aesthetics. Wonget al. [4] proposed three types
of global features,i.e., low-level features such as exposure
extracted from the overall image and the salient regions, as
well as the difference between low-level features extracted
from subject and background regions. Dharet al. [9] pro-
posed a set of high-level attribute-based predictors to evaluate
photo aesthetics. Three types of attribute-based predictors
are proposed,i.e., compositional attributes, content attributes,

1We suggest readers refer to Zhanget al. [38]’s work for a more compre-
hensive overview of the representative photo cropping methods.

and sky illumination attributes. In [10], Luoet al. proposed
a Gaussian mixture model (GMM)-based hue distribution
and a prominent line extraction-based texture distribution to
represent the global composition of each photo. To describe
photo’s local composition, three regional features respectively
describing human faces, region clarity, and complexity are
developed. It is worth noting the limitations of the above global
feature-based approaches: First, Luoet al. [1]’s approach relies
heavily on a blur detection technique to identify the foreground
object’s boundary, precluding its application to photos taken by
point-and-shoot cameras. Second, Luoet al. [10]’s approach
adopts a category-dependent regional feature extraction, which
has the prerequisite that photos are 100% accurately classified
into one of the seven categories. This prerequisite is infeasible
in real applications. Third, the attributes proposed in Dhar
et al. [9]’s approach are designed manually and are data set
dependent, thus have difficulty in generalizing to different data
sets. Fourth, all these global low-level and high-level visual
features are designed heuristically, there is short of evidence
that they effectively capture the photo aesthetics, such as the
spatial interaction between the water and the sailboat in Fig. 1.

B. Probabilistic Local Patches Integration-Based Approaches

To describe the spatial interaction of image patches, proba-
bilistic local patch integration based approaches is proposed.
These approaches extract local patches within each candi-
date cropped photo, and then probabilistically integrate them
into a quality measure to select the cropped photo. In [7],
Nishiyama et al. first detected multiple subject regions in
an image, where each subject region is a bounding rectangle
containing the salient part of each object. A SVM classifier
is then trained for each subject region. The quality of each
candidate cropped photo is computed by probabilistically
combining the scores of the SVM classifier corresponding to
the cropped photo’s internal subject regions. Although multiple
subjects are considered in [7], their spatial interactions, such
as whether the sky is below or above the sea, are ignored.
In [6], Chenget al. proposed omni-range context,i.e., spatial
distributions of arbitrary pairwise image patches, to model the
photo compositions. The learned omni-range context priors
are combined with the other cues, such as the patch number,
to form a posterior probability for measuring the quality of
each candidate cropped photo. It is noticeable that, the omni-
range context only captures the binary spatial interactions of
image patches. Higher-order spatial interactions, such the four
linearly arranged sailboats in Fig. 1, cannot be captured. To
describe the high-order spatial interactions of image patches,
Zhanget al. [38] introduced graphlets and further designed a
probabilistic model to transfer them from the training photos
into the cropped photo. However, graphlets reflect no photo
semantics and photo global spatial configurations, which are
essential cues to be exploited in a cropping model. Besides,
the color and texture channel visual features are identically
weighted in the graphlet transferring process, which is not
consistent with human aesthetics.

To address the above problems, we extract graphlets to
describe the high-order spatial interaction of atomic regions in
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Fig. 2. The pipeline of the proposed approach

a photo. Then, a weakly supervised framework is proposed to
integrate image-level semantics and photo global spatial layout
into graphlets. Finally, a probabilistic model is derived to trans-
fer training post-embedding graphlets into the cropped photo,
where multi-channel graphlets are automatically weighted.

III. T I-L S G

A. Defining Graphlet under Spatial Pyramid Framework

There are usually tens to hundreds of objects in a photo.
Among these components, a few spatially adjacent ones as
well as their correlations determine the local composition
of a photo. The local composition may reflects the regional
aesthetics in a photo, thus it is essential to exploit them in a
cropping model. To this end, we ameliorate the graphlet in
Zhanget al. [38] by re-defining it under the spatial pyramid
framework.

In Zhang et al. [38]’s work, two atomic regions are

Fig. 3. An illustration of the newly defined spatially adjacent regions.

considered as adjacent if they are spatially connected. This
criteria is too strict in practice. For example, although the
three neck-in-neck horses in Fig. 3, which are three atomic
regions, are closely located and aesthetically pleasing, they
are not spatially connected. Thus, there are deemed as
non-adjacent in the previous model. To solve this problem,
inspired by spatial pyramid [15], which uses cells from
multi-level spatial pyramid to label the location of each local
feature, we construct a three-level spatial pyramid to label
the location of each atomic region. As shown in Fig. 3, an
atomic region’s corresponding cell denotes the cell into which

it can be maximally divided, in a coarse-to-fine manner. The
two left horse and their riders can be maximally divided into
cell φ2

21 while the right horse and its rider corresponds to
cell φ2

22, where the upper index represents the level in the
pyramid. Unlike local feature location labeling, it is difficult
to completely group an atomic region into a cell because
each atomic region usually contains hundreds of pixels and
some may stick out of the cell. In this work, if 90% of the
pixels in an atomic region are overlapped with a cell, we
consider that this atomic region can be grouped into this cell.
After the labeling process, two regions are spatially adjacent
if their corresponding cells are identical or neighboring.

