
Robust Real-Time Extreme Head Pose Estimation

Sergey Tulyakov, Radu-Laurenţiu Vieriu, Stanislau Semeniuta, and Nicu Sebe
Department of Information Engineering and Computer Science

University of Trento, Italy
{sergey.tulyakov, stanislau.semeniuta}@unitn.it, {vieriu, sebe}@disi.unitn.it

Abstract—This paper proposes a new framework for head
pose estimation under extreme pose variations. By augmenting
the precision of a template matching based tracking module with
the ability to recover offered by a frame-by-frame head pose
estimator, we are able to address pose ranges for which face
features are no longer visible, while maintaining state-of-the-art
performance. Experimental results obtained on a newly acquired
3D extreme head pose dataset support the proposed method
and open new perspectives in approaching real-life unconstrained
scenarios.

I. INTRODUCTION

Head pose estimation (HPE) has been at the center of
attention of many research groups in the past decade. This is
mostly because it plays an important role in decoding human
behavior, offering a valuable proxy for the gaze direction.
Many applications can benefit from reliable HPE spanning
domains such as human computer interaction, human behav-
ior understanding, driving monitoring. Furthermore, HPE has
become a necessary intermediate step for face registration or
facial expression recognition, especially under large poses.

We investigate the HPE problem in the context of aiding
decision-making process for elderly people while they move
in complex unconstrained environments. Our scenario involves
using a wheeled frame enhanced with a depth sensor oriented
towards the subject. The novelty of our work comes directly
from the placement of the camera, enforcing a point of view
(see Fig. 6 for some examples) which guarantees to capture
only the lower part of the user’s face, while the upper part
may be completely occluded (e.g., in case of up-tilt). In order
to treat such extreme head poses, we propose fusing two
competitive processing pipelines, combining their strengths
and overcoming their weaknesses: one uses a personalized
template created offline which ensures smooth and accurate
real-time tracking performance but it is prone to losing track
in some cases; the other is a frame independent head pose
estimator that needs no initialization but its performance is
poorer with respect to the tracking module. In this work, we
consider a pose to be extreme when the rotation of the head
results in occluded facial features.

The paper is structured as follows: Section II discusses
relevant state-of-the-art methods. We describe our proposed
system and explain how fusion is performed in Section III.
Experimental results are presented in Section IV. Finally, we
conclude the paper in Section V.

II. RELATED WORK

While many approaches on HPE rely on 2D information
(see [9] for a survey), they are seriously influenced by illumi-
nation changes, facial appearance etc., making it difficult to

find simple enough features to meet real-time constraints. In
contrast, depth or range images are not sensitive to illumination
changes and therefore, are more suitable for analysis under
various conditions. In this paper, we focus on 3D approaches,
since they are closer in relevance to our work.

Fanelli et al. [5] describe an approach for head pose
estimation based on random regression forests. To train a
classifier they generate a dataset of 50K images using a 3D
morphable model to randomly generate poses. The percentage
of testing examples that were correctly identified within the
threshold of 10◦ degrees is 90.4%, which is a very promising
result. However, the case of extreme head orientations is not
covered in their study. In [2] the authors propose a novel shape
signature to help identifying nose position in range images.
Using parallel computing, they evaluate many pose hypotheses
reaching a hit rate of 97.8% corresponding to an error threshold
of 15◦ at 55.8 fps. In the same context, in [10] a particle swarm
optimization search results in remarkably small uncertainty
when predicting head pose (around 2◦ standard deviation for
all angles), but, similar to [2], they also resort to massive
parallel resources coming from GPU.

Another group of methods for head pose estimation in 3D
treats the task as a mesh registration problem. An output of a
depth sensor is seen as a set of points or as a mesh. Weise et al.
[14] present a method for transferring facial expressions from a
user to an animated avatar. To accomplish the transfer they first
create a person-specific model for a performer by manually
marking correspondences between the model and the user.
This operation is done automatically in [7], eliminating the
requirement to do offline tuning of the system to a particular
human performer. Methods like [3], [8], [13], [14] still rely
on landmarks detection, such as eyes, nose, mouth and other
features. When facial features are only partially visible in the
scene due to an extreme head pose (e.g., just one eye, or a part
of the nose), accurate correspondence estimation is no longer
possible and the accuracy of the system decreases.

