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Weakly Supervised Photo Cropping
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Abstract—Photo cropping is widely used in the printing indus-

subject; and in cinematography, film footage can be cropped

try, photography, and cinematography. Conventional photo crop- to change its aspect ratio, without stretching the image or

ping methods suffer from three drawbacks: 1) the semantics used
to describe photo aesthetics are determined by the experience of

urations, an essential cue to capture photos aesthetics, are not
well preserved in the cropped photo, and 3) multi-channel visual
features from an image region contribute diferently to human
aesthetics, but state-of-the-art photo cropping methods cannot
automatically weight them. Owing to the recent progress in image
retrieval community, image-level semantics,i.e., photo labels
obtained without much human supervision, can be fficiently and
effectively acquired. Thus, we propose weakly supervised photo

filling with the blank bars. However, photo cropping is still

model designers and specific data sets, 2) image global config-a challenging problem due to the following three reasons:

. Semantics is an important cue to describe photo aes-
thetics, but state-of-the-art photo cropping models cannot
exhibit semantics effectively. Typically, a cropping system
only employs a small number of manually defined seman-
tics based on a specific data set. They are defined by de-
termining whether photos in the data set are covered with
sky, vegetation, water, etc. Additionally, the semantics is

cropping, where a manifold embedding algorithm is developed
to incorporate image-level semantics and image global configu-
rations with graphlets, or, small-sized connected subgraph. After
manifold embedding, a Bayesian Network (BN) is proposed. It
incorporates the testing photo into the framework derived from
the multi-channel post-embedding graphlets of the training data, .
the importance of which is determined automatically. Based on
the BN, photo cropping can be casted as searching the candidate
cropped photo that maximally preserves graphlets from the
training photos, and the optimal cropping parameter is inferred
by Gibbs sampling. Subjective evaluations demonstrate that: 1)
our approach outperforms several representative photo cropping
methods, including our previous cropping model that is guided by
semantics-free graphlets, and 2) the visualized graphlets explicitly
capture photo semantics and global spatial configurations.

usually detected using an auxiliary object deteceog.,

a human face detector. There is no guarantee that all the

pre-specified semantic objects can be accurately discov-

ered.

Global spatial configurations, which reflects the spatial

arrangements of all components in a photo, play an

important role in photo aesthetics, but existing cropping

models cannot well preserve them. As shown in Fig. 1,

the relative displacement of water, sky, and sailboats

determines the photo global layout, but it cannot be
explicitly captured by the existing cropping models.

« Multi-channel visual features from an image region in-
fluence diterently on human aesthetics. For example,
the texture channel is perceptually less dominant for a
textureless image region. Unfortunately, existing cropping
methods cannot automatically adjust the importance of
multi-channel visual features from an image region.

Index Terms—Photo cropping, Weakly supervised, Bayesian
network, Image-level Semantics

|. INTRODUCTION

Photo cropping refers to removing unwanted subjects or
irrelevant details from a photo, changing its aspect ratio, or
adjusting its overall composition. Conventional photo cropping
methods have been applied in many fields. For example, in
printing industry, the visual attractiveness of a photo can be
increased by cropping it from a panoramic one; in telephoto
photography, an image is cropped to magnify the primary
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configurations into graphlets, a manifold embedding algorithemd sky illumination attributes. In [10], Luet al. proposed
is derived to maximally preserve the image-level semantias Gaussian mixture model (GMM)-based hue distribution
of each photo and the Golub-Werman distances betweenaid a prominent line extraction-based texture distribution to
pairwise graphlets in each photo. After sampling a numbegpresent the global composition of each photo. To describe
of candidate cropped photos, we obtain the multi-channghoto’s local composition, three regional features respectively
post-embedding graphlets from each candidate cropped phatescribing human faces, region clarity, and complexity are
Thereafter, we form a BN to measure the quality of eadaeveloped. It is worth noting the limitations of the above global
candidate cropped photo, where the importance of each chéeature-based approaches: First, lat@l. [1]'s approach relies
nel visual feature is adjusted automatically. Based on the néwavily on a blur detection technique to identify the foreground
photo quality measure, we cast photo cropping as seeking tigect’'s boundary, precluding its application to photos taken by
parameter of the candidate cropped photo with the maximuuoint-and-shoot cameras. Second, Letoal. [10]'s approach
posterior probability, and Gibb sampling is applied for paranadopts a category-dependent regional feature extraction, which
eter inference. has the prerequisite that photos are 100% accurately classified
The contributions of this paper are three-fold: into one of the seven categories. This prerequisite is infeasible

. Weak|y Supervised photo Cropping, a new approach [I@ real applications. Third, the attributes prOpOSEd in Dhar
improve photo cropping performance using image-levéf al. [9]'s approach are designed manually and are data set
semantics; dependent, thus havefiiiculty in generalizing to different data

. Manifold graphlet embedding, a new algorithm to encodg€ts. Fourth, all these global low-level and high-level visual
image_|eve| semantics and photo g|oba| Spatia] Configtﬁatures are deSigned heUriStica”y, there is short of evidence
rations into graphlets; that they effectively capture the photo aesthetics, such as the

« A BN which automatically weights multi-channel visuaspatial interaction between the water and the sailboat in Fig. 1.
cues in the post-embedding graphlets transferring process.

B. Probabilistic Local Patches Integration-Based Approaches

. R Wo . - . .
ELATED THORK To describe the spatial interaction of image patches, proba-

A typical photo cropping algorithm contains three stepsjjistic local patch integration based approaches is proposed.
sampling a number of candidate cropped photos and sc@fese approaches extract local patches within each candi-
ing the quality of each one based on some photo qualigte cropped photo, and then probabilistically integrate them
measure; the most qualified one will then be selected. g a quality measure to select the cropped photo. In [7],
such an algorithm, candidate cropped photo evaluation is Rishiyama et al. first detected multiple subject regions in
essential and indispensable procedure in the cropping processimage, where each subject region is a bounding rectangle
In recent years, several photo cropping and photo assessm@paining the salient part of each object. A SVM classifier
approaches have been proposed. Among them, two reseaiCthen trained for each subject region. The quality of each

topics closely relate to the proposed mettod candidate cropped photo is computed by probabilistically
combining the scores of the SVM classifier corresponding to
A. Global Features-Based Approaches the cropped photo’s internal subject regions. Although multiple

Global features-based approaches design different types)s% jects are considered in [7], their spatial interactions, such

global low-level and high-level visual features to represeaF whether the sky is below or above the sea, are ignored.