Following the above spatial pyramid-based adjacent region
identification, we define the graphletG to formularize the
local composition of each photo, that is,

G = (V,E) (1)

where V denotes a small set of vertices, each representing
an atomic region obtained via multiple unsupervised fuzzy
clusterings (UFCs) [14], andE denotes a set of edges, each
connecting a pair of spatially adjacent atomic regions. UFC
algorithm is an improved clustering algorithm, it guarantees
the less consuming time and good clustering precision.
Moreover, there is no need to know the cluster number and it
can cluster arbitrary -shaped cluster. When adopting UFC on
image segmentation, the advantage is that, prior knowledge of
the number of segmented atomic regions is not required, and
its tolerance bound is flexible to tune. Second, each photo
is segmented five times under different tolerance bounds of
UFC, i.e., the tolerance bound is tuned from 0.1 to 0.5 with
a step of 0.1.

The graphlet size denotes the number of vertices in a
graphlet. Noticeably, the number of graphlets from a photo
is exponentially increasing with its size. As shown in
Fig. 4, suppose the left three segmented regions are spatially
neighboring. There will be three 1-sized graphlets, three
2-sized graphlets and four 3-sized graphlets. Thus, the total
number of resulting graphlets isC1

3+C2
3+C3

3 = 23−1 = 7. And
straightforwardly, we four spatially neighboring segmented
regions are considered, there will be 24 − 1 = 15 different
graphlets. Therefore, toward an effective cropping system,
only small-sized graphlets are adopted. Because the color and
the texture channels are generally complementary to each
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Fig. 4. A graphical illustration of the exponential number of graphlets in a
photo.

other in measuring the appearances of each atomic region, we
describe each atomic region in color and textural channels,
which are implemented as 9-dimensional color moment [16]
and 128-dimensional histogram of gradient (HOG) [17]
respectively.

B. Manifold Graphlet Embedding

Both of a graphlet’s atomic regions and structure could be
represented by appearance feature vectors, but it is natural to
represent a graphlet by concatenating appearance feature vec-
tors since they collaboratively contribute to photo aesthetics.
First, we define two matrices to symbolize the atomic regions
and structure. Given at-sized graphlet in color channel, we
characterize all its atomic regions by a matrixMC ∈ Rt×9,
each row of which denotes a 9-dimensional feature vector
signifying the color moment of an atomic region. To represent
the structure of a graphlet or the spatial correlation between
atomic regions in a graphlet, we adopt at × t-sized adjacent
matrix as:

MS(i, j) =

{
1 if Ri andRj are spatially adjacent
0 otherwise

(2)
whereRi and Rj denote atomic regions corresponding to the
i-th and the j-th vertex in a graphlet respectively.

With MC and MS, we represent at-sized graphlet by a
matrix of t × (9 + t) as:

M = [MC,MS] (3)

Following [20], each matrix can be deemed as a point on
the Grassmann manifold, and the Golub-Werman distance [21]
between identical-sized matrices is defined as:

dGW(M,M′) = ||MO − M
′
O||2 (4)

whereMO andM
′
O denote the orthonormal basis ofM andM′

respectively.
To incorporate image-level semantics and image spatial

configuration with graphlets, we propose a manifold embed-
ding [40], [41] algorithm with the objective function as:

arg minY

∑
h

∑
i j
[dGW(Mh

i ,M
h
j ) − dE(yh

i , y
h
j )]

2

︸                                            ︷︷                                            ︸
Preserve pairwise graphlets Golub−Werman distances

+

∑
i j
||yi − y j ||2ls(i, j) −

∑
i j
||yi − y j ||2ld(i. j)

︸                                                    ︷︷                                                    ︸
Represent image−level semantics

s.t. YYT = Id (5)

 !""
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Fig. 5. An example of preserving pairwise graphlets’ Golub-Werman
distances

where Y = [y1, y2, · · · , yN], in which yh
i and yh

j are column
vectors standing for thed-dimentional representations of the
i-th and the j-th graphlets from theh-th photo. Our goal is
to seek aY that characterize the image spatial configuration,
and consider the image-level sematics as well. For the former
purpose, the first term in (5) preserves all pairwise graphlets’
Golub Werman distances, which reflects the global spatial
layout of a photo, as shown in Fig. 5 and we explain it
as follows. The distance between pairwise graphlets reflects
their relative displacement. As shown in the right of Fig. 5,
the Golub-Werman distancedGW between graphletG1 and
G3 reflects the relative position between two residential areas
covered byG1 and G3. Straightforwardly, if we preserve all
the pairwise distances between graphlets in the embedding
process, all their relative positions are kept. And this operation
can implicitly kept the global spatial layout. As shown in
Fig. 5, preserving three relative distances between (G1,G2),
(G1,G3) and (G2,G3) roughly capture the global spatial layout,
and intuitively, when more graphlets are considered, more
accurate global spatial layout can be kept. For the latter one,
we add the photo category information as the second term.

Here, we explain (5) in detail as follows.Mh
i and Mh

j
respectively denote matrices corresponding to thei-th and
the j-th identical-sized graphlets from theh-th photo, and
dE(·, ·) represents the Euclidean distance.ls(·, ·) is a function
measuring the semantical similarity between graphlets,ld(·, ·)
is a function measuring the semantical difference between
graphlets. Denoting~N = [N1,N2, · · · ,NC]T where Nc is the
number of photos from thec-th category, andc(·) the photo
category of photo from which the graphlet is extracted, then

ls(i, j) =
[c(Gi )

⋂
c(G j )] ~N∑

c Nc and ld(i, j) =
[c(Gi )

⊕
c(G j )] ~N∑

c Nc . YYT = Id

is a term to uniquely determineY. Noticeably, different-sized
graphlets are embedded independently based on (5).