In order to handle large pose variations and therefore being
able to process non-frontal views of a face, one needs a differ-
ent method of initial correspondence estimation. Under these
conditions, the fusion between two independent components
seems an attractive and elegant solution. To the best of our
knowledge there are no works in the literature that tackle the
problem of real-time head pose estimation from such extreme
views as we do.

III. FROM DETECTION TO TRACKING

To be able to determine a head pose from non-frontal
views we fuse the results of two independent components every
time instant. The first component is a head pose detector that



analyses frames independently and provides an estimate for the
head center and orientation simultaneously. At the first frame,
these estimates are used to initialize a person-specific tracker.
After the tracker is initialized the two components process
each frame in parallel. The fusion of these two independent
components allows us to improve the estimate of the head pose.
These methods are further detailed in the following sections.

A. Head Pose Detector

The goal of the head pose detector is predicting the
coordinates of the head center projected onto the camera plane
(depth coordinate can be easily obtained by taking the pixel
value at (x, y) in the depth image) and two of the 3DOF angles
that describe the head orientation: yaw and tilt. Roll is omitted
since for the given scenario one expects insignificant variations
of this component.

Inspired by the work of [6], we address head pose esti-
mation in 3D, using a patch majority voting scheme. There is
one major aspect that differentiates our system from the one in
[6] though. Instead of considering a random forest approach,
we employ a cascade of specialized trees, each solving a
simple classification/regression problem. Learning consists of
generating depth patches from each frame, feature extraction
and tree growing.

1) Patch data construction: We randomly sample each
scene from the training set with a predefined number of
squared patches. The patches are then selected based on the
amount of depth information they contain and then saved along
with the associated labels. The size of the patch was fixed
to 100 pixels experimentally, by computing the correlation
between considered features and the classification/regression
labels.

2) Feature Extraction: Similarly to [6], we considered as
features the simple differences between regions of pixels,
computed on top of depth data. Each feature is obtained
by subtracting the mean values of two rectangular regions
located inside a given patch. Since we are looking at training
individual trees instead of random ensembles, we need to
ensure that our trees are strong enough by themselves to
cast reliable predictions. Ideally, one would initially build the
feature space for all training samples, making it available
at the root node. However, this approach is limited by the
available memory resources, especially when working with
massive quantities of data. Instead, we generate a considerable
amount of predefined pairs of pixel regions (one million in
our experiments) and introduce a trace of randomness in the
training stage, by choosing a feature subset on which the
classification/regression measure will be optimized at each
split. This way, we statistically ensure that all features will
be visited at least once, while keeping memory requirements
to practical values.

3) Learning the trees: We start by training a classification
tree to differentiate between head patches and non-head ones.
Growing the classification tree is driven by maximizing the
information gain for each split. Next, we train regression trees
only on patches coming from the head region, one for each
regression label (i.e., offset on X, offset on Y, yaw and tilt). In
this case, each split minimizes the weighted sum of standard
deviations of the specific regression coordinate for the resulted

statistical populations sent to children nodes. This way, moving
to deeper levels inside the tree, the uncertainty associated to
a particular prediction should continuously decrease. Training
stops when a predefined maximum depth is reached, or there
are fewer samples to split than a given threshold.

Leaf nodes store statistical information about the classifi-
cation measure (e.g., the probability of a patch to belong to
the head region) and Gaussian model parameters for regression
case (mean and standard deviation).

At test stage, we focus on isolating the patches coming
from the head area, as they are the only ones that hold
information about the head orientation. We use two mean shift
algorithms, one for clustering the votes around the head center
and another for inferring the head angles.

