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Abstract—Automatic classification is one of the basic tasks required in any pattern recognition and human computer interaction

application. In this paper, we discuss training probabilistic classifiers with labeled and unlabeled data. We provide a new analysis that

shows under what conditions unlabeled data can be used in learning to improve classification performance. We also show that, if the

conditions are violated, using unlabeled data can be detrimental to classification performance. We discuss the implications of this

analysis to a specific type of probabilistic classifiers, Bayesian networks, and propose a new structure learning algorithm that can

utilize unlabeled data to improve classification. Finally, we show how the resulting algorithms are successfully employed in two

applications related to human-computer interaction and pattern recognition: facial expression recognition and face detection.

Index Terms—Semisupervised learning, generative models, facial expression recognition, face detection, unlabeled data, Bayesian

network classifiers.
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1 INTRODUCTION

MANY pattern recognition and human computer inter-
action applications require the design of classifiers.

Classifiers are either designed from expert knowledge or
from training data. Training data can be either labeled or
unlabeled. In many applications, obtaining fully labeled
training sets is a difficult task; labeling is usually done using
human expertise, which is expensive, time consuming, and
error prone. Obtaining unlabeled data is usually easier since
it involves collecting data that are known to belong to one of
the classes without having to label it. For example, in facial
expression recognition, it is easy to collect videos of people
displaying expressions, but it is very tedious and difficult to
label the video to the corresponding expressions. Learning
with both labeled and unlabeled data is known as
semisupervised learning.

We start with a general analysis of semisupervised
learning for probabilistic classifiers. The goal of the analysis
is to show under what conditions unlabeled data can be used
to improve the classification performance. We review
maximum-likelihood estimation when learning with labeled
andunlabeleddata.Weprovide an asymptotic analysis of the
value of unlabeled data to show that unlabeled data help in

reducing the estimator’s variance. We show that, when the
assumed probabilistic model matches the data generating
distribution, the reduction in variance leads to an improved
classification accuracy; a situation that has been analyzed
before [1], [2]. However, we show that, when the assumed
probabilistic model does not match the true data generating
distribution, using unlabeled data can be detrimental to the
classification accuracy; a phenomenon that has been gen-
erally ignoredormisinterpretedbyprevious researcherswho
observed it empirically before [1], [3], [4]. This new result
emphasizes the importance of using correct modeling
assumption when learning with unlabeled data.

We also present, in this paper, an analysis of semisuper-
vised learning for classifiers based on Bayesian networks.
While, in many classification problems, simple structures
learned with just labeled data have been used successfully
(e.g., the Naive-Bayes classifier [5], [6]), such structures fail
when trained with both labeled and unlabeled data [7].
Bayesian networks are probabilistic classifiers in which the
joint distribution of the features and class variables is
specified using a graphical model [8]. The graphical
representation has several advantages. Among them are
the existence of algorithms for inferring the class label, the
ability to intuitively represent fusion of different modalities
with the graph structure [9], [10], the ability to perform
classification and learning without complete data, and, most
importantly, the ability to learn with both labeled and
unlabeled data. We discuss possible strategies for choosing a
goodgraphical structure and argue that, inmanyproblems, it
is necessary to search for such a structure. Most structure
search algorithms are driven by likelihood-based cost
functions, which are potentially inadequate for classification
[11], [12] due to their attempt to maximize the overall
likelihood of the data, while largely ignoring the important
quantity for classification; the class a posteriori likelihood.As
such, we propose a classification driven stochastic structure
search algorithm (SSS), which combines both labeled and
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unlabeled data to train the classifier and to search for a better
performing Bayesian network structure.

Following the new understanding of the limitations
imposed by the properties of unlabeled data and equipped
with analgorithm toovercome these limitations,weapply the
Bayesian network classifiers to two human-computer inter-
action problems: facial expression recognition and face
detection. In both of these applications, obtaining unlabeled
training data is relatively easy. However, in both cases,
labeling of the data is difficult. For facial expression
recognition, accurate labeling requires expert knowledge
[13] and, for both applications, labeling of a large amount of
data is time consuming for the human labeler. We show that
Bayesian network classifiers trained with structure search
benefit from semisupervised learning in both of these
problems.

The remainder of the paper is organized as follows: In
Section 2, we discuss the value of unlabeled data and
illustrate the possibility of unlabeled data to degrade the
classification performance. In Section 3, we propose
possible solutions for Bayesian network classifiers to benefit
from unlabeled data by learning the network structure. We
introduce a new stochastic structure search algorithm and
empirically show its ability to learn with both labeled and
unlabeled data using data sets from the UCI machine
learning repository [14]. In Section 4.1, we describe the
components of our real-time face recognition system,
including the real-time face tracking system and the
features extracted for classification of facial expressions.
We perform experiments of our facial expression recogni-
tion system using two databases and show the ability to
utilize unlabeled data to enhance the classification perfor-
mance, even with a small labeled training set. Experiments
of Bayesian network classifiers for face detection are given
in Section 4.2. We have concluding remarks in Section 5.