photo aesthetics. These global features are typically conca e-[6]' Chenget al. proposed omni-range contexe., spatial

nated into a long vector and used to train a classifier O|str|but|ons of arbitrary pairwise image patches, to model the

. . . . photo compositions. The learned omni-range context priors
regression function for measuring photo quality. Latcal. [1] are combined with the other cues, such as the patch number
proposed a number of high-level semantic features basedt(c:)mform a posterior probabilit for' measuring the quality of ’
the division of the subjects and background. Beal. [2] P P y tor ; g quaity ot
designed a group of high-level image features, such as imaeg""eCh candidate cropped photo. It IS notlceable '_[hat, th? omni-
simplicity based on spatial distribution of edges, to imitats. Oc context onl_y captures the *?'”‘T”y spapal interactions of
people’s perception of photo quality. Dagal. [3] proposed image patches. ngh_er—order qutlal interactions, such the four
58 low-level visual features, such as shape convexity Itlnear!y arranggd sailboats n F!g. L cannot b.e captured. To
capture photo aesthetics. Wo’ElgaI. [4] proposed three typésd%scnbe the hlgh-order spatial interactions of image .patches,
of global featuresj.e, low-level features such as exposureZhange.F a'l. [38] introduced graphlets and further' Qe5|gned a
extracted from the 0{/erall image and the salient regions probablllstlc model to transfer them from the training photos
well as the difference between low-level features extra(;tg]go the_ cropped photo. However_, graph_lets r(_eflect no photo
from subject and background regions. Dfetral. [9] pro- semantics and photo global spatial configurations, which are

posed a set of high-level attribute-based predictors to evalu%eSentlal cues to be exploited N a cropping model_. Be§|des,
€ color and texture channel visual features are identically

photo aesthetics. Three types of attribute-based predictors. ) ! S
-, . . weéighted in the graphlet transferring process, which is not
are proposed,e., compositional attributes, content attribute

S . . .
consistent with human aesthetics.

1We suggest readers refer to Zhagigal. [38]'s work for a more compre- To _address- the above p.rObllemS' V_Ve extract .graphlets _tO
hensive overview of the representative photo cropping methods. describe the high-order spatial interaction of atomic regions in
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Fig. 2. The pipeline of the proposed approach

a photo. Then, a weakly supervised framework is proposeditaan be maximally divided, in a coarse-to-fine manner. The
integrate image-level semantics and photo global spatial laydwb left horse and their riders can be maximally divided into
into graphlets. Finally, a probabilistic model is derived to transell ¢§l while the right horse and its rider corresponds to
fer training post-embedding graphlets into the cropped photzll ¢§2, where the upper index represents the level in the
where multi-channel graphlets are automatically weighted. pyramid. Unlike local feature location labeling, it isflitult
to completely group an atomic region into a cell because
IIl. TRANSFERRING IMAGE-LEVEL SEMANTICS INTO GRAPHLETS each atomic region usually contains hundreds of pixels and
some may stick out of the cell. In this work, if 90% of the
pixels in an atomic region are overlapped with a cell, we
There are usually tens to hundreds of objects in a photnsider that this atomic region can be grouped into this cell.
Among these components, a few spatially adjacent ones gger the labeling process, two regions are spatially adjacent
well as their correlations determine the local compositigp their corresponding cells are identical or neighboring.
of a photo. The local composition may reflects the regional Following the above spatial pyramid-based adjacent region
aesthetics in a photo, thus it is essential to exploit them injgentification, we define the graphlg to formularize the
cropping model. To this end, we ameliorate the graphlet jgcal composition of each photo, that is,
Zhanget al. [38] by re-defining it under the spatial pyramid
framework.
In Zhang et al. [38]'s work, two atomic regions are

A. Defining Graphlet under Spatial Pyramid Framework

G =(V.E) 1)

where V denotes a small set of vertices, each representing
an atomic region obtained via multiple unsupervised fuzzy
clusterings (UFCs) [14], an& denotes a set of edges, each
connecting a pair of spatially adjacent atomic regions. UFC

algorithm is an improved clustering algorithm, it guarantees
& \ o the less consuming time and good clustering precision.
;{;"t;inf;l;We”_';ompgse;pg;;;"‘ Moreover, there is no need to know the cluster number and it
can cluster arbitrary -shaped cluster. When adopting UFC on
image segmentation, the advantage is that, prior knowledge of
the number of segmented atomic regions is not required, and
its tolerance bound is flexible to tune. Second, each photo
is segmented five times under different tolerance bounds of
UFC, i.e, the tolerance bound is tuned from 0.1 to 0.5 with
Fig. 3. An illustration of the newly defined spatially adjacent regions. ~ a step of 0.1.

The graphlet size denotes the number of vertices in a
considered as adjacent if they are spatially connected. Thimphlet. Noticeably, the number of graphlets from a photo
criteria is too strict in practice. For example, although this exponentially increasing with its size. As shown in
three neck-in-neck horses in Fig. 3, which are three atonfiig. 4, suppose the left three segmented regions are spatially
regions, are closely located and aesthetically pleasing, thegighboring. There will be three 1-sized graphlets, three
are not spatially connected. Thus, there are deemed Zasized graphlets and four 3-sized graphlets. Thus, the total
non-adjacent in the previous model. To solve this problemumber of resulting graphlets @}+C3+C3 = 23-1 = 7. And
inspired by spatial pyramid [15], which uses cells fronstraightforwardly, we four spatially neighboring segmented
multi-level spatial pyramid to label the location of each locakgions are considered, there will bé 21 = 15 different
feature, we construct a three-level spatial pyramid to labgtaphlets. Therefore, toward an effective cropping system,
the location of each atomic region. As shown in Fig. 3, aonly small-sized graphlets are adopted. Because the color and
atomic region’s corresponding cell denotes the cell into whighe texture channels are generally complementary to each

(b) The first level pyramid (c) The second level pyramid (d) The third level pyramid
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Fig. 5.  An example of preserving pairwise graphlets’ Golub-Werman

Fig. 4. A graphical illustration of the exponential number of graphlets in g|stances

photo.