To motivate our adopted scheme, we trained a cascade of
5 trees (CT) on the publicly available Biwi Kinect dataset
[5]. We used for comparison the already trained forest (RF)
along with the testing code provided by the same authors.
In Table I we report the mean and the standard deviation of
the angular error for all 15K samples from Biwi. We can see
that, for yaw angle our proposed cascade is as competitive as
the random forest model, while for tilt our method is not so
accurate. However, CT requires less than half the number of
comparisons when processing a patch. In addition, we reduce
the processing time even further by feeding to the regression
trees only the patches that belong, with a high confidence, to
the head region. In the experimental section, we will show that
our approach can also generalize well for unseen subjects.

TABLE I: Comparison between cascade of specialized trees
(CT) and random forests (RF) on Biwi Kinect Dataset

mean(yaw) std(yaw) mean(tilt) std(tilt)

RF [5] 4.55 7.09 3.49 5.38
CT 4.72 7.68 5.26 9.12

B. Head Pose Tracker

The head pose detector described in Section III-A analyses
each frame independently. In contrast, tracking allows us to
represent head pose as a sequence of changes depending on
the previous position and orientation. In our solution the initial
position is determined by the head pose detector, while the
tracker is required to refine these estimates and track changes.

Having initial estimates of head position and orientation we
perform tracking by rigidly fitting a person-specific template,
obtained in an offline template recording session for every
individual. The term ”offline” here means that the template
is required prior to the tracking stage. This is not a constraint
for our application, because template creation is performed in
real time, and the user has only to move their face from left
to right passing through frontal position.

1) Person-Specific Template: A person-specific template
represents a 3D surface learned for a particular individual.
This surface is used for head pose tracking, as described in
the next section. To create a person-specific template we use
frontal recordings from the dataset described in Section IV-A,
where each person is asked to rotate the head in horizontal
plane from left to right. Each time instant t we receive a



RGB Image Depth Image

Point Cloud

Fr
am

es

Consecutive 
Point Clouds

Global 
Alignment

Pairwise Registration

Filtering and Sampling

Fig. 1: Person-specific template creation pipeline. For each
subject we take the first session from the dataset described in
Section IV-A. Prior to creating the point cloud, we filter out
noise by convolving the depth image with a Gaussian kernel.
Voxel-grid algorithm on the smooth cloud is used to obtain a
cloud with fewer points. Pairwise registration is performed on
the consecutive clouds.

pair of depth and RGB images (Dt, It). Having the optical
parameters of the capturing device we are able to restore the
scene in the world coordinates. This scene represents a so
called point cloud Pt = {pi : i = 1, . . . ,m}, where each point
pi = {x, y, z, r, g, b} contains information about the location
and the color taken from the corresponding (Dt, It) pair.

We treat the person-specific template creation as a registra-
tion problem, where we want to find a transformation Ti→j that
transforms every point of a cloud Pi to a coordinate system
associated with Pj , i 6= j. Having consecutive point clouds
(j = i + 1) we are able to find an accurate transformation,
since the overlap of these clouds is large.

Given a set of K clouds, in order to find a set of pairwise
transformation matrices T = {Ti→j : j = i+1, i = 1, . . . ,K−
1}, one needs to have exact correspondences between clouds.
To estimate these transformations we use the Iterative Closest
Point (ICP) algorithm [1]. A generic ICP algorithm starts from
a rough initial alignment of two objects, then it repeatedly
determines correspondences, weighs them and estimates a
transformation by minimizing a selected error metric. After
a transformation estimate is determined and applied, a new
set of correspondences is generated. The process stops when
a difference between consecutive transformations is below a
desired threshold or an iterations limit is reached. There are
many variants of the ICP algorithm depending on a particular
strategy used at each step [12]. A particular interest for us
is the weighting step, where every correspondence receives a
weight according to its importance (see Section III-B2).