2 LEARNING A CLASSIFIER FROM LABELED AND

UNLABELED TRAINING DATA

The goal is to classify an incoming vector of observables X.
Each instantiation of X is a sample. There exists a class
variable C; the values of C are the classes. We want to build
classifiers that receive a sample x and output a class. We
assume 0-1 loss and, consequently, our objective is to
minimize the probability of error (classification error). If we
knew exactly the joint distribution pðC;XÞ, the optimal rule
would be to choose the class value with the maximum
a posteriori probability, pðCjxÞ [15]. This classification rule
attains the minimum possible classification error, called the
Bayes error.

We take that the probabilities of ðC;XÞ, or functions of
these probabilities, are estimated from data and then
“plugged” into the optimal classification rule. We assume
that a parametric model pðC;Xj�Þ is adopted. An estimate
of � is denoted by �̂� and we denote throughout by �̂�� the
asymptotic value of �̂�. If the distribution P ðC;XÞ belongs to
the family pðC;Xj�Þ, we say the “model is correct”;
otherwise, we say the “model is incorrect.” We use
“estimation bias” loosely to mean the expected difference
between pðC;XÞ and the estimated pðC;Xj�̂�Þ.

We consider the following scenario: A sample ðc;xÞ is
generated from pðC;XÞ. The value c is then either revealed
and the sample is a labeled one or the value c is hidden and

the sample is an unlabeled one. The probability that any
sample is labeled, denoted by �, is fixed, known, and
independent of the samples.1 Thus, the same underlying
distribution pðC;XÞ generates both labeled and unlabeled
data. It is worth noting that we assume the revealed label is
correct and is not corrupted by noise; the case of noisy
labels has been studied in various works (such as [17], [18],
[19], [20], chapter 2 of [21]). Extending our analysis to the
noisy labeled case is beyond the scope of this paper.

Given a set of Nl labeled samples and Nu unlabeled
samples, we use maximum-likelihood for estimating �̂�. We
consider distributions that decompose pðC;Xj�Þ as pðXjC; �Þ
pðCj�Þ, where both pðXjC; �Þ and pðCj�Þ depend explicitly on
�. This is known as a generative model. The log-likelihood
function of a generativemodel for a data set with labeled and
unlabeled data is:

Lð�Þ ¼ Llð�Þ þ Luð�Þ þ log �Nlð1� �ÞNu

� �
; ð1Þ

where

Luð�Þ ¼
XNlþNu

j¼ðNlþ1Þ
log pðxjj�Þ
� �

;

and

Llð�Þ ¼
XNl

i¼1

log
Y
C

ðpðC ¼ c0j�Þpðxijc0; �ÞIfC¼c0gðciÞ
" #

with IAðZÞ the indicator function: 1 if Z 2 A; 0 otherwise.
Llð�Þ and Luð�Þ are the likelihoods of the labeled and
unlabeled data, respectively.

Statistical intuition suggests that it is reasonable to expect
an average improvement in classification performance for
any increase in the number of samples (labeled or
unlabeled). Indeed, the existing literature presents several
empirical and theoretical findings that do indicate positive
value in unlabeled data. Cooper and Freeman [22] were
optimistic enough about unlabeled data so as to title their
work as “On the Asymptotic Improvement in the Outcome
of Supervised Learning Provided by Additional Nonsuper-
vised Learning.” Other early studies, such as [23], [24], [25],
further strengthened the assertion that unlabeled data
should be used whenever available. Castelli [26] and
Ratsaby and Venkatesh [27] showed that unlabeled data
are always asymptotically useful for classification. Krishnan
and Nandy [19], [20] extended the results of [25] to provide
efficiency results for discriminant and logistic-normal
models for samples that are labeled stochastically. It should
be noted that such previous theoretical work makes the
critical assumption that pðC;XÞ belongs to the family of
models pðC;Xj�Þ (that is, the “model is correct”).

There has also been recent applied work on semisuper-
vised learning [1], [3], [4], [5], [28], [29], [30], [31], [32].
Overall, these publications advance an optimistic view of
the labeled-unlabeled data problem, where unlabeled data
can be profitably used whenever available.

However, a more detailed analysis of current applied
results does reveal some puzzling aspects of unlabeled data.
Researchers have reported cases where the addition of
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unlabeled data degraded the performance of the classifiers
when compared to the case in which unlabeled data is not
used. These cases were not specific to one type of data, but
for different kinds, such as sensory data [1], computer
vision [5], and text classification [3], [4].