other in measuring the appearances of each atomic region, we
describe each atomic region in color and textural channels,
which are implemented as 9-dimensional color moment [16]
and 128-dimensional histogram of gradient (HOG) [17]

tively.
respectively whereY = [y1,¥2,---,yn], in which y? and y? are column

vectors standing for the-dimentional representations of the
) i i-th and the j-th graphlets from théh-th photo. Our goal is
B. Manifold Graphlet Embedding to seek aY that characterize the image spatial configuration,
Both of a graphlet's atomic regions and structure could kgd consider the image-level sematics as well. For the former
represented by appearance feature vectors, but it is naturapi@pose, the first term in (5) preserves all pairwise graphlets’
represent a graphlet by concatenating appearance feature @slub Werman distances, which reflects the global spatial
tors since they collaboratively contribute to photo aesthetidayout of a photo, as shown in Fig. 5 and we explain it
First, we define two matrices to symbolize the atomic regioms follows. The distance between pairwise graphlets reflects
and structure. Given &sized graphlet in color channel, wetheir relative displacement. As shown in the right of Fig. 5,
characterize all its atomic regions by a matic € R™®, the Golub-Werman distancdgy between graphleG; and
each row of which denotes a 9-dimensional feature vectgg reflects the relative position between two residential areas
signifying the color moment of an atomic region. To represegbvered byG; and Gs. Straightforwardly, if we preserve all
the structure of a graphlet or the spatial correlation betwegtie pairwise distances between graphlets in the embedding
atomic regions in a graphlet, we adopt & t-sized adjacent process, all their relative positions are kept. And this operation

matrix as: can implicitly kept the global spatial layout. As shown in
o 1 if R andR; are spatially adjacent Fig. 5, preserving three relative distances betwedn &),
Ms@. 1) =1 otherwise (G1,G3) and G2, G3) roughly capture the global spatial layout,

(2) and intuitively, when more graphlets are considered, more
whereR; and R; denote atomic regions corresponding to thaccurate global spatial layout can be kept. For the latter one,

i-th and thej-th vertex in a graphlet respectively. we add the photo category information as the second term.
With Mc and Ms, we represent d-sized graphlet by a Here, we explain (5) in detail as foIIows!\/Iih and ME‘
matrix oft x (9 +1) as: respectively denote matrices corresponding to ittie and
the j-th identical-sized graphlets from thie-th photo, and
M = [Mc. Ms] () o i gy

de(, -) represents the Euclidean distantg-, ) is a function

Following [20], each matrix can be deemed as a point dneasuring the semantical similarity between graphlg(s;)
the Grassmann manifold, and the Golub-Werman distance [#d]a function measuring the semantical difference between

between identical-sized matrices is defined as: graphlets. Denotindl = [N1,N2,---,NC]T where N° is the
, , number of photos from the-th category, ana(-) the photo
dew(M, M) = [[Mo — Moll2 (4) category of photo from which the graphlet is extracted, then
whereMo and M, denote the orthonormal basis BfandM’ (i, j) = [C(G)Q—E(G')m andlq(i, j) = [c(e)gwﬁ YYT =14
respectively. is a term to uniquely determiné. Noticeably, different-sized

To incorporate image-level semantics and image spatghaphlets are embedded independently based on (5).
configuration with graphlets, we propose a manifold embed-Denote DY}, as anN x N matrix whoseij-th entry is

ding [40], [41] algorithm with the objective function as: dow(MP, M?), i.e., the Golub-Werman distance between the

. h ah 2 i-th and the j-th identical-sized graphlet extracted from the

arg miny Zh Zij[dGW(Mi’Mi)_dE(yr’y?)] * h-th photo. Then, the inner product matrix is obtained by
Preserve pairwise graphlets Golub—Werman distances T(D?BW) = _RNhS(hBWRNh/Z' where (%W)ii = (Dgw)ﬁ ; RNh =

o . In. — 848" /N is the centralization matrixty, is a N, x Ny
P —yill2l - = YillPlg(i.j) st YY =1 No = NN Mo :
Zij i = yillfs(. ) Zij % = yjliFla(i.)) st a (%) identity matrix andéy, = [1,---,1]" € R™; and N, is the
Represent imagdevel semantics number of graphlets from thie-th photo. The first term in (5)
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can be rewritten as: whereX(i) is a Q-dimensional row feature vector to be solved.
) Since each sub-problem in (9) has the same form, we can
argmiry > > [dow(Mf' M) - de(y. ) simplify (11) into:
= argmiry Zh”T(Dgw) - 7(DY)IP argmax tr(XZWx") st x="f, i=1,---,P (12)
= arg max tr(Y7(D,)Y")

. Converting the hard constrains in (12) into soft constrains
= arg max tr(Yr(Dew)Y ") (6) and introducing a prediction term, we have the following

wheret(Dgw) is a block diagonal matrix withd x H blocks, regularization representation:

and theh-th diagonal block ig(DR,,). arg max XZOXT + P x— f)Y2+ (% —g)?
The second term in (5) can be rewritten as: g H Zi:l( =) MZ‘:PH( %‘i3)
; 21 (i - whereg; is a predicted value o which is specified by the
argmi - lw(i, j) = Iu(i, s . .
gminy Zii s = YillThwCh ) = To(i. DI prediction strategy proposed by Xiaegal.[25]. GivenM; and
= argmax tr(YAY') (7) its k neighbors{My, - - , Mi, Mic41, - - - , Mk}, where the low-
dimensional representation @1, ..., My} are known while
_ _ar TW.[_a&l
where A = [-& pIn-a] WA[-€ g In-1] + *  that of (Mg,1,--- , M} are unknown, we first use kernel PCA

T T ;T [} i
[ thl.’ _é'?{l] e\év,:rEl 3.‘1’ _éN*Il]’I andvt\/.' 'Sha.n N IX ': diagonal - \yith KernelkPCA(M, M') = exp(-d2,,(M, M")) to transferM
matrix whoseh-th diagonal element is(h. i) — la(h. ). nd all its neighboréMy, - - - , My, Myr41, - - - , My} into a set of

L : a
Baseql on_(6) and (7), the objective function (5) can bc?—dimensional feature vectors. Then we learn a function satis-
reorganized into:

fying fi = g(m),i € {1,--- ,k'}, whe[eg(m) is a spline regres-
arg max tr(Y(A + t(Dew)Y"))) sion function defined ag(m) = %; aigi(m)+ T, Bii(m),
herem is the low-dimensional representationdf using ker-

T
=argmaxtr(YZY') st YY' =lq ®) nel PCA;#i(m) = ||m—my]| and‘Pi(m)(l:l constitutes a base of a
whereZ = A + (Dgw) € RNV, polynomial space; and the parameteandg are computed by
. . (OIS 4 a f
solving the linear syste ‘o7 0 = ( 0 ) where®
is ank’xk’ matrix with each elemeri;; = ¢(|lm—m;||), ¥ is an
C. Incremental Graphlet Embedding Algorithm k' x p matrix with element¥;; = yi(m;) and f = [fy,-- -, fie].