Fig. 1 shows the pipeline to obtain a person-specific
template. The sensor provides us with consecutive pairs of
depth and color images (Dt, It). To filter out high frequency
noise, we convolve the depth image with a Gaussian kernel
before it is being used to create a point cloud. This makes
the resulting point cloud smoother. Moreover, this convolution
is able to fill holes that have smaller size than the Gaussian
kernel. To make personalized template creation faster and more
robust we use a voxel-grid approach, which imposes a 3D grid
consisting of cubic cells with a predefined edge length. All
points belonging to the same cell are averaged and, thus, a new
point cloud is created. This subsampling not only allows for
faster convergence, due to reduced number of points, but also
helps removing ambiguity when determining corresponding

pairs of points at the next step.

Consider two consecutive point clouds Pi and Pj , where
j = i+1. Let k and l be the numbers of points in these clouds
correspondingly. A corresponding point pjm ∈ Pj for a point
pin ∈ Pi is determined in the following way:

Ci,j(p
i
n) = {pjm : m = argmin

h
‖pin − p

j
h‖,

‖pin − p
j
h‖< ε, h = 1, . . . , l}

(1)

Then a set of all corresponding points for a cloud Pi in a
cloud Pj is defined as:

C(Pi, Pj) = {Ci,j(pin), n = 1, . . . , k}. (2)

If a distance between points is greater than a predefined
threshold ε, then this pair of points is not considered as
a correspondence. During template creation stage, the exact
value of this distance is used to assign a weight for each
correspondence. In Section III-B2 we use a different way of
weighting correspondences.

Having the correspondences we seek for a transformation
that minimizes the distances between corresponding points. To
do that one needs two select a proper error metrics. We used a
point-to-plane metrics since it allows minimization algorithm
to converge faster [11].

We associate the world coordinates with the coordinate
system of the last cloud in a sequence. Therefore, to obtain a
global registration transformation for a cloud Pi in the world
coordinates Twi = Ti→K having consecutive transformations
one needs to propagate required pairwise transformations for
each cloud except the last one in the following way:

Twi =

K−1∏
j=i

Tj→j+1

where Tj→j+1 is a consecutive pairwise transformation. An
example of a person-specific template is given in Fig. 1.

2) History-Based Weighted Tracking: Inspired by [14],
we study whether template-based tracking of the head pose
and orientation can be applied to extreme poses. Initial head
position and orientation T0 is provided by the detector com-
ponent described in Section III-A. A person-specific template
is initialized with this orientation and translation and the pose
of the template is refined by registering the template to a new
scene.

To allow for real time tracking we introduce a history-
based weighted scheme, that significantly increases speed. The
motivation behind this scheme comes from the observation
that when fitting a template to extreme head poses not all
correspondences should be weighted equally. Fig. 2 shows
an example of template registration to an extreme head pose.
Since not all points of the face are present in the scene, only
a small set of template points should be used for registration.

When a template T is registered with a scene at a time t−1,
the most valuable points of the template T ∗t−1 are determined
as correspondences between a template and a scene in the
following way:

T ∗t−1 = C(T , Pt−1).



(a) (b) (c)

Fig. 2: A person-specific template (a) is registered to an
extreme view of a person (b, c). Not all correspondences are
equal in registering a template in this situation. The highlighted
part of the template is more important than the rest.

Having a history of the most valuable points up to iteration
t − k and assuming that the two consecutive point clouds do
not have significant differences, we highlight the point pi of a
template at a time t according to a weight ωi in the following
way:

ωi = α+ β · ki, (3)

where α is a weight that every point receives, β is a high-
lighting factor for a point pi, and ki is number of times pi
appears in the history {T ∗t−1, . . . , T ∗t−k}. To use the equation
(3) one needs to decide upon values of α, β and kmax which is
a maximum size of the history. Our experiments to determine
these values are given in Section IV-C. Some examples of
important points for difficult head poses are given in Fig. 6.

C. Detector-Tracker Fusion

At this stage, for every frame we obtain two predictions
for head orientation: one from the head pose detector and
one from the person-specific template tracker. Having these
two measurements one needs to decide which measurement
to use or come up with a fusion strategy. We have chosen the
later, since we are interested in combining both measurements.
One simple way to do this is to average both predictions.
However, by setting equal weights to both measurements we
do not consider that the variances of two predictions can be
different. Therefore, a measurement with a smaller variance
will be affected by the measurement with the bigger variance.
One way to utilize the variances of both measurements is to
use a Kalman Filter framework.