To explain the phenomenon, we began by performing

extensive experiments providing empirical evidence that

degradation of performance is directly related to incorrect

modeling assumptions [33], [34], [35]. Consider Fig. 1, which

shows two typical results.Here,we estimated the parameters

of a Naive Bayes classifier with 10 features using the

Expectation-Maximization (EM) algorithm [36] with varying

numbers of labeled and unlabeled data. Fig. 1 shows

classification performance when the underlying model

actually has a Naive Bayes structure (Fig. 1a) and when the

underlying model is not Naive Bayes (Fig. 1b). The result is

clear: When we estimate a Naive Bayes classifier with data

generated from a Naive Bayes model, more unlabeled data

help;whenweestimate aNaiveBayes classifierwithdata that

do not come from a corresponding model, more unlabeled

data can degrade performance (even for the case of 30 labeled

and 30,000 unlabeled samples!).
To provide a theoretical explanation to the empirical

evidence, we derived the asymptotic properties of max-
imum-likelihood estimators for the labeled-unlabeled case.
The analysis, presented in the remainder of this section,
provides a unified explanation of the behavior of classifiers
for both cases; when the model is correct and when it is not.

2.1 The Value of Unlabeled Data in
Maximum-Likelihood Estimation

We base our analysis on the work of White [37] on the

properties of maximum-likelihood estimators—properties

that hold for the case of model correctness and model

incorrectness. In [37], Theorems 3.1, 3.2, and 3.3 showed

that, under suitable regularity conditions,2 maximum-like-

lihood estimators converge to a parameter set �� that

minimizes the Kullback-Liebler (KL) distance between the

assumed family of distributions, pðY j�Þ, and the true

distribution, pðY Þ. White [37] also shows that the estimator

is asymptotically Normal, i.e.,
ffiffiffiffiffi
N

p
ð�̂�N � ��Þ � N ð0; CY ð�ÞÞ

as N (the number of samples) goes to infinity. CY ð�Þ is a

covariance matrix equal to AY ð�Þ�1BY ð�ÞAY ð�Þ�1, evaluated

at ��, where AY ð�Þ and BY ð�Þ are matrices whose ði; jÞth
element (i; j ¼ 1; . . . ; d, where d is the number of para-

meters) is given by:

AY ð�Þ ¼ E½@2 log pðY j�Þ=@�i�j�;
BY ð�Þ ¼ E½ð@ log pðY j�Þ=@�iÞð@ log pðY j�Þ=@�jÞ�:

ð2Þ

Using these definitions and general result, we obtain:

Theorem 1. Consider supervised learning where samples are

randomly labeled with probability �. Assuming identifiability

for the marginal distributions of X, then the value of ��, the

limiting value of maximum-likelihood estimates, is:

argmax
�

�E½log pðC;Xj�Þ� þ ð1� �ÞE½log pðXj�ð Þ�Þ; ð3Þ

where the expectations are with respect to pðC;XÞ. Addition-
ally,

ffiffiffiffiffi
N

p
ð�̂�N � ��Þ � N ð0; C�ð�ÞÞ asN ! 1, where C�ð�Þ is

given by:

C�ð�Þ ¼ A�ð�Þ�1B�ð�ÞA�ð�Þ�1 with;

A�ð�Þ ¼ �AðC;XÞð�Þ þ ð1� �ÞAXð�Þ
� �

and

B�ð�Þ ¼ �BðC;XÞð�Þ þ ð1� �ÞBXð�Þ
� �

;

ð4Þ

evaluated at ��, where AXð�Þ, AðC;XÞð�Þ, BXð�Þ, and

BðC;XÞð�Þ are the A and B defined in (2), with Y replaced

by ðC;XÞ or X.

Proof. Denote by ~CC a random variable that assumes the
same values of C plus the “unlabeled” value u. We have
pð ~CC 6¼ uÞ ¼ �. The observed samples are realizations of
ð ~CC;XÞ, so we can write the probability distribution of a
sample compactly as follows:

~ppð ~CC ¼ c;X ¼ xÞ ¼
�pðC ¼ c;X ¼ xÞð ÞIf ~CC 6¼ugðcÞ ð1� �ÞpðX ¼ xÞð ÞIf ~CC¼ugðcÞ;

ð5Þ

where pðXÞ is a mixture density obtained from pðC;XÞ.
Accordingly, the parametric model adopted for ð ~CC;XÞ is:

~ppð ~CC ¼ c;X ¼ xj�Þ ¼
�pðC ¼ c;X ¼ xj�Þð ÞIf ~CC 6¼ugðcÞ ð1� �ÞpðX ¼ xj�Þð ÞIf ~CC¼ugðcÞ:

ð6Þ

From White’s results stated above, we know that ��

maximizes E½log ~ppð ~CC;Xj�Þ� (expectation with respect to
~ppð ~CC;XÞ). We have:
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2. The conditions ensure the existence of the derivatives defined below
and the expectations used in Theorem 1.

Fig. 1. Naive Bayes classifier from data generated from (a) a Naive Bayes model and (b) a TAN model. Each point summarizes 10 runs of each
classifier on testing data; bars cover 30 to 70 percentiles.