Denote Dh
GW as an N × N matrix whose i j-th entry is

dGW(Mh
i ,M

h
j ), i.e., the Golub-Werman distance between the

i-th and the j-th identical-sized graphlet extracted from the
h-th photo. Then, the inner product matrix is obtained by
τ(Dh

GW) = −RNhS
h
GWRNh/2, where (ShGW)i j = (Dh

GW)2
i j ; RNh =

I Nh − ~eNh~e
T
Nh
/N is the centralization matrix;I Nh is a Nh × Nh

identity matrix and~eNh = [1, · · · ,1]T ∈ RNh; and Nh is the
number of graphlets from theh-th photo. The first term in (5)
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can be rewritten as:

arg minY

∑
h

∑
i j
[dGW(Mh

i ,M
h
j ) − dE(yh

i , y
h
j )]

2

= arg minY

∑
h
||τ(Dh

GW) − τ(Dh
Y)||2

= arg maxY tr(Yτ(Dh
GW)YT)

= arg maxY tr(Yτ(DGW)YT) (6)

whereτ(DGW) is a block diagonal matrix withH × H blocks,
and theh-th diagonal block isτ(Dh

GW).
The second term in (5) can be rewritten as:

arg minY

∑
i j
||yi − y j ||2[lw(i, j) − lb(i, j)]

= arg maxY tr(YAYT) (7)

where A = [−~eT
N−1, I N−1]TW1[−~eT

N−1, I N−1] + · · · +

[I N−1,−~eT
N−1]TWN[I N−1,−~eT

N−1], and Wi is an N × N diagonal
matrix whoseh-th diagonal element isls(h, i) − ld(h, i).

Based on (6) and (7), the objective function (5) can be
reorganized into:

arg maxY tr(Y(A + τ(DGW)YT)))

= arg maxY tr(YZYT) s.t. YYT = Id (8)

whereZ = A + τ(DGW) ∈ RN×N.

C. Incremental Graphlet Embedding Algorithm

The problem in (8) is a quadratic programming with
quadratic constraints that can be solved using eigenvalue de-
composition, which has a time complexity ofO(N3). However,
Z is a large-sized matrix because usuallyN > 100,000, thus
it is computational intractable to solve (8) using a global
once-for-all eigenvalue decomposition. To solve this problem,
we develop an incremental graphlet embedding algorithm.
First, we solve an initial embedding using (8) under graphlets
extracted from{I1, · · · , I H(0)} photos, whereH(0) << H. Then
we solve a new embedding under graphlets extracted from
{I1, · · · , I H(0)

, · · · , I H(1)} photos. The objective function is:

arg maxY(1) tr(Y(1)Z(1)(Y(1))T) s.t. y(1)
i = y(0)

i , i ∈ 1, · · · ,P (9)

whereY(1) = [YL,YU ] ∈ Rd×H(1)
; YL = {y1, · · · , yP} is the known

embedding inY(1) from the previous incremental embedding
under {I1, · · · , I H(0)} photos, andYU = {yP+1, · · · , yQ} is the
unknown embedding inY; Z(1) is the matrix constructed from
H(1) photos which can be divided into four blocks as:

Z(1) =

(
ZLL ZLU

ZUL ZUU

)
(10)

Denoted as the dimensionality of post-embedding graphlet,
the problem in (9) can be decomposed intod sub-problems.
Each sub-problem is a quadratic problem with linear constrains
that can be iteratively solved. LetYi

L = [ fi(1), · · · , fi(d)] ∈
Rd, i = 1, · · · ,P, we can reorganize (9) into:
{

arg maxX(1) tr(X(1)Z(1)X(1)T) s.t. xi(1) = fi(1) i = 1, · · · ,P
arg maxX(d) tr(X(d)Z(1)X(d)T) s.t. xi(d) = fi(d) i = 1, · · · ,P

(11)

whereX(i) is a Q-dimensional row feature vector to be solved.
Since each sub-problem in (9) has the same form, we can

simplify (11) into:

arg maxX tr(XZ(1)XT) s.t. xi = fi , i = 1, · · · ,P (12)

Converting the hard constrains in (12) into soft constrains
and introducing a prediction term, we have the following
regularization representation:

arg maxX XZ(1)XT + µ1

∑P

i=1
(xi − fi)

2 + µ2

∑Q

i=P+1
(xi − gi)

2

(13)
wheregi is a predicted value ofxi which is specified by the
prediction strategy proposed by Xianget al.[25]. GivenMi and
its k neighbors{M1, · · · ,Mk′ ,Mk′+1, · · · ,Mk}, where the low-
dimensional representation of{M1, . . . ,Mk′ } are known while
that of {Mk′+1, · · · ,Mk} are unknown, we first use kernel PCA
(with kernelkPCA(M,M′) = exp

(
−d2

GW(M,M′)
)

to transferMi

and all its neighbors{M1, · · · ,Mk′ ,Mk′+1, · · · ,Mk} into a set of
d-dimensional feature vectors. Then we learn a function satis-
fying fi = g(mi), i ∈ {1, · · · , k′}, whereg(m) is a spline regres-
sion function defined as:g(m) =

∑k′
i=1 αiφi(m)+

∑λ
i=1 βiψi(m),

heremi is the low-dimensional representation ofMi using ker-
nel PCA;φi(m) = ||m−mi || andΨi(m)λi=1 constitutes a base of a
polynomial space; and the parameterα andβ are computed by

solving the linear system:

(
Φ Ψ

ΦT 0

) (
α
β

)
=

(
f
0

)
, whereΦ

is ank′×k′ matrix with each elementΦi j = φ(||mi−mj ||), Ψ is an
k′ × p matrix with elementΨi j = ψi(mj) and f = [ f1, · · · , fk′ ].