To use this framework we consider our predictions as
two measurements z1 and z2 performed by two independent
sensors having observation noise matrices Σ1 and Σ2. To be
able to use a group sensor method one needs to specify an
observation model for the two sensor case:

H =
[
HT

1 ,H
T
2

]T
, (4)

where H1 and H2 are the observations models for each sensor,
and provide the observation noise covariance which is a block-
diagonal matrix, where each block is equal to the observation
noise matrix for a particular sensor:

R =

[
Σ1 0
0 Σ2

]
. (5)

The rest of the Kalman Filter framework remains un-
changed. Observation noise for each sensor (Σ1, Σ2) is

(a) Frontal session (b) ”Walker” session

(c) Head movement pattern

Fig. 3: Colour and depth images for the first recording session
(a). Images from the second session recorded using the walker
(b). Head movement pattern (c). The red cross in the middle
indicates start and end position of the head

computed prior to fusion with the use of the data that is then
removed from testing set. The obtained result are discussed in
the Section IV-C.

IV. EXPERIMENTS

In this section we introduce the newly acquired Dali3DHP
dataset and present the experimental output of our system.

A. Dali3DHP Dataset

Since we are treating HPE under extreme pose variations,
we need a database to comply with the task at hand. One
solution would have been to consider existing synthetic 3D
datasets and apply geometric transformations in order to get
the desired view points. However, the literature [6] shows
that moving from high resolution scans to noisy real-life
Kinect data may result in performance drops. Therefore, we
proceeded at recording a dataset that contains various head
poses, captured from the walker’s view point. This dataset
consists of two sessions of range and RGB images of 33
individuals. During the first session each person is asked to
show their face frontally and then to perform a full head
movement to the left, right, up and down (see Fig. 3a).

The second session was captured with the use of the walker
(see Fig. 3b). A person is standing holding the handles of
the walker while following with the head a special movement
pattern marked on the wall in front (see Fig. 3c). Each subject
starts looking ahead (red cross in Fig. 3c) with all head angles
approximately equal to zero. Next, the subject moves the head
to the left keeping the tilt angle equal to zero and does up-
down movement for each vertical line. Transitions between
the vertical lines are performed with zero tilt angle. After the
subject has performed all the necessary movements, he/she
returns to the starting point with all angles equal to zero.

Ground-truth labels were recorded via a Shimmer sensor1,
fixed on the head. The sensor transfers accelerometer and gy-
roscope readings at 100Hz frequency via a Bluetooth protocol
to a computer. We used a Kalman filter based algorithm [4] to
transform sensor readings into head orientation angles. Since

1http://www.shimmersensing.com/



no wires are required, the subject is not constrained and, thus,
can perform movements in a natural way. Our experiments
show, that the Shimmer sensor is not able to accurately
measure roll angle. Therefore, head movement pattern was
designed so that the actual movements are performed with
roll angle close to zero. This is acceptable for many practical
scenarios that aim at determining the gaze direction of a
person. For the head pose detector, we manually annotated
the center of the head in each frame using specialized assisted
software.

Our database contains more than 60K depth/color pairs
coming from 33 individuals covering the following head
angles: tilt [−65.76◦, 52.60◦], roll [−29.85◦, 27.09◦], and yaw
[−89.29◦, 75.57◦]. The dataset will be made available to the
research community.

B. Testing the trees

In order to assess the performance of our cascade approach,
we performed a leave-one-out cross-validation analysis on the
entire dataset. For each iteration, we built a cascade of five
trees, as described in III-A. We pushed the maximum depth
of the trees responsible for the head angles to 18, in order to
better fit the distributions of these label dimensions. Table II
reveals the mean and the standard deviation of the error for yaw
and tilt, computed for all 60K samples from Dali3DHP dataset
using three stride values for exploring the scene with patches.
As in [6], the stride parameter controls the trade-off between
speed and accuracy. The detector experiences more difficulties
for the tilt angle, especially at extreme values. This behavior
can be explained by the rather unbalanced tilt distribution over
the range of values.