E
�
log ~ppð ~CC;Xj�Þ

�
¼ E

h
If ~CC 6¼ugð ~CCÞ

�
log�þ log pðC;Xj�Þ

�
þ If ~CC¼ugð ~CCÞ

�
logð1� �Þ þ log ~ppðXj�Þ

�i
¼ � log�þ ð1� �Þ logð1� �Þ

þ E
h
If ~CC 6¼ugð ~CCÞ log pðC;Xj�Þ

i
þ E

h
If ~CC¼ugð ~CCÞ log pðXj�Þ

i
:

The first two terms of this expression are irrelevant to
maximization with respect to �. The last two terms are
equal to

�E½log pðC;Xj�Þj ~CC 6¼ u� þ ð1� �ÞE½log pðXj�Þj ~CC ¼ u�:

As we have ~ppð ~CC;Xj ~CC 6¼ uÞ ¼ pðC;XÞ and ~ppðXj ~CC ¼ uÞ ¼
pðXÞ ((5)), the last expression is equal to

�E½log pðC;Xj�Þ� þ ð1� �ÞE½log pðXj�Þ�;

where the last two expectations are now with respect to
pðC;XÞ. Thus, we obtain (3). Expression (4) follows
directly from White’s theorem and (3), replacing Y by
ðC;XÞ and X where appropriate. tu
A few observations can be made from the theorem. First,

(3) indicates that semisupervised learning can be viewed
asymptotically as a “convex” combination of supervised and
unsupervised learning. The objective function for semi-
supervised learning is a combination of the objective
function for supervised learning (E½log pðC;Xj�Þ�) and the
objective function for unsupervised learning (E½log pðXj�Þ�).
Second, because the asymptotic covariance matrix is positive
definite as BY ð�Þ is positive definite and AY ð�Þ is symmetric
for any Y , �Að�Þ�1BY ð�ÞAð�Þ�1�T ¼ wð�ÞBY ð�Þwð�ÞT > 0,
where wð�Þ ¼ �AY ð�Þ�1. We see that, asymptotically, an
increase inN , the number of labeled and unlabeled samples,
will lead to a reduction in the variance of �̂�. Such a guarantee
can perhaps be the basis for the optimistic view that
unlabeled data should always be used to improve classifica-
tion accuracy. In the following, we show this view is valid
when the model is correct and that it is not always valid
when the model is incorrect.

2.2 Model Is Correct

Suppose first that the family of distributions P ðC;Xj�Þ
contains the distribution P ðC;XÞ, that is, P ðC;Xj�>Þ ¼
P ðC;XÞ for some �>. Under this condition, the
maximum-likelihood estimator is consistent, thus ���¼1 ¼
���¼0 ¼ �> given identifiability. Thus, ��� ¼ �> for any
0 � � � 1.

Shahshahani and Landgrebe [1] suggested using the
Taylor expansion of the classification error around �> to link
the decrease in variance associated with unlabeled data to a
decrease in classification error. They showthat the smaller the
variance of the estimator, the smaller the classification error
and since the variance of the estimator is smaller as the
number of samples increases (labeled or unlabeled), adding
the unlabeled data would reduce classification error. Amore
formal, but less general, argument is presented by Ganesa-
lingam and McLachlan [25] as they compare the relative
efficiency of labeled and unlabeled data. Castelli [26] also
derives a Taylor expansion of the classification error to study

estimation of the mixing factors, ðC ¼ cÞ; the derivation is
very precise and states all the required assumptions.

2.3 Model Is Incorrect

We now study the more realistic scenario where the
distribution P ðC;XÞ does not belong to the family of
distributions P ðC;Xj�Þ. In view of Theorem 1, it is perhaps
not surprising that unlabeled data can have the deleterious
effect observed occasionally in the literature. Suppose that
��u 6¼ ��l and that eð��uÞ > eð��l Þ, as in the example in the next
section, where ��l ¼ ���¼1 and ��u ¼ ���¼0.

3 If we observe a
large number of labeled samples, the classification error is
approximately eð��l Þ. If we then collect more samples, most
of which are unlabeled, we eventually reach a point where
the classification error approaches eð��uÞ. So, the net result is
that we started with classification error close to eð��l Þ and,
by adding a large number of unlabeled samples, classifica-
tion performance degraded. The basic fact here is that
estimation and classification bias are affected differently by
different values of �. Hence, a necessary condition for this
kind of performance degradation is that eð��uÞ 6¼ eð��l Þ; a
sufficient condition is that eð��uÞ > eð��l Þ.

2.3.1 Example: Bivariate Gaussians with Spurious

Correlation

The previous discussion alluded to the possibility that
eð��uÞ > eð��l Þ when the model is incorrect. To the skeptical
reader, who may still think that this will not occur in
practice or that numerical algorithms, such as EM, are the
cause of performance degradation, we analytically show
how this occurs with an example of obvious practical
significance. More examples are provided in [38] and [34].