By differentiating the objective function (13) with respect
to XU and setting the derivative to 0, we obtain

XU =
1

1 + µ2
XU(I − ZUU) − 1

1 + µ2
ZULXL +

µ2

1 + µ2
gU (14)

where XU denotesone dimension of the unknown post-
embedding graphlets. Thereby we can updateXU based on
the following equation:

X(t+1)
U =

1
1 + µ2

X(t)
U (I −ZUU)− 1

1 + µ2
ZULXL +

µ2

1 + µ2
gU (15)

The iteration is carried out repeatedly untilXU becomes
stable. To obtain ad-dimensional embedding ofXU , the
iterative algorithm is carried outd times, and we finally
obtain the low-dimensional representation of graphlets
Y(1) = [X(1), · · · ,X(d)]T from this incremental embedding
step. In the next incremental embedding step, we solve the
new embeddingY(2) from {I1, · · · , I H(1)

, · · · , I H(2)} photos,
where the embedding process is the same as that of the
previous incremental embedding step.

IV. T M-C G  

C P

We believe that photo cropping preserves the post-
embedding graphlets through a process of inference, wherein
the post-embedding graphlets are used to make the proba-
bilistically best guesses about what should be preserved in
the cropped photo. Here we apply a BN to implement photo
cropping. Given a test photoI , we define its cropped photo
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as I (η), where η = (ηs, ηθ, ηt) is the cropping parameter.
In particular, ηs is a two-dimensional variable denoting the
XY coordinate scale of the cropped photo,ηθ ∈ [0,2π] is
the rotation angle of the cropped photo, andηt is a two-
dimensional variable denoting the translation from the center
of the test photo to that of the cropped photo.

For an original photo, its corresponding cropped photo
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Fig. 6. BN-based photo cropping

should preserve the aesthetic features from the highly aesthetic
training photos to the largest possible extent. We notice that
the training photos and the cropped one are highly correlated
by their aesthetic features. In terms of color channel post-
embedding graphlets, there are strong correlations between
the following three pairs of variables: 1)I1, · · · , I H and
GC, 2) GC and GC(η), and 3)GC(η) and I (η). In terms of
texture channel graphlets, there are also strong correlations
between another three pairs of variables: 4)I1, · · · , I H and
GT , 5) GT andGT(η), and 6)GT and I (η), where I1, · · · , I H

denote the states of training photos andI (η) the state of the
cropped photo;G and G(η) respectively denote the states of
post-embedding graphlets from the training photos and the
cropped photo;GC(η) andGT(η) the states of color and texture
channel post-embedding graphlets from the cropped photo.
The above six correlations can be represented by a BN [37],
[36]. As shown in Fig. 6, the proposed BN contains two
types of nodes: observable nodes (blue-colored) and hidden
nodes (gray-colored). Directed edges describe the relationships
between nodes. These two types of nodes form four layers.
The first layer represents all training photos. The second layer
denotes the training post-embedding graphlets. The third layer
represents post-embedding graphlets from the cropped photo.
And the fourth layer represents the cropped photo.

Based on the above BN, we cast photo cropping as a process
that maximally transfers the post-embedding graphlets from
the highly aesthetic training photos into the cropped photo.
This process can be formulated into the following maximum
a posterior (MAP) framework:

η = arg maxη p(I (η)|I1, I2, · · · , I H)

= arg max
η

p(φC|GC(η))p(I (η)|GC(η))p(GC(η)|GC)p(GC|I1, · · · , I H)︸                                                                     ︷︷                                                                     ︸
Color channel graphlets trans f er

+ p(φT |GT(η))p(I (η)|GT(η))p(GT(η)|GT)p(GT |I1, · · · , I H)︸                                                                    ︷︷                                                                    ︸
Texture channel graphlets trans f er

(16)

where p(φC|G(η)) and p(φT |G(η)) respectively denote the
importance of color and texture channel post-embedding
graphlets G(η) from the cropped photo. Specifically,
p(φC|GC(η))+ p(φT |GT(η)) = 1 andp(φT |GT(η)) is determined
by the sparseness of texture channel graphletGT(η), which is
defined it as a logistic function,i.e.,

p(φT |GT(η)) =
1

1− exp(−aGT(η) + b)
(17)

wherea andb are parameters obtained from the training data.
As probabilities of graphlets in different channels have

the same form, we omit the subscript ofGC,GT and
GC(η),GT(η). To calculate the above three probabilities in (16),
we need another three probabilitiesp(I (η)|G(η)), p(G(η)|G),
and p(G|I1, · · · , I H). They are detailed as follows.

p(I (η)|G(η)) =
p(G1(η), · · · ,CT(η)|I (η))p(I (η))

p(G1(η), · · · ,GT(η))
∝ p(G1(η), · · · ,CT(η)|I (η))p(I (η))

=
∏T

i=1
p(Gi(η)|I (η))p(I (η))

=
∏T

i=1

∏Yi

j=1
p(Gi

j(η)|I (η))p(I (η)) (18)

whereT is the maximum graphlet size andYi the number ofi-
sized graphlets inI ; Gi denotes all the trainingi-sized graphlets
andGi

j the j-th i-sized training graphlet;p(Gi
j |I ) denotes the

probability of extracting graphletsGi
j from photoI . p(I (η)) is

the probability of a photoI cropped using parameterη, which

is defined as Gaussian kernel:p(I (η)) = exp
(
||η−η̄||2
σ2
η

)
. In this

work, the graphlet extraction is based on random walking.
We first index all atomic regions and choose a starting one
with probability P(Y)