TABLE II: Cross-validation results obtained on Dali3DHP
Dataset

mean(yaw) std(yaw) mean(tilt) std(tilt)

Stride 5 4.73 6.89 7.69 9.81
Stride 10 5.37 7.69 7.84 10.05
Stride 20 6.28 10.14 8.20 10.62

C. Tracking and Fusion

In this section we analyze the results of Full Template
Tracker, Weighted Template Tracker, Detector with Stride 5,
Fusion by Averaging and Fusion by Kalman Filter of the detec-
tor with weighted template tracker. To asses the performance
of the described approaches we use the Dali3DHP dataset. To
start the tracking we first determine initial head position and
orientation by using the detector described in Section III-A.
A person-specific template, then, is initialized at the predicted
location and tracking starts. Thereafter both components work
in parallel, with their outputs being fused by a Kalman Filter.

Prior the comparison, we need to decide upon the values of
the weighting parameters α, β and kmax. We have not found
that the accuracy depends significantly on these parameters,
whereas the processing speed does (see Fig. 4). To asses
the speed we measure the average number of ICP iterations
required to converge, since it is a hardware-independent metric.
The average number of ICP iterations is positively correlated
with α, which is the default weight each point receives, while

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3

4

5

6

7

8

9

k
max

 = 1

β

A
ve

ra
ge

 IC
P

 It
er

at
io

ns

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3

4

5

6

7

8

9

k
max

 = 9

β
 

 
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

Fig. 4: Dependence of number of ICP iterations required to
converge on the weighting parameters α, β and kmax.

the correlation with β and kmax, on the contrary, is negative.
These results suggest that when the relative weights of the
important points grow the speed increases. The intuition behind
this is that by weighting we increase the gradient into the
promising direction and the optimization algorithm makes
bigger steps, and hence converges faster.

Out of all possible combinations of the weighting param-
eters we selected α = 0.1, β = 0.5 and kmax = 9. For the
remaining tables in this section we use this combination of the
weighting parameters.

TABLE III: Comparison between Weighted and Full Template
Tracking in computational time

Average ICP Iterations Frames per second

Full Template 14.64 10.05
Weighted Template 3.16 38.87

Table III compares Weighted Template Tracker with Full
Template Tracker in average ICP iterations. These results show
that the Weighted Template Tracker requires 4.63 times less
iterations than the Full Template Tracker, being able to process
more than 38 frames per second. Table IV compares the
means and the standard deviations of the error of all described
approaches.

TABLE IV: Results obtained on Dali3DHP Dataset

mean(yaw) std(yaw) mean(tilt) std(tilt)

Full Template 4.06 5.89 8.21 11.45
Weighted Template 3.93 5.23 8.21 11.31
Detector - Stride 5 4.73 6.89 7.69 9.81

Fusion by Averaging 3.51 4.92 6.09 7.77
Kalman Filter Fusion 3.18 4.28 5.91 7.46

Although Weighted Template Tracker shows on average
a better accuracy than Full Template Tracker, this does not
reflect the main advantage of using the weights. Processing
speed is a key issue we gain in this case. Fusion by Kalman
Filter allows us to decrease both the means of the error and
their standard deviations. To prove that Fusion by Kalman
Filter outperforms Fusion by Averaging and the difference is
statistically significant we report the results of left-tailed t-test
for means and left-tailed F -test for the standard deviations
against two sets of hypotheses. The p-values are given in Table
V, where subscript k denotes Fusion by Kalman Filter and a
denotes Fusion by Averaging. Since p-values are very small
we are able to reject H0 in favour of H1 proving that the
observed differences in the results are statistically significant.



Fig. 6: Some examples of extreme head poses correctly recognized by our approach. For every subject three images are given.
The left one represents a template with the most important points marked in red. The image in the middle shows the template
fitted to the point cloud. The right image shows the view from the walker. Note that for some subjects the face is almost
completely hidden.