Wewill assume that bivariateGaussian samples ðX;Y Þ are
observed. The onlymodeling error is an ignored dependency
between observables. This type of modeling error is quite
common in practice and has been studied in the context of
supervised learning [39], [40]. It is often argued that ignoring
somedependencies canbe apositivedecision aswemay see a
reduction in the number of parameters to be estimated and a
reduction on the variance of estimates [41].

Example 1. Consider real-valued observations ðX;Y Þ taken
from two classes c0 and c00. We know that X and Y are
Gaussian variables and we know their means and
variances given the class C. The mean of ðX;Y Þ is
ð0; 3=2Þ conditional on fC ¼ c0g, and ð3=2; 0Þ conditional
on fC ¼ c00g. Variances for X and for Y conditional on C
are equal to 1. We do not know, and have to estimate, the
mixing factor � ¼ pðC ¼ c0Þ. The data is sampled from a
distribution with a mixing factor equal to 3/5.

We want to obtain a Naive-Bayes classifier that can
approximate pðCjX;Y Þ; Naive-Bayes classifiers are based
on the assumption that X and Y are independent given
C. Suppose that X and Y are independent conditional on
fC ¼ c0g, but that X and Y are dependent conditional on
fC ¼ c00g. This dependency is manifested by a correlation

� ¼ E½ðX �E½XjC ¼ c00�ÞðY � E½Y jC ¼ c00�ÞjC ¼ c00� ¼ 4=5:
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3. We have to handle a difficulty with eð��uÞ: Given only unlabeled data,
there is no information to decide the labels for decision regions and then the
classification error is 1/2 [26]. Instead of defining eð��uÞ as the error for
� ¼ 0, we could define eð��uÞ as the error of � approaching 0.



If we knew the value of �, we would obtain an optimal

classification boundary on the plane X � Y . This optimal

classification boundary is shown in Fig. 2 and is defined by

the function

y ¼

40x� 87þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5265� 2160xþ 576x2 þ 576 logð100=81Þ

p� �
=32:

Under the incorrect assumption that � ¼ 0, the
classification boundary is then linear:

y ¼ xþ 2 logðð1� �̂�Þ=�̂�Þ=3

and, consequently, it is a decreasing function of �̂�. With

labeled data, we can easily obtain �̂� (a sequence of

Bernoulli trials); then ��l ¼ 3=5 and the classification

boundary is given by y ¼ x� 0:27031.
Note that the (linear) boundary obtained with labeled

data is not the best possible linear boundary. We can in
fact find the best possible linear boundary of the form
y ¼ xþ �. For any �, the classification error eð�Þ is

3

5

Z 1

�1

Z xþ�

�1
N

0

3=2

� 	
; diag½1; 1�


 �
dydx

þ 2

5

Z 1

�1

Z 1

xþ�

N
3=2

0

� 	
;

1 4=5

4=5 1

� 	
 �
dydx:

By interchanging differentiation with respect to � with

integration, it is possible to obtain deð�Þ=d� in closed

form. The second derivative d2eð�Þ=d�2 is positive when

� 2 ½�3=2; 3=2�; consequently, there is a single minimum

that can be found by solving deð�Þ=d� ¼ 0. We find the

minimizing � to be

ð�9þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45=4þ logð400=81Þ

p
Þ=4 � �0:45786:

The line y ¼ x� 0:45786 is the best linear boundary for this

problem. If we consider the set of lines of the form

y ¼ xþ �, we see that the farther we go from the best line,

the larger the classification error. Fig. 2 shows the linear

boundary obtainedwith labeled data and the best possible

linear boundary. The boundary from labeled data is

“above” the best linear boundary.

Now, consider the computation of ��u. UsingTheorem1,
the asymptotic estimate with unlabeled data is:

��u ¼ arg max
�2½0;1�

Z 1

�1

Z 1

�1
log



�Nð½0; 3=2�T ; diag½1; 1�Þ

þ ð1� �ÞNð½3=2; 0�T ; diag½1; 1�Þ
�

 
ð3=5ÞNð½0; 3=2�T ; diag½1; 1�Þ

þ ð2=5ÞN
 "

3=2

0

#
;

1 4=5

4=5 1

� 	!!
dydx:

The second derivative of this double integral is always
negative (as can be seen interchanging differentiation
with integration), so the function is concave and there
is a single maximum. We can search for the zero of the
derivative of the double integral with respect to �. We
obtain this value numerically, ��u � 0:54495. Using this
estimate, the linear boundary from unlabeled data is
y ¼ x� 0:12019. This line is “above” the linear bound-
ary from labeled data and, given the previous discus-
sion, leads to a larger classification error than the
boundary from labeled data. We have: eð�Þ ¼ 0:06975,
eð��l Þ ¼ 0:07356, eð��uÞ ¼ 0:08141. The boundary obtained
from unlabeled data is also shown in Fig. 2.