The problem in (8) is a quadratic programming with BY diﬂ‘erenti’ating the queptive function (1??) with respect
quadratic constraints that can be solved using eigenvalue H:Xu and setting the derivative to 0, we obtain
composition, which has a time complexity @{N?). However, 1 1

i i i Xy = Xu(l = Zyy) - ZuL X+ gy
Zis a Iarge—sged matrix because usually> 100,.000, thus 1+ 1+ o 1+
it is computational intractable to solve (8) using a globalh %\ denot di . f th K ¢
once-for-all eigenvalue decomposition. To solve this proble|W ere 2y denotesone dimension of he unknown post-

we develop an incremental graphlet embedding algorithﬁmbeddmg graphlets. Thereby we can upddtebased on

First, we solve an initial embedding using (8) under graphlettige following equation:

(14)

extracted from{l%,--- 1"} photos, whereH® << H. Then w1 1 g 2
we solve a new embedding under graphlets extracted fromu = 1+u2XU (1 =2u0)- 1+#ZZULXL+ 1+,L,29U (15)
(1%, 119 ... "} photos. The objective function is:

The iteration is carried out repeatedly unt{y becomes

arg maxo tr(YOZOYO)T) st yi(1)=yi(0)’i €l,.-,p (9) Stable. To obtain ad-dimensional embedding oKy, the
iterative algorithm is carried outl times, and we finally

whereY® =Y, Yy] € R®H™; Y, = {y;,--- ,yp} is the known obtain the low-dimensional representation of graphlets

embedding inY® from the previous incremental embeddingr® = [X(1),---,X(d)]" from this incremental embedding

under {I1,... ,IH(O)} photos, andYy = {Yyp:+1,---.Yo} is the step. In the next incremental embedding step, we solve the

unknown embedding itY; Z® is the matrix constructed from new embeddingY® from {1%,---,1H" ... [ 1"®} photos,

H® photos which can be divided into four blocks as: where the embedding process is the same as that of the
previous incremental embedding step.

Z(1) :( 2 iy ) (10)

ZyL Zuyu

Denoted as the dimensionality of post-embedding graphlet, V. TransreERRING MurLTI-CHANNEL GRAPHLETS INTO THE
the problem in (9) can be decomposed idtsub-problems. CropPED PHOTO
Each sub-problem is a quadratic problem with linear constrain
that can be iteratively solved. Léﬂ_ = [fi(),---, fi(d)] €
RYi=1,---,P, we can reorganize (9) into:

SWe believe that photo cropping preserves the post-
embedding graphlets through a process of inference, wherein
the post-embedding graphlets are used to make the proba-
arg max) tr(X(1)ZMX(1)") st x(1) = fi(1)i=1,--- ,Pp  bilistically best guesses about what should be preserved in
{ arg max(q) tr(X(d)ZMX(d)T) s.t x(d) = fi(d)i=1,---,P the cropped photo. Here we apply a BN to implement photo
(11) cropping. Given a test photh we define its cropped photo
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as I(n), wheren = (ns,m9,mt) is the cropping parameter.where p(¢c|G(n)) and p(¢rIG(n)) respectively denote the
In particular, ns is a two-dimensional variable denoting thémportance of color and texture channel post-embedding
XY coordinate scale of the cropped photg, € [0,27] is graphlets G() from the cropped photo. Specifically,
the rotation angle of the cropped photo, ampdis a two- p(¢clGe(n)) + p(¢rIGr(n)) = 1 andp(¢7|Gr(n)) is determined
dimensional variable denoting the translation from the centey the sparseness of texture channel grapBigt;), which is

of the test photo to that of the cropped photo. defined it as a logistic function,e.,

For an original photo, its corresponding cropped photo 1

1-exp(-aGr(n) + b)

wherea andb are parameters obtained from the training data.

As probabilities of graphlets in different channels have
the same form, we omit the subscript @c,Gr and
Gc(n),Gr(n). To calculate the above three probabilities in (16),
we need another three probabilitiggl (7)IG(r7)), p(G(n)|G),

p(¢rIGr () = (17)

Color channel post-embedding
graphlets transfer

P(bclGe(m)

Ge Ge(m)

Texture channel post-embedding
raphlets transfer

Cropped photo

—— 1) and p(G|l%,--- ,1M). They are detailed as follows.
Gr(n) 1 T
_ PG (). --.C M (m)p ()
P(I(MIG(m)) = 0 G, .GT()
A set of training photos & p(Gl(U)7 T ,CT(U)“(T]))D(' ()

e L

o I GO LI

T Y -

=[ [ [ 1L PGi@impa@)  (18)
should preserve the aesthetic features from the highly aesthetic
training photos to the largest possible extent. We notice thdfiereT is the maximum graphlet size aitithe number of-
the training photos and the cropped one are highly correlataéiged graphlets ih; G' denotes all the trainingsized graphlets
by their aesthetic features. In terms of color channel po&0dG; the j-th i-sized training graphletp(G;|l) denotes the
embedding graphlets, there are strong correlations betwéiabability of extracting graphlets!, from photol. p(l(n)) is
the following three pairs of variables: 1)%,---,I1" and the probability of a photd cropped using parametgr which
Gc, 2) G¢ and Ge(n), and 3)Ge(n) and I(n). In terms of is defined as Gaussian kerngi{l (1)) = exp(””;—;’“z). In this

texture channel graphlets, there are also strong correlatiq@isrk, the graphlet extraction is based on random walking.
between another three pairs of variables:14)--- .I" and e first index all atomic regions and choose a starting one
Gr, 5) Gr andGr(y), and 6)Gr and|(y), wherel™,---, 1" yith probability ?Y2, where Y means there aref atomic
denote the states of training photos drfg) the state of the regions in photd and P(Y) is the corresponding probability.
cropped photoG and G(n) respectively denote the states ofye then visit a spatially adjacent larger-indexed vertex (same
post-embedding graphlets from the training photos and tReobability of visiting a larger or smaller-indexed vertex) with
cropped photoGe () andGr () the states of color and textureprobability 5~—-terrres, wherede(R) denotes the degree
channel post-embedding graphlets from the cropped phogg.the current atomic regioR and pe(R) the probability
The above six correlations can be represented by a BN [38}, atomic regionR with degreede(R). In our implementa-
{36]- AS% shgwn inb Fig. gl thedpfolzglsed BIN C(;D)maigsh%‘/ﬂon, pae(R) and p(Y) are both defined as Gaussian kernels:
ypes of nodes: observable nodes (blue-colored) and hidden lIde(R)—de(R)F IIY=Yi?2
nodes (gray-colored). Directed edges describe the relationsﬂ? §(R') * exp. B T3 and p(Y) e exp g ) The
between nodes. These two types of nodes form four laye !’d‘_’m walking process stops whe_n the maximum graphlets
The first layer represents all training photos. The second Iafé?e is reached. Therefore, we obtain
denotes the training post-embedding graphlets. The third layer P(Y) i-1 1 Is(R) — SR
represents post-embedding graphlets from the cropped phomG'ju) o l—l exp(——z]
And the fourth layer represents the cropped photo. Yo 2+ Yde Pae(R)de(R) Ts