Y , where Y means there areY atomic
regions in photoI and P(Y) is the corresponding probability.
We then visit a spatially adjacent larger-indexed vertex (same
probability of visiting a larger or smaller-indexed vertex) with
probability 1

2∗∑de pde(Rl )de(Rl )
, where de(Rl) denotes the degree

of the current atomic regionRl and pde(Rl) the probability
of atomic regionRl with degreede(Rl). In our implementa-
tion, pde(Rl) and p(Y) are both defined as Gaussian kernels:

pde(Rl) ∝ exp
(
− ||de(Rl )−de(R)||2

σ2
de

)
and p(Y) ∝ exp

(
− ||Y−Ȳ||2

σ2
Y

)
. The

random walking process stops when the maximum graphlets
size is reached. Therefore, we obtain

p(Gi
j |I ) ∝

P(Y)
Y

i−1∏

l=1

1
2 ∗∑de pde(Rl)de(Rl)

exp

−||s(Rl) − s̄||2
σ2

S


(19)

where the term exp
(
− ||s(Rl )−s̄||2

σ2
S

)
encourages choosing

moderate-sized atomic regions. Our model suppresses
choosing small-sized, even highly-aesthetic, atomic regions
because they are not representative to the original photo.
s(Rl) is the number of pixels in atomic regionRl . s̄ andσs

respectively denote the Gaussian center and the covariance of
pixel number in atomic regions.

p(G|I1, · · · , I H) = p(G1, · · · ,GT |I1, · · · , I H)

=
∏T

i=1
p(Gi |I1, · · · , I H) =

∏T

i=1

∏Yi

j=1
p(Gi

j |I1, · · · , I H) (20)
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where p(Gi
j |I1, · · · , I H) is the probability of graphletGi

j ex-
tracting from all training photosI1, · · · , I H and is defined as:

p(Gi
j |I1, · · · , I H) = 1−

∏H

h=1

(
1− p(Gi

j |Ih)
)

(21)

p(G(η)|G) measures the similarity between graphlets from the
training photos and those from the cropped photo,i.e.,

p(G(η)|G) ∝ exp

−
1

T ∗ Yi ∗ Yi(η)

T∑

t=1

Yt∑

i=1

Yt(η)∑

j=1

||Gt
i (η) −Gt

j ||2
σ2


(22)

whereYt(η) denotes the number oft-sized graphlets from the
cropped photo;Gt

j(η) is the j-th t-sized graphlet from the
cropped photo.

Based on (16), we use Gibbs sampling to compute the
optimal cropping parameter, where the procedure is the same
as in our previous work [20]. We present the procedure of the
proposed weakly supervised photo cropping in Algorithm 1.

Algorithm 1 Weakly Supervised Photo Cropping
input:a set of category-labeled training photosI1, · · · , I H ; a test photoI ;
and maximum graphlet sizeT;
output: a cropped photoI (η);
1. Apply UFC-based segmentation to decompose each photo into atomic
regions; extract{1, · · · ,T}-sized multi-channel graphlets
fromtraining photos based on random walking.
2. Adopt the manifold embedding to transform color and texture channel
graphlet intod-dimensional feature vectors based on (5).
3. Gibbs sampling for optimal cropping parameter selection based on
(16), and output the corresponding cropped photo.

V. E R  A

In this section, we evaluate the effectiveness of the proposed
weakly supervised photo copping. The first part shows the
effectiveness of the post-embedding graphlets in capturing
photo aesthetics. The second part evaluates the performance
of the proposed approach by comparing with representative
cropping methods. The third part step-by-step evaluates the
effectiveness of each component in the proposed approach. In
the fourth part, we discuss the influences of the free parameters
on the cropping results. The last part presents the cropping
results under different segmentation results2.

A. Data Collection and Preprocessing

To the best of our knowledge, there are no standard data sets
released for evaluating cropping performance. Therefore, we
compile our own photo cropping data set. The total training
data contains approximately 6000 highly-ranked as well as
6000 low-ranked photos, which are crawled from two online
photo sharing websites Photosig and Flicker. Because both 4:3
aspect ratio and panoramic photos are used in the previous
cropping experiments, towards a comprehensive comparative
study, we construct two groups of test photos. The first group
contains 337 badly-composed photos with an aspect ratio of
4:3. We intend to obtain a well-composed photo by cropping a
sub-region from the original photo. The second group contains

2This part is presented in the supplemental material.

313 well-composed panoramic photos. We intend to maxi-
mally preserve the composition from the original panoramic
photos into the cropped 4:3 aspect ratio photos. Due to space
limitation, we only present the cropping results using test
photos with a 4:3 aspect ratio3.

To obtain the image-level semantics of each photo in our
data set, we represent each photo by a 512-dimensional Gist
descriptor [25] and then classify it by a 13-class SVM classi-
fier. We use the probabilistic SVM [35] and set the semantics
of each photo as the three highest probable predicted labels.
The 13-class SVM classifier is trained from the scene data set
published by Feifeiet al. [26].