This example suggests the following situation. Suppose
we collect a large number Nl of labeled samples from
pðC;XÞ, with � ¼ 3=5 and � ¼ 4=5. The labeled estimates
form a sequence of Bernoulli trials with probability 3=5, so
the estimates quickly approach ��l (the variance of �̂�
decreases as 6=ð25NlÞ). If we add a very large amount of
unlabeled data to our data, �̂� approaches ��u and the
classification error increases.

2.4 Finite Sample Effects

The asymptotic analysis of semisupervised learning suffices
to show the fundamental problem that can occur when
learning with unlabeled data. The focus on asymptotics is
adequate as we want to eliminate phenomena that can vary
from data set to data set. If eð��l Þ is smaller than eð��uÞ, then a
large enough labeled data set can be dwarfed by a much
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Fig. 2. Graphs for Example 1. (a) Contour plots of the mixture pðX;Y Þ, the optimal classification boundary (quadratic curve), and the best possible
classification boundary of the form y ¼ xþ �. (b) The same contour plots and the best linear boundary (lower line), the linear boundary obtained from
labeled data (middle line), and the linear boundary obtained from unlabeled data (upper line); thus, the classification error of the classifier obtained
with unlabeled data is larger than that of the classifier obtained with labeled data.



larger unlabeled data set—the classification error using the
whole data set can be larger than the classification error using
the labeled data only. But,what occurswith finite sample size
data sets?Weperformedextensive experimentswith real and
artificial data sets of various sizes [7], [34]. Throughout our
experiments, we used the EM algorithm to maximize the
likelihood ((1)) and we started the EM algorithm with the
parameters obtained using labeled data as these starting
points can be obtained in closed-form.

To visualize the effect of labeled and unlabeled samples,
we suggest that the most profitable strategy is to fix the
percentage of unlabeled samples (�) among all training
samples. We then plot classification error against the
number of training samples. Call such a graph a LU-graph.

Example 2. Consider a situationwherewehave a binary class
variable C with values c0 and c00 and pðC ¼ c0Þ ¼ 0:4017.
We also have two real-valued observables X and Y with
distributions:

P ðXjc0Þ ¼ Nð2; 1Þ; pðXjc00Þ ¼ Nð3; 1Þ;

P ðY jc0; xÞ ¼ Nð2; 1Þ; pðY jc00; xÞ ¼ Nð1þ 2x; 1Þ:

There is dependency between Y and X conditional on
fC ¼ c00g. Suppose we build a Naive Bayes classifier for
this problem. Fig. 3a shows the LU-graphs for 0 percent
unlabeled samples, 50 percent unlabeled samples, and
99 percent unlabeled samples, averaging over a large
ensemble of classifiers. The asymptotes converge to
different values. Suppose then that we started with
50 labeled samples as our training data. Our classification
error would be about 7.8 percent, as we can see in the LU-
graph for 0 percent unlabeled data. Suppose we added
50 labeled samples, we would obtain a classification error
of about 7.2 percent.Now, supposewe added100unlabeled
samples. We would move from the 0 percent LU-graph to
the 50 percent LU-graph. Classification error would
increase to 8.2 percent! And, if we then added 9,800 un-
labeled samples, we would move to the 99 percent LU-
graph, with classification error about 16.5 percent—more
than twice the error we had with just 50 labeled samples.

It should be noted that, in difficult classification problems,
where LU-graphs decrease very slowly, unlabeled data may
improve classification performance for certain regions of the
LUgraphs. Problemswith a large number of observables and
parameters should require more training data, so we can
expect that such problems benefit more consistently from
unlabeled data. Figs. 3b and 3c illustrate this possibility for a
Naive-Bayes classifier with 49 features. Another possible
phenomenon is that the addition of a substantial number of
unlabeled samples may reduce variance and decrease
classification error, but an additional, much larger, pool of
unlabeled data can eventually add enough bias so as to
increase classification error. Such a situation is likely to have
happened in some of the results reported by Nigam et al. [3],
where classification errors go up and down as more
unlabeled samples are added.

In summary, semisupervised learning displays an odd
failure of robustness: For certain modeling errors, more
unlabeled data can degrade classification performance.
Estimation bias is the central factor in this phenomenon as
the level of bias depends on the ratio of labeled to unlabeled
samples. Most existing theoretical results on semisupervised
learning are based on the assumption of no modeling error
and, consequently, bias has not been an issue so far.

3 SEMISUPERVISED LEARNING FOR BAYESIAN

NETWORK CLASSIFIERS

We now turn our attention to the implication of the
previous analysis to Bayesian network classifiers. As stated
before, we chose Bayesian network classifiers for several
reasons; classification is possible with missing data in
general and unlabeled data in particular, the graphical
representation is intuitive and can be easily expanded to
add different features and modalities, and there are efficient
algorithms for inference.