Based on the above BN, we cast photo cropping as a process IS(R)-5P (1_9)
that maximally transfers the post-embedding graphlets frofffiere the term exlf—g—g) encourages choosing
the highly aesthetic training photos into the cropped photmoderate-sized atomic regions. Our model suppresses
This process can be formulated into the following maximughoosing small-sized, even highly-aesthetic, atomic regions

Fig. 6. BN-based photo cropping

a posterior (MAP) framework: because they are not representative to the original photo.
3 Lo 2 H s(R) is the number of pixels in atomic regidR. s and o
n = argmay p( @I~ 1% -, 17) respectively denote the Gaussian center and the covariance of

= arg rT)7<’=1><p(<25cIGC(U))p(' (MIGc()PGc(IGc)pGell - - . 1™)pixel number in atomic regions.
Color channel graphlets transfer
GlIY, -, 1M = p@GL---, G, ... I
+ PTG )P ()GT ) PGrIGPGrIY, 1% agfEl e 1D =PE G
Texture channel graphlets transfer = l_[izl pGII~,---,17) = l—lizl l_[jzl p(Gj“ ;o 17) (20)
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where p(Gi].|I1,--- ,1M) is the probability of graphIeG‘j ex- 313 well-composed panoramic photos. We intend to maxi-
tracting from all training photos®,--- , 1" and is defined as: mally preserve the composition from the original panoramic
- " H - photos into the cropped 4:3 aspect ratio photos. Due to space
pGjll=, -, 17) = 1—]—[h:1(1— pPG;ll )) (21) limitation, we only present the cropping results using test
p(G(n)|G) measures the similarity between graphlets from th@oms with a 4:3 aspect ratio

o . To obtain the image-level semantics of each photo in our
training photos and those from the cropped phat, . : )
gp ppedp data set, we represent each photo by a 512-dimensional Gist

1 L @ Gim) - GyIP descriptor [25] and then classify it by a 13-class SVM classi-
T TaYixYi() A g2 fier. We use the probabilistic SVM [35] and set the semantics
t=1 =1 =t (22) ©f each photo as the three highest probable predicted labels.
The 13-class SVM classifier is trained from the scene data set
published by Feifeet al. [26].

P(G()IG) o exp

whereY;(n) denotes the number ¢fsized graphlets from the
cropped photo;th(n) is the j-th t-sized graphlet from the
cropped photo.

Based on (16), we use Gibbs sampling to compute tﬁ;e
optimal cropping parameter, where the procedure is the samén this experiment, we evaluate the effectiveness of our
as in our previous work [20]. We present the procedure of ti@st-embedding graphlets in capturing the photo aesthetics.

proposed weakly supervised photo cropping in Algorithm 1We compare the post-embedding graphlets with six aesthetic
features proposed by Luet al. [1], Luo et al. [10], Ke

et al. [2], Yeh et al. [8], and Zhanget al. [38]. The

Aesthetics Captured by the Post-Embedding Graphlets

Algorithm 1 Weakly Supervised Photo Cropping saliency model proposed by Ittt al. is also used employed
input:a set of category-labeled training photts--- ,I"; a test photd; ~ for comparison. In particular, we experiment on the data
and maximum graphlet siZE; set collected by Yehet al., which contains 6000 highly

output: a cropped photd(7);

1. Apply UFC-based segmentation to decompose each photo into atomi@esmetlc as well as 60,00 low aeSthe_tIC phOtOS Co”e(?ted
regions; extractl,-- , T}-sized multi-channel graphlets from DPChalleng& Most images from this data set contain
fromtraining photos based on random walking. one single object and the background is typically clear. To

2. Adopt the manifold embedding to transform color and texture channe ; ;
graphiet intod-dimensional feature vectors based on (5). l:ompare the effectiveness of the five features, we use each

3. Gibbs sampling for optimal cropping parameter selection based on  feature to predict whether a test photo is highly aesthetic or
(16), and output the corresponding cropped photo. low aesthetic. We use the same split of training and test sets
as in the program provided by Ye#t al., and then train a
binary SVM classifier based on the five features. Noticeably,
as local descriptors, multi-channel post-embedding graphlets

hi . | h . fth cannot be directly used to train an image-level photo quality
In this section, we evaluate the effectiveness of the proposedssifier Inspired by graph kernel [33] which measures the

Weakly supervised photo copping. The first part. shows t!%'ﬁnilarity between pairwise graphs by comparing all their
effectiveness of the post-embedding graphlets in capturing e ctive subgraphs, we construct an image-level kernel to
photo aesthetics. The second part evaluates the performat[}'%(-gsure the similarity, between photas

of the proposed approach by comparing with representative "

cropping methods. The third part step-by-step evaluates the

L no_ o= ’
effectiveness of each component in the proposed approach. In k(1) = N = N/ ZGEI,G’EI/ kG.G) (23)
the fourth part, we discuss the influences of the free parametgigere k(. -) is the basis kernel which is set linear in our
on the cropping results. The last part presents the cropp@gheriment; 4 is a normalization factor wherei and

V. EXPERIMENTAL RESULTS AND ANALYSIS

results under different segmentation results N;- respectively denote the numbers of graphlets and 1’
Note that, two graph kernel%,\,I and khOG are constructed in
A. Data Collection and Preprocessing both color and texture channels. To integrate the two kernels

To the best of our knowledge, there are no standard data e@ether as an input to kernel SVM, we use multiple kernel
released for evaluating cropping performance. Therefore, #@Ming (MKLY [34] which automatically learns the weights
compile our own photo cropping data set. The total trainirff €ach kernel and linearly combine them. .
data contains approximately 6000 highly-ranked as well as 10 quantitatively compare the proposed approach with
6000 low-ranked photos, which are crawled from two onlin'€ Six competitors, we calculate the precision recall curve
photo sharing websites Photosig and Flicker. Because both i3calculated via:Precision = _tp+pfp and Recall = Erol
aspect ratio and panoramic photos are used in the previd{eretp and fp are true positive and false positive respec-
cropping experiments, towards a comprehensive comparafi¥€!y: and fn and tn are false negative and true negative
study, we construct two groups of test photos. The first grofgSPectively. As shown in Fig. 7, the proposed method sig-

contains 337 badly-composed photos with an aspect ratioficantly outperforms its competitors. The reasons are given

4:3. We intend to obtain a well-composed photo by cropping as'Cropping results from panoramic test photos are given in the supplemental
sub-region from the original photo. The second group contaimsterial.
“http://www.dpchallenge.com
2This part is presented in the supplemental material. Shitp://www.di.ens.fi~fbach/path/.
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Fig. 8. Asthetics captured by four top-ranked graphlets based on Zéiaalg[38]'s approach (green rectangle) and the proposed approach (blue rectangle).
We present the four most discriminative graphlets from each photo.