B. Aesthetics Captured by the Post-Embedding Graphlets

In this experiment, we evaluate the effectiveness of our
post-embedding graphlets in capturing the photo aesthetics.
We compare the post-embedding graphlets with six aesthetic
features proposed by Luoet al. [1], Luo et al. [10], Ke
et al. [2], Yeh et al. [8], and Zhang et al. [38]. The
saliency model proposed by Ittiet al. is also used employed
for comparison. In particular, we experiment on the data
set collected by Yehet al., which contains 6000 highly
aesthetic as well as 6000 low aesthetic photos collected
from DPChallenge4. Most images from this data set contain
one single object and the background is typically clear. To
compare the effectiveness of the five features, we use each
feature to predict whether a test photo is highly aesthetic or
low aesthetic. We use the same split of training and test sets
as in the program provided by Yehet al., and then train a
binary SVM classifier based on the five features. Noticeably,
as local descriptors, multi-channel post-embedding graphlets
cannot be directly used to train an image-level photo quality
classifier. Inspired by graph kernel [33] which measures the
similarity between pairwise graphs by comparing all their
respective subgraphs, we construct an image-level kernel to
measure the similarity between photos,i.e.,

kL(I , I ′) =
1

NI ∗ NI ′

∑
G∈I ,G′∈I ′ k(G,G′) (23)

where k(·, ·) is the basis kernel which is set linear in our
experiment; 1

NI ∗NI ′
is a normalization factor whereinNI and

NI ′ respectively denote the numbers of graphlets inI and I ′.
Note that, two graph kernelskL

CM andkL
HOG are constructed in

both color and texture channels. To integrate the two kernels
together as an input to kernel SVM, we use multiple kernel
learning (MKL)5 [34] which automatically learns the weights
of each kernel and linearly combine them.

To quantitatively compare the proposed approach with
the six competitors, we calculate the precision recall curve
is calculated via:Precision =

tp
tp+ f p and Recall =

tp
tp+ f n,

where tp and f p are true positive and false positive respec-
tively, and f n and tn are false negative and true negative
respectively. As shown in Fig. 7, the proposed method sig-
nificantly outperforms its competitors. The reasons are given

3Cropping results from panoramic test photos are given in the supplemental
material.

4http://www.dpchallenge.com
5http://www.di.ens.fr/∼fbach/path/.
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Fig. 8. Asthetics captured by four top-ranked graphlets based on Zhanget al. [38]’s approach (green rectangle) and the proposed approach (blue rectangle).
We present the four most discriminative graphlets from each photo.
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Fig. 7. Precision-Recall curve of the seven compared features (PM denotes
the proposed method)

as follows. First, Luoet al.’s and Yehet al.’s approaches
are partially based on the assumption that the foreground
and background of the photos taken by SLR cameras can be
easily discriminated. Unfortunately, this assumption does not
hold in the experimental data set. Second, there is lack of
evidence that the concatenated global low-level and high-level
features effectively capture the photo aesthetics, since they are
defined intuitively. Third, the worst performance is achieved
by the saliency model from Ittiet al.. This is because the
saliency map only tells the conspicuity of each pixel and it
fails to capture important aesthetic features of a photo, such
as color and texture information. Fourth, the graphlet used

in our previous work only capture local spatial compositions.
Global spatial configurations and photo semantics, which are
also essential cues for predicting photo aesthetics, are not
considered.

To further demonstrate the advantage of our approach over
the previous work, we compare the discriminative graphlets
produced by the proposed method and those obtained from
the previous work, on the LHI data set [39]. This data set
contains 10 sports event categories collected from the Internet.
The experimental settings of the previous work are the same
as in [38]. That is, in each category, we use half the photos for
training and leave the rest for testing. We set the maximum
size of graphletT to 5. In each category, we calculate the
discrimination of a graphlet based on:

g(M) =
1
N

∑N

i=1
αk(Mi ,M) (24)

where M denotes the matrix obtained from the graphlet and
N the number of training graphlets, andα is the leading
eigenvector in solving the linear discriminate analysis [31].

For the proposed method, we manually assign each photo
with multiple image-level labels. The discrimination of each
graphlet is computed based on the second term in (5). We
present the comparative discriminative graphlets in Fig. 8. The
proposed approach has the following advantages.

1) The proposed method preserves more semantic objects
in the graphlets. For instance, in the “Rowing” category,
the graphlets produced by the proposed method capture
the spatial interactions between the waterman, the water,
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and the trees, which are important semantics that should
be preserved in the cropped photo. However, in the
previous work, only the spatial correlation among the
watermen are captured. In the “Ice-skate” category,
the graphlets obtained by the proposed method well
describe the spatial correlation among the hand-in-hand
skaters, the ice, and the architecture. Nevertheless, in the
previous model, only spatial interactions of the skaters
are considered.

2) In addition to photo semantics, the global spatial con-
figurations are more appropriately captured by the
graphlets from the proposed approach. As shown in the
“Sailing” category, the graphlets produced by the new
approach well describe the spatial interaction among
the sky, the linear arranged sailboats, and the water,
which reflects the global configuration of this photo.
In contrast, the previous work only captures the local
composition, such as the linearly arranged sailboats.
Moreover, as shown in the “Badminton” category, the
spatial interaction among the wall, the floor, and the
four players are well captured by the proposed method.
However, in the previous work, the wall is neglected.

C. Comparison with the State of the Art Approaches

In this subsection, we evaluate the proposed method (PM)
in comparison with several well-known cropping methods:
sparse coding of saliency maps (SCSM [11]), sensation based
photo cropping (SBPC [7]), omni-range context-based crop-
ping (OCBC [6]), personalized photo ranking (PPR [8]),
describable attribute for photo cropping (DAPC [9]), and our
graphlet transfer-based photo cropping (GTPC [38]). Besides,
cropping results obtained only through color channel post-
embedding graphlets transferring (PM-C), and only through
texture channel post-embedding graphlets transferring (PM-T)
are presented also. We follow the experimental settings in the
previous work [38].