A Bayesian network [8] is composed of a directed acyclic
graph in which every node is associated with a variable Xi

and with a conditional distribution pðXij�iÞ, where �i

denotes the parents of Xi in the graph. The joint probability
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Fig. 3. (a) LU-graphs for the example with two Gaussian observables. Each sample in each graph is the average of 100 trials; classification error was
obtained by testing in 10,000 labeled samples drawn from the correct model. (b) Naive Bayes classifiers from data generated from a TAN model
(introduced in Section 3) with 49 observables (each variable with two to four values); points in the graphs summarize 10 runs on testing data (bars
cover 30 to 70 percentiles). (c) Same graph as (b), enlarged. Note that unlabeled data does lead to a significant improvement in performance when
added to 30 or 300 labeled samples. There is performance degradation in the presence of 3,000 labeled samples.



distribution is factored to the collection of conditional
probability distributions of each node in the graph as:

P ðX1; . . . ; XnÞ ¼
Yn
i¼1

pðXij�iÞ:

The directed acyclic graph is the structure and the
distributions pðXij�iÞ represent the parameters of the
network. Consider now that data generated by a distribu-
tion pðC;XÞ are collected. We say that the assumed
structure for a network, S0, is correct when it is possible to
find a distribution, pðC;XjS0Þ, that matches the data
generating distribution pðC;XÞ; otherwise, the structure
is incorrect.4,5 Maximum-likelihood estimation is one of the
main methods to learn the parameters of the network.
When there are missing data in training set, the
EM algorithm can be used to maximize the likelihood.

As a direct consequence of the analysis in the previous
section, a Bayesian network that has the correct structure and
the correct parameters is also optimal for classification
because the a posteriori distribution of the class variable is
accurately represented. Thus, there is great motivation for
obtaining the correct structure when conducting semisuper-
vised learning. Somewhat surprisingly, the option of search-
ing for better structures has not beenproposed by researchers
who have previously witnessed the performance degrada-
tion when learning with unlabeled data. In the following
sections, we describe different strategies for learning Baye-
sian network classifiers with labeled and unlabeled data.

3.1 Switching between Simple Models and
Structure Learning

If we observe performance degradation, we may try to find
the “correct” structure for our Bayesian network classifier.
Alas, learning Bayesian network structure is not a trivial task.

One attempt, perhaps the simplest, to overcome perfor-
mance degradation fromunlabeled data could be to assume a
very simple model (such as the Naive Bayes), which is
typically not the correct structure, and switch to a more
complex model as soon as degradation is detected. One such
family of models is the Tree-AugmentedNaive-Bayes (TAN)
[11]. While such a strategy has no guarantees to find the
correct structure, the existence of an efficient algorithm for
learning theTANmodels, both in the supervisedcase [11] and
in the semisupervised case [7], [42], makes switching to TAN
models attractive. However, while both theNaive-Bayes and
TAN classifiers have been observed to be successful in the
supervised case [41], the same success is not always observed
for the semisupervised case (Section 3.3).

When such simple strategies fail, performing uncon-
strained structure learning is the alternative. There are
various approaches for learning the structure of Bayesian
networks, using different criteria in an attempt to find the
correct structure.

The first class of structure learningmethodswe consider is
the class of independence-based methods, also known as
constraint-based or test-based methods. There are several
such algorithms [43], [44], [45], all of them can obtain the

correct structure if there are fully reliable independence tests
available; however, not all of them are appropriate for

classification. The Cheng-Bell-Liu algorithms (CBL1 and
CBL2) seem particularly well-suited for classification as they
strive to keep the number of edges in the Bayesian networks
as small as possible and the performance of CBL1 on labeled
data only has been reported to surpass the performance of
TAN[46]. Because independence-basedalgorithms likeCBL1

do not explicitly optimize a metric, they cannot handle
unlabeled data directly through an optimization scheme like
EM. To handle unlabeled data, the following strategy was
derived (denoted as EM-CBL): Start by learning a Bayesian
network with the available labeled data, then use EM to

process unlabeled data followed by independence tests with
the “probabilistic labels” generated by EM to obtain a new
structure. EM is used again in the new structure and the cycle
is repeated, until two subsequent networks are identical. It
should be noted that such a scheme, however intuitively
reasonable, has no convergence guarantees; one test even

displayed oscillating behavior.
A second class of structure learning algorithms are score-

based methods. At the heart of most score-based methods is
the likelihoodof the trainingdata,withpenalty terms toavoid

overfitting. A good comparison of the different methods is
found in [47]. Most existing methods cannot, in their present
form, handle missing data, in general, and unlabeled data in
particular. The structural EM (SEM) algorithm [48] is one
attempt to learn structure with missing data. The algorithm