100

in our previous work only capture local spatial compositions.
Global spatial configurations and photo semantics, which are
also essential cues for predicting photo aesthetics, are not
considered.

To further demonstrate the advantage of our approach over
the previous work, we compare the discriminative graphlets
. S produced by the proposed method and those obtained from
-.-vehetal.\\ ‘ . the previous work, on the LHI data set [39]. This data set

95

90 +

85

80

75

70

65

. EE”"%:?: e contains 10 sports event categories collected from the Internet.

—o-lttietal. \\.\‘ The experimental settings of the previous work are the same
i Pethihibs | as in [38]. That is, in each category, we use half the photos for
s 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 95 100 training and leave the rest for testing. We set the maximum

size of graphletT to 5. In each category, we calculate the
Fig. 7. Precision-Recall curve of the seven compared features (PM denoﬁ%crimination of a graphlet based on:
the proposed method) ’

gM) = % Zzl ak(Mi, M) (24)

as follows. First, Luoet al.’s and Yehet al.’s approaches Where M denotes the matrix obtained from the graphlet and

are partially based on the assumption that the foregroubdthe number of training graphlets, and is the leading
and background of the photos taken by SLR cameras can@i@envector in solving the linear discriminate analysis [31].
easily discriminated. Unfortunately, this assumption does notFor the proposed method, we manually assign each photo
hold in the experimental data set. Second, there is lack §th multiple image-level labels. The discrimination of each
evidence that the concatenated global low-level and high-le@gphlet is computed based on the second term in (5). We
features #ectively capture the photo aesthetics, since they dpéesent the comparative discriminative graphlets in Fig. 8. The
defined intuitively. Third, the worst performance is achieve@roposed approach has the following advantages.

by the saliency model from Ittet al.. This is because the 1) The proposed method preserves more semantic objects
saliency map only tells the conspicuity of each pixel and it in the graphlets. For instance, in the “Rowing” category,
fails to capture important aesthetic features of a photo, such the graphlets produced by the proposed method capture
as color and texture information. Fourth, the graphlet used the spatial interactions between the waterman, the water,
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2)

and the trees, which are important semantics that should
be preserved in the cropped photo. However, in the
previous work, only the spatial correlation among the 4)
watermen are captured. In the “Ice-skate” category,
the graphlets obtained by the proposed method well
describe the spatial correlation among the hand-in-hand
skaters, the ice, and the architecture. Nevertheless, in the
previous model, only spatial interactions of the skaters
are considered.

In addition to photo semantics, the global spatial con-
figurations are more appropriately captured by the 5)
graphlets from the proposed approach. As shown in the
“Sailing” category, the graphlets produced by the new
approach well describe the spatial interaction among
the sky, the linear arranged sailboats, and the water,
which reflects the global configuration of this photo.
In contrast, the previous work only captures the local
composition, such as the linearly arranged sailboats.
Moreover, as shown in the “Badminton” category, the
spatial interaction among the wall, the floor, and the
four players are well captured by the proposed method.
However, in the previous work, the wall is neglected.

C. Comparison with the State of the Art Approaches

In this subsection, we evaluate the proposed method (PM)
in comparison with several well-known cropping methods:
sparse coding of saliency maps (SCSM [11]), sensation base@)
photo cropping (SBPC [7]), omni-range context-based crop-

ping

(OCBC [6]), personalized photo ranking (PPR [8]),

The first cropping result produced by OCBC not well
captures the colorful sunsets.

As shown in the seventh column, compared with the
previous work [38], the new model crops a photo with
more balance between the global spatial layout and
the local composition, especially the first and the third
photo. Besides, photos cropped using the new approach
are more correlated with semantics, as shown in the last
two photos. This observation reveals semantics is more
effectively preserved in the new model.

As shown in the eighth column, our approach preserves
both the global spatial configurations and the local
details from the original photo. Specifically, the global
spatial configurations are: the colorful sunset and lake
surface from the first original photo, the architectures
and the sky from the second original photo, the yachts,
island, and sky from the third original photo, as well as
the trees, cultivated field, and sunset from the fourth
original photo. The local details are: the architecture
areas from the first original photo, the sculpture and
arches from the second original photo, the scattered
yachts from the third original photo, and the trees from
the fourth original photo. Besides, each semantic objects
are well preserved in the cropped photo. These observa-
tions demonstrate that image-level semantics and image
global spatial characteristics are effectively transferred
into graphlets.

As shown in the last two columns, with only color
channel or texture channel graphlet transferring either
preserves too much color or texture regions. They are

describable attribute for photo cropping (DAPC [9]), and our
graphlet transfer-based photo cropping (GTPC [38]). Besides,