In Fig. 9, we present the cropping results obtained from the
above methods and make the following observations:

1) As shown in the second and the third column, the
global features-based photo evaluation methods, PPR
and DAPC, are less effective to capture the local details
from the original photos. Important local details, such
as the sculpture from the second original photo and
the scatted yachts from the third original photo, are not
preserved by PPR and DAPC.

2) As shown in the fourth column, the saliency model
based cropping, SCSM, only crops the most salient
region. But salient region is not always consistent with
the region that best preserves important visual cues.
Particularly, the colorful sunset, the sculpture, and the
scattered yachts from the first three original photos are
totally ignored by SCSM.

3) As shown in the fifth and the sixth column, the two prob-
abilistic local patch integration based cropping methods,
SBPC and OCBC, are competitive but still less effective
than our approach. The third cropping result produced
by SBPC is less visually balanced than our approach.

The first cropping result produced by OCBC not well
captures the colorful sunsets.

4) As shown in the seventh column, compared with the
previous work [38], the new model crops a photo with
more balance between the global spatial layout and
the local composition, especially the first and the third
photo. Besides, photos cropped using the new approach
are more correlated with semantics, as shown in the last
two photos. This observation reveals semantics is more
effectively preserved in the new model.

5) As shown in the eighth column, our approach preserves
both the global spatial configurations and the local
details from the original photo. Specifically, the global
spatial configurations are: the colorful sunset and lake
surface from the first original photo, the architectures
and the sky from the second original photo, the yachts,
island, and sky from the third original photo, as well as
the trees, cultivated field, and sunset from the fourth
original photo. The local details are: the architecture
areas from the first original photo, the sculpture and
arches from the second original photo, the scattered
yachts from the third original photo, and the trees from
the fourth original photo. Besides, each semantic objects
are well preserved in the cropped photo. These observa-
tions demonstrate that image-level semantics and image
global spatial characteristics are effectively transferred
into graphlets.

6) As shown in the last two columns, with only color
channel or texture channel graphlet transferring either
preserves too much color or texture regions. They are
both suboptimal cropping results.

We present the preference matrix corresponding to the above
compared methods. Each preference matrix is filled by 30
volunteers at Zhejiang University. The result clearly confirm
the advantage of the proposed method.

The time consumption analysis of the proposed method is
as follows. All experiments were carried out on a personal
computer equipped with Intel E8500 and 4GB RAM. All
the six compared methods as well as our approach are
implemented on Matlab platform. We present the average
time consumption of photos with different aspect ratios in
Table I. As shown, the time consumption of our approach
is competitive to the compared methods. We give the
explanation as follows. First, different from PPR, DAPC,
SBPC, and SCSM, which sequentially sample a large number
of candidate photos and then one-by-one evaluate their
quality, the convergence of Gibbs sampling in our approach
is fast. Typically, on a 1024× 768-sized photo, the Gibbs
sampling takes 70 to 100 iterations to converge, while the
above compared methods evaluate more than 1000 candidate
cropped photos. Second, we only present the cropping stage
time consumption of OCBC in Table I. Practically, it takes
hours for the expectation-maximize-based GMM parameter
estimation in OCBC. That is, each arbitrary pairwise k-means
centers correspond to a five-component GMM, while our
approach needs no training time consumption.
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Fig. 9. Cropped photos produced by the compared cropping methods and the corresponding preference matrices (OP means the original photo)

TABLE I
C T C     

Size PPR DAPC SBPC SCSM OCBC GTPC PM PM-C PM-T
800× 600 14.321s 30.113s 45.541s 23.321s 6.624s 10.45s 11.232s 9.876s 2.124s
1024× 768 30.231s 67.785s 93.445s 44.456s 9.343s 14.54s 16.548s 13.342s 3.454s
1600× 1200 54.678s 125.435s 197.64s 76.562s 14.541s 20.11s 22.453s 18.883s 5.512s
1000× 200 6.564s 12.243s 16.784s 8.563s 2.341s 3.97s 4.451s 3.214s 1.677s
2000× 400 25.998s 46.874s 66.453s 31.557s 7.774s 13.21s 14.466s 11.229 3.212s
3000× 600 101.334s 186.676s 254.113s 145.336s 13.378s 19.76s 21.334s 17.689s 5.112s

D. Step-By-Step Model Justification

This experiment justifies the effectiveness of the two main
components in the proposed approach, manifold graphlet em-
bedding and BN-based photo cropping.

To evaluate the effectiveness of the first component, crop-
ping under two experimental settings are adopted. First, we
replace the post-embedding graphlet with color SIFT [29].
We use color SIFT because it captures both local color and
local texture, which functions similarly to our multi-channel
graphlet. In the second column of Fig. 10, color SIFT well
captures the color distribution of the original photos, such
as the colorful sunset from the first and the last original
photo and the blue sky from the second and the third original
photo. However, color SIFT fails to encode local structural
objects, such as the architectures from the first original photo

and the sculpture from the second original photo. Second,
we replace the proposed graphlet embedding algorithm with
kernel PCA [30] and LDA [31] respectively. For a fair com-
parison, both the proposed embedding algorithm and kernel
PCA transfer each graphlet into the same dimensional feature
vector in both color/texture channels. It is worth emphasizing
that, due to the large number of training graphlets (usually
N > 100,000), it is computationally intractable to directly use
kernel PCA/LDA on theN × N kernel matrix. To solve this
problem, we randomly sample 5% graphlets from each training
photo and use the sampled graphlets to construct the kernel
matrix for kernel PCA/LDA. In the third column of Fig. 10,
graphlets embedded using kernel PCA yields unsatisfactory
cropping results because too many non-semantic regions are
retained in the cropped photo. Specifically, only sunsets are
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retained in the first and the last cropped photo, while other
important regions, such as the architectures from the first orig-
inal photo and the trees from the last original photo, are totally
discarded. The second the third cropped photos respectively
ignore the sculpture and the island, which are attractive regions
expected to be preserved from their corresponding original
photos. In contrast with kernel PCA, better cropping results
are achieved when graphlets are embedded using kernel LDA,
as shown in the fourth column of Fig. 10. Note that, cropping
under kernel LDA still performs worse than that under our
graphlet embedding algorithm. For the first original photo,
kernel LDA is less capable for color preserving than our
graphlet embedding,i.e., less blue sunset region is retained
in the cropped photo under kernel LDA. For the third original
photo, kernel LDA keeps little details in the cropped photo,
i.e., the yachts regions are completely neglected.