attempts to maximize the Bayesian score using an EM-like
scheme in the space of structures andparameters; themethod
performs an always-increasing search in the space of
structures, but does not guarantee the attainment of even a
local maximum. When learning the structure of a classifier,
score-basedstructure learningapproacheshavebeenstrongly

criticized.Theproblem is that,with finite amountsofdata, the
a posteriori probability of the class variable can have a small
effect on the score that is dominated by the marginal of the
observables, therefore leading to poor classifiers [11], [12].
Friedman et al. [11] showed that TAN surpasses score-based
methods for the fully labeledcase,when learning classifiers. The

point is that, with unlabeled data, score-basedmethods, such
as SEM, are likely to go astray even more than has been
reported in the supervised case; the marginal of the
observables further dominates the likelihood portion of the
score as the ratio of unlabeled data increases.

3.2 Classification Driven Stochastic Structure
Search (SSS)

Both the score-basedand independence-basedmethods try to
find the correct structure of the Bayesian network, but fail to

do so because there is not enough data for either reliable
independence tests or for a search that yields agood classifier.
Consider the following alternative: As we are interested in
finding a structure that performswell as a classifier, it would
be natural to design algorithms that use classification error as
theguide for structure learning.Here,wecan further leverage

on the properties of semisupervised learning: We know that
unlabeled data can indicate incorrect structure through
degradation of classification performance and we also know
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4. These definitions follow directly from the definitions of correct and
incorrect models described in the previous section.

5. There is not necessarily a unique correct structure, e.g., if a structure is
correct (as defined above), all structures that are from the same Markov
equivalent class are also correct since causality is not an issue.



that classification performance improves with the correct

structure. Thus, a structure with higher classification accu-

racy over another indicates an improvement toward finding

the optimal classifier.
To learn the structure using classification error, we must

adopt a strategy for searching through the space of all
structures in an efficient manner while avoiding local
maxima. In this section, we propose a method that can
effectively search for better structures with an explicit focus on
classification. We essentially need to find a search strategy
that can efficiently search through the space of structures. As
we have no simple closed-form expression that relates
structure with classification error, it would be difficult to
design a gradient descent algorithm or a similar iterative
method. Even if we did that, a gradient search algorithm
would be likely to find a localminimumbecause of the size of
the search space.

First, we define a measure over the space of structures
which we want to maximize:

Definition 1. The inverse error measure for structure S0 is

inveðS0Þ ¼
1

pS0 ðĉcðXÞ6¼CÞP
S

1
pSðĉcðXÞ6¼CÞ

; ð7Þ

where the summation is over the space of possible structures
and pSðĉcðXÞ 6¼ CÞ is the probability of error of the best
classifier learned with structure S.

We use Metropolis-Hastings sampling [49] to generate
samples from the inverse error measure without having to
ever compute it for all possible structures. For constructing
the Metropolis-Hastings sampling, we define a neighbor-
hood of a structure as the set of directed acyclic graphs to
whichwe can transit in the next step. Transition is done using
a predefined set of possible changes to the structure; at each
transition, a change consists of a single edge addition,
removal, or reversal. We define the acceptance probability
of a candidate structure, Snew, to replace a previous structure,
St, as follows:

min 1;
inveðSnewÞ
inveðStÞ


 �1=T qðStjSnewÞ
qðSnewjStÞ

 !
¼

min 1;
pterror
pnewerror


 �1=T
Nt

Nnew

 !
;

ð8Þ

where qðS0jSÞ is the transition probability from S to S0 and
Nt and Nnew are the sizes of the neighborhoods of St and
Snew, respectively; this choice corresponds to equal prob-
ability of transition to each member in the neighborhood of
a structure. This choice of neighborhood and transition
probability creates a Markov chain which is aperiodic and
irreducible, thus satisfying the Markov chain Monte Carlo
(MCMC) conditions [50]. We summarize the algorithm,
which we name Stochastic Structure Search (SSS), in Fig. 4.

We add T as a temperature factor in the acceptance
probability. Roughly speaking, T close to 1 would allow
acceptanceofmore structureswithhigherprobability of error
than previous structures. T close to 0 mostly allows
acceptance of structures that improve probability of error. A
fixed T amounts to changing the distribution being sampled
by theMCMC, while a decreasing T is a simulated annealing
run, aimed at finding the maximum of the inverse error
measures. The rate of decrease of the temperature determines
the rate of convergence. Asymptotically in the number of
data, a logarithmic decrease ofT guarantees convergence to a
global maximum with probability that tends to one [51].

The SSS algorithm, with a logarithmic cooling schedule T ,
can find a structure that is close to the minimum probability
of error. There are two caveats though. First, the logarithmic
cooling schedule is very slow. We use faster cooling
schedules and a starting point which is the best out of either
theNB classifier or the TANclassifier. Second,we never have
access to the true probability of error for any given structure,
pSerror. Instead, we use the empirical error over the training
data (denoted as p̂pSerror).

To avoid the