cropping results obtained only through color channel posjye present the preference matrix corresponding to the above
embedding graphlets transferring (PM-C), and only througlbmpared methods. Each preference matrix is filled by 30
texture channel post-embedding graphlets transferring (PM~fglunteers at Zhejiang University. The result clearly confirm
are presented also. We follow the experimental settings in tfp advantage of the proposed method.
previous work [38]. The time consumption analysis of the proposed method is
In Fig. 9, we present the cropping results obtained from tg follows. All experiments were carried out on a personal
above methods and make the following observations: computer equipped with Intel E8500 and 4GB RAM. All
1) As shown in the second and the third column, ththe six compared methods as well as our approach are
global features-based photo evaluation methods, PRRolemented on Matlab platform. We present the average
and DAPC, are lessfiective to capture the local detailstime consumption of photos with different aspect ratios in
from the original photos. Important local details, sucfiable I. As shown, the time consumption of our approach
as the sculpture from the second original photo arid competitive to the compared methods. We give the
the scatted yachts from the third original photo, are neplanation as follows. First, different from PPR, DAPC,
preserved by PPR and DAPC. SBPC, and SCSM, which sequentially sample a large number
2) As shown in the fourth column, the saliency modebdf candidate photos and then one-by-one evaluate their
based cropping, SCSM, only crops the most saliequality, the convergence of Gibbs sampling in our approach
region. But salient region is not always consistent witls fast. Typically, on a 1024 768-sized photo, the Gibbs
the region that best preserves important visual cuesampling takes 70 to 100 iterations to converge, while the
Particularly, the colorful sunset, the sculpture, and trebove compared methods evaluate more than 1000 candidate
scattered yachts from the first three original photos aceopped photos. Second, we only present the cropping stage
totally ignored by SCSM. time consumption of OCBC in Table I. Practically, it takes
3) As shown in the fifth and the sixth column, the two probhours for the expectation-maximize-based GMM parameter
abilistic local patch integration based cropping methodsstimation in OCBC. That is, each arbitrary pairwise k-means
SBPC and OCBC, are competitive but still less effectiveenters correspond to a five-component GMM, while our
than our approach. The third cropping result produceapproach needs no training time consumption.
by SBPC is less visually balanced than our approach.

both suboptimal cropping results.
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Original Photo DAPC OCBC GTPC PM PM-T PM-C PPR SBPC SCsSM

=0 T oure Locee L ave [ o e owr o Lere ecor e QR L 07 L orrc | ocoe | Grre o [ e | Pver | o L sore Jscw | s
oP - 24 14 12 8 20 23 17 14 21 - 14 14 13 8 14 12 13 15 13

153 op 116
DAPC 6 = 23 14 14 19 24 11 20 19 150 DAPC 16 = 12 14 3 14 19 16 13 17 124
0CBC 16 7 - 1 10 16 14 11 9 18 112 0OCBC 16 18 - 12 11 17 22 21 14 14 145
GTPC 18 16 19 - 7 10 14 17 17 15 133 GTPC 17 16 18 = 5 10 13 18 16 20 133
PM 22 16 20 23 - 25 27 19 21 23 196 PM 22 27 19 25 - 21 26 19 22 18 199
PM-C 10 11 14 20 5 - 11 13 12 14 110 PM-C 16 16 13 20 9 - 19 18 17 17 145
PM-T 7 6 16 16 3 19 = 7 9 19 102 PMT 18 1 8 17 4 1 - 8 9 7 93
PPR 13 19 19 13 11 17 23 = 22 24 161 PPR 17 14 9 12 11 12 22 - 15 9 121
SBPC 16 10 21 13 9 18 21 8 - 21 137 SBPC 15 17 16 14 8 13 21 15 - 10 129
SCsM 9 1 12 15 U 16 i 6 9 - 9% scsM 17 13 16 10 12 13 23 21 20 = 145
Preference matrix from the cropping results in the first row Preference matrix from the cropping results in the second row
[ or [oarc ocec  GTPC | pM | PM.C | PMT | PPR | SBPC | SCSM | Score | | | OP | DAPC | OCBC | GTPC | PM | PMC | PMT | PPR | SBPC SCSM | Score
opP = 14 7 13 5 17 18 6 19 14 113 op = 17 12 12 9 14 13 11 14 14 116
DAPC 16 - 1 13 7 18 17 13 21 16 132 DAPC 13 = 12 11 8 11 15 12 11 10 103
ocBC 23 19 - 16 12 18 21 23 24 17 173 ocBC 18 18 = 14 11 15 17 19 15 21 148
GTPC 17 17 14 - 9 16 14 19 21 20 147 GTPC 18 19 16 - 11 16 14 19 18 17 148
PM 25 23 18 21 - 28 29 25 26 19 214 PM 21 22 19 19 - 21 23 23 19 18 185
PM-C 13 12 12 14 2 20 12 19 1 115 PM-C 16 19 15 14 9 - 21 23 16 21 154
PM-T 12 13 9 16 1 10 = 8 4 2 75 PM-T 17 15 13 16 7 9 - 12 11 13 113
PPR 24 17 7 11 5 18 22 - 23 20 147 PPR 19 18 11 11 7 7 18 - 17 16 124
SBPC 1 9 6 9 4 1 26 7 - 9 92 SBPC 16 19 15 12 1 14 19 13 - 18 137
SCSM 16 14 13 10 11 19 28 10 21 - 142 SCSM 16 20 9 13 12 g 17 14 12 - 122
Preference matrix from the cropping results in the third row Preference matrix from the cropping results in the fourth row

Fig. 9. Cropped photos produced by the compared cropping methods and the corresponding preference matrices (OP means the original photo)

TABLE |
CoMPARATIVE TIME CONSUMPTION OF THE COMPARED CROPPING METHODS

Size PPR DAPC SBPC SCSM OCBC | GTPC PM PM-C PM-T
800x 600 14.321s | 30.113s | 45.541s | 23.321s | 6.624s | 10.45s| 11.232s| 9.876s | 2.124s
1024x 768 | 30.231s | 67.785s | 93.445s | 44.456s | 9.343s | 14.54s| 16.548s| 13.342s| 3.454s

1600x 1200 | 54.678s | 125.435s| 197.64s | 76.562s | 14.541s| 20.11s| 22.453s| 18.883s| 5.512s
1000x 200 6.564s 12.243s | 16.784s | 8.563s 2.341s | 3.97s | 4.451s | 3.214s | 1.677s
2000x 400 | 25.998s | 46.874s | 66.453s | 31.557s | 7.774s | 13.21s| 14.466s| 11.229 | 3.212s
3000x 600 | 101.334s| 186.676s| 254.113s| 145.336s| 13.378s| 19.76s| 21.334s| 17.689s| 5.112s