To evaluate the effectiveness of the second component, we

  !   !

Fig. 10. Performance of replacing one component of the proposed approach
with an off-the-shelf component (A→B: replace component B with component
A; GE: graphlet embedding;SVMPQ: SVM-based photo quality measure;
BNPQ: BN-based quality measure)

replace the BN-based photo quality measure with a kernel
SVM-based one, which is based on (23). After that, the quality
of each candidate cropped photo is computed based on the
posterior probability SVM [35],i.e.,

p(I → highly aesthetic|I ) =
1

1 + exp(− f (x))
(25)

where f (x) is the linear function of SVM. As seen from
the fifth column of Fig. 10, for the first original photo,
the visual balance among the sunset, the lake surface, and
the architectures in the photo cropped using SVM-based
photo quality measure is not as harmonic as that cropped
using our BN-based photo quality measure. For the second
original photo, the sculpture, as a distinctive architecture, is
discarded by the SVM-based photo quality measure. For the
third cropped photo, the leftmost island is only half retained,
which is obviously suboptimal. For the last original photo,
little cultivated filed is preserved in the cropped photo, which
influences negatively to the global aesthetics.

E. Parameter Analysis

This experiment studies how free parameters affect the
performance of the proposed approach and how to set suitable
parameters to achieve a reasonable cropping result. In our

approach, there are two sets of free parameters to be tuned:
1) the maximum graphlet sizeT, and 2) the dimensionalities
of post-embedding graphlets in color and texture channels.

To analyze the effects of the maximum graphlet sizeT
for photo cropping, we setup an experiment by varying
T. In Fig. 11, we present the cropped photos when the
maximum graphlet sizeT is tuned from 1 to 10. We do not
experiment withT larger than 10 because it is computationally
intractable. As shown, whenT is tuned from one to two, the
cropped photo is globally aesthetic but contains few structural
regions. This is because 1-sized and 2-sized graphlets are
not descriptive enough to capture local composition, such as
the architectures in Fig 11. WhenT is tuned from three to
four, the cropped photo includes some structural regions and
remains globally aesthetic, but only the low building is not
representative to the structure in the overall photo. WhenT
reaches five, the global aesthetics are preserved in the cropped
photo. That is, both the tall and low buildings are included
in the cropped photo, which means local compositions are
well-captured by the cropped photo. WhenT is larger than
five, the cropped photo becomes stable, because few local
compositions are captured by graphlet with size larger than
five. Thus, we setT to five for this photo.

To evaluate the performance of the proposed approach
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Fig. 11. Performance of the proposed approach under different value ofT,
the red text denote the time consumption, and the last row shows the votes
of most aesthetic photos under 178 viewers.

under different dimensionalities of post-embedding graphlets
in color and texture channels, we set the dimensionality in
one channel as defaults while tuning that in the other channel.
Denote t as the graphlet size, the default post-embedding
graphlet dimensionalities in color and texture channels
are set to 5t and 60t respectively. For color channel, the
dimensionality of post-embedding graphletsdCM is tuned
from t to 9t with a step of t. For texture channel, the
dimensionality of post-embedding graphletsdHOG is tuned
from 10t to 120t with a step of 10t. As shown in Fig. 12, first,
higher dimensionality of post-embedding graphlet in the color
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Fig. 12. Performance under different dimensionalities of post-embedding
graphlets in color channel (second row) and texture channel (third row)

channel means more intense-colored regions are preserved
in the cropped photo, such as the sunset in the first row of
Fig. 12. Second, higher dimensionality of post-embedding
graphlet in the texture channel implies more textural regions
are persevered in the cropped photo, such as the trees in the
second row of Fig. 12. To balance the two visual cues, we
set the dimensionality of post-embedding graphlets in color
and texture channels respectively to be 8t and 20t.

VI. C

Conventional photo cropping methods achieved much
but are still frustrated by the following three drawbacks:
1) State-of-the-art cropping models cannot incorporate
semantics effectively, 2) global spatial configurations are not
explicitly captured by the existing cropping models, and 3)
the importance of multi-channel visual features cannot be
adjusted automatically in the cropping process. Owing to
the recent progress in image retrieval community [42], [43],
[44], image-level semantics can be efficiently and effectively
acquired. Thus, we present weakly supervised photo cropping
in this paper. First, a manifold embedding algorithm is
derived to integrate image-level semantics and image global
spatial configurations into graphlets. Then, a BN is developed
to transfer post-embedding graphlets from the training photos
into the cropped photo, where the multi-channel visual cues
are automatically tuned. Based on the BN, photo cropping
can be casted as maximally preserving the post-embedding
graphlets from the training photos, and Gibbs sampling is
used for parameter inference. Thorough empirical studies
demonstrate the effectiveness of our approach in comparison
with a group of state-of-the-art photo cropping methods.
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