−80 −60 −40 −20 0 20 40 60 80
−45

−30

−15

0

15

30

45

0.92

0.96

0.97

0.89

0.90

0.92

1.00

0.97

0.94

0.95

0.91

0.71

0.94

0.98

0.98

0.97

0.96

0.70

0.80

0.93

0.99

0.92

0.88

0.50

0.93

0.94

0.98

0.98

0.91

0.67

0.97

0.95

0.97

0.98

0.98

0.78

0.95

0.97

0.97

0.98

0.98

0.93

0.98

0.87

0.96

0.99

1.00

1.00

Yaw (deg)

T
ilt

 (
de

g)

 

 

0

1000

2000

3000

4000

5000

Fig. 5: Fusion success rate for error smaller than 15◦ on
all Dali3DHP Dataset. Note that the tilt is measured with
respect to the horizontal plane, not with the camera coordinate
system. Tilt equal to +40◦ represents a head pose with almost
completely unseen face.

TABLE V: A set of hypothesis with corresponding p-values
for yaw and tilt angles

H0 H1 yaw tilt

µk = µa µk < µa 1.73e-72 4.54e-11
σk = σa σk < σa 3.13e-244 8.77e-23

Fig. 5 shows the success rate of the Kalman fusion on
the Dali3DHP dataset. The dataset was split into 20◦ × 15◦

intervals for yaw and tilt respectively. Success is defined for
errors smaller than 15◦ both for yaw and tilt. The color map
encodes the number of test samples for each cluster. Finally,
Fig. 6 gives some examples with correctly recognized extreme
head poses.

V. CONCLUSIONS

In this paper we propose a fusion approach to address real-
time head pose estimation under extreme head orientations. By
combining a frame independent decision tree based estimator
with a personalized template tracker, we constructed a reliable
real-time system able to recover easily in case it loses track.

In addition, we recorded a 3D head pose database containing
more than 60K pairs of depth/color frames along with the
associated orientation labels, which will be released to the
community.

REFERENCES

[1] P. Besl and N. D. McKay. A method for registration of 3-D shapes.
PAMI, 14(2):239–256, 1992.

[2] M. D. Breitenstein, D. Kuettel, T. Weise, L. Van Gool, and H. Pfister.
Real-time face pose estimation from single range images. In CVPR,
pages 1–8, 2008.

[3] K. I. Chang, W. Bowyer, and P. J. Flynn. Multiple nose region
matching for 3d face recognition under varying facial expression. PAMI,
28(10):1695–1700, 2006.

[4] A. Colombo, D. Fontanelli, D. Macii, and L. Palopoli. A wearable em-
bedded inertial platform with wireless connectivity for indoor position
tracking. In I2MTC, pages 1–6, 2011.

[5] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Gool. Random
Forests for Real Time 3D Face Analysis. IJCV, 101(3):437–458, 2012.

[6] G. Fanelli, J. Gall, and L. Van Gool. Real Time Head Pose Estimation
with Random Regression Forests. In CVPR, pages 617–624, 2011.

[7] H. Li, J. Yu, Y. Ye, and C. Bregler. Realtime facial animation with
on-the-fly correctives. ACM TOG, 32(4):42, 2013.

[8] X. Lu and A. K. Jain. Automatic feature extraction for multiview 3d
face recognition. In AFGR, pages 585–590, 2006.

[9] E. Murphy-Chutorian and M. M. Trivedi. Head Pose Estimation in
Computer Vision: A Survey. PAMI, 31(4):607–626, 2009.

[10] P. Padeleris, X. Zabulis, and A. A. Argyros. Head pose estimation on
depth data based on particle swarm optimization. In CVPRW, pages
42–49, 2012.

[11] K. Pulli. Multiview registration for large data sets. 3DDIM, pages
160–168, 1999.

[12] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm.
In 3DDIM, pages 145–152, 2001.

[13] Y. Sun and L. Yin. Automatic pose estimation of 3d facial models. In
ICPR, pages 1–4, 2008.

[14] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime performance-based
facial animation. ACM TOG, 30(4):77–85, 2011.