D. Step-By-Step Model Justification and the sculpture from the second original photo. Second,
we replace the proposed graphlet embedding algorithm with
This experiment justifies the effectiveness of the two makernel PCA [30] and LDA [31] respectively. For a fair com-
components in the proposed approach, manifold graphlet eparison, both the proposed embedding algorithm and kernel
bedding and BN-based photo cropping. PCA transfer each graphlet into the same dimensional feature
To evaluate the effectiveness of the first component, crogector in both color/texture channels. It is worth emphasizing
ping under two experimental settings are adopted. First, weat, due to the large number of training graphlets (usually
replace the post-embedding graphlet with color SIFT [29N > 100,000), it is computationally intractable to directly use
We use color SIFT because it captures both local color akdrnel PCA/LDA on theN x N kernel matrix. To solve this
local texture, which functions similarly to our multi-channeproblem, we randomly sample 5% graphlets from each training
graphlet. In the second column of Fig. 10, color SIFT wefthoto and use the sampled graphlets to construct the kernel
captures the color distribution of the original photos, suamatrix for kernel PCA/LDA. In the third column of Fig. 10,
as the colorful sunset from the first and the last origingraphlets embedded using kernel PCA yields unsatisfactory
photo and the blue sky from the second and the third origineopping results because too many non-semantic regions are
photo. However, color SIFT fails to encode local structuraktained in the cropped photo. Specifically, only sunsets are
objects, such as the architectures from the first original photo
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retained in the first and the last cropped photo, while othapproach, there are two sets of free parameters to be tuned:
important regions, such as the architectures from the first oritj- the maximum graphlet siz€, and 2) the dimensionalities
inal photo and the trees from the last original photo, are totalbf post-embedding graphlets in color and texture channels.
discarded. The second the third cropped photos respectivelyfo analyze the féects of the maximum graphlet siZze
ignore the sculpture and the island, which are attractive regidios photo cropping, we setup an experiment by varying
expected to be preserved from their corresponding originkl In Fig. 11, we present the cropped photos when the
photos. In contrast with kernel PCA, better cropping resultsaximum graphlet siz& is tuned from 1 to 10. We do not
are achieved when graphlets are embedded using kernel L2&periment withT larger than 10 because it is computationally
as shown in the fourth column of Fig. 10. Note that, croppinigtractable. As shown, wheh is tuned from one to two, the
under kernel LDA still performs worse than that under owropped photo is globally aesthetic but contains few structural
graphlet embedding algorithm. For the first original photoegions. This is because 1-sized and 2-sized graphlets are
kernel LDA is less capable for color preserving than ourot descriptive enough to capture local composition, such as
graphlet embedding.e., less blue sunset region is retainethe architectures in Fig 11. Wheh is tuned from three to
in the cropped photo under kernel LDA. For the third origindbur, the cropped photo includes some structural regions and
photo, kernel LDA keeps little details in the cropped photaemains globally aesthetic, but only the low building is not
i.e, the yachts regions are completely neglected. representative to the structure in the overall photo. Wihen
To evaluate the féectiveness of the second component, wesaches five, the global aesthetics are preserved in the cropped
photo. That is, both the tall and low buildings are included
~r ' F “t==2 in the cropped photo, which means local compositions are
; = well-captured by the cropped photo. Whenis larger than
E-' five, the cropped photo becomes stable, because few local
. compositions are captured by graphlet with size larger than
five. Thus, we seT to five for this photo.
To evaluate the performance of the proposed approach

Original Photo  Color SIFT — Graphlet) Kernel PCA — GE KerneI_LDA — GE SVMPQ—PPQ

YTy

- 11.23s

.
"

24.565 46.69s

80.14s

Fig. 10. Performance of replacing one component of the proposed approach
with an df-the-shelf component (AB: replace component B with component

A; GE: graphlet embedding;SVMPQ: SVM-based photo quality measure;
BNPQ: BN-based quality measure)

T=4
1987.77s

T=1
245.98s

T=2
476.78s

T=3
. . 901.11
replace the BN-based photo quality measure with a kernel :

SVM-based one, which is based on (23). After that, the quality | ®
of each candidate cropped photo is computed based on th¢
posterior probability SVM [35]j.e,

. . 1

p(I — highly aesthetid) = 1+ exp(—f(¥) (25)
where f(x) is the linear function of SVM. As seen from
the fifth column of Fig. 10, for the first original photo, T=I T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=I0
the visual balance among the sunset, the lake surface, and
the architectures in the photo cropped using SVM-base@. 11. Performance of the proposed approach under different vallie of
photo quality measure is not as harmonic as that croppée red text denote the time consumption, and the last row shows the votes
using our BN-based photo quality measure. For the secofidnost aesthetic photos under 178 viewers.
original photo, the sculpture, as a distinctive architecture, i
dl_scarded by the SVM-based phqto qua_llty measuire. ':F” °color and texture channels, we set the dimensionality in
third cropped photo, the leftmost island is only half retaine ne channel as defaults while tuning that in the other channel.

V.VhiCh is_ obvioqsly _suboptimal. I_:or the last original phoF enotet as the graphlet size, the default post-embedding
!lttle cultivated f||_ed is preserved in the CrOPpEd photo, whic raphlet dimensionalities in color and texture channels
influences negatively to the global aesthetics. are set to band 6@ respectively. For color channel, the
. dimensionality of post-embedding graphledsy is tuned
E. Parameter Analysis from t to 9t with a step oft. For texture channel, the
This experiment studies how free parameters affect tdenensionality of post-embedding graphledgos is tuned
performance of the proposed approach and how to set suitdinten 10t to 12G with a step of 10tAs shown in Fig. 12, first,
parameters to achieve a reasonable cropping result. In bigher dimensionality of post-embedding graphlet in the color

der different dimensionalities of post-embedding graphlets
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Fig. 12. Performance under ftrent dimensionalities of post-embedding

graphlets in color channel (second row) and texture channel (third row) [12]

[13]
channel means more intense-colored regions are preserved
in the cropped photo, such as the sunset in the first row @f
Fig. 12. Second, higher dimensionality of post-embedding
graphlet in the texture channel implies more textural regiorﬂ%
are persevered in the cropped photo, such as the trees in 19
second row of Fig. 12. To balance the two visual cues, we
set the dimensionality of post-embedding graphlets in colBf]
and texture channels respectively to leafid 20t [17]

(18]
VI

Conventional photo cropping methods achieved mudH!
but are still frustrated by the following three drawbacksy,
1) State-of-the-art cropping models cannot incorporate
semantics &ectively, 2) global spatial configurations are not
explicitly captured by the existing cropping models, and
the importance of multi-channel visual features cannot be
adjusted automatically in the cropping process. Owing t&l
the recent progress in image retrieval community [42], [43],
[44], image-level semantics can be efficiently and effectively
acquired. Thus, we present weakly supervised photo croppiag
in this paper. First, a manifold embedding algorithm i
derived to integrate image-level semantics and image global
spatial configurations into graphlets. Then, a BN is developed
to transfer post-embedding graphlets from the training ph0t8§]
into the cropped photo, where the multi-channel visual cues
are automatically tuned. Based on the BN, photo croppiri§]
can be casted as maximally preserving the post—embeddf|
graphlets from the training photos, and Gibbs sampling
used for parameter inference. Thorough empirical studies]
demonstrate theffectiveness of our approach in comparison
with a group of state-of-the-art photo cropping methods. [29]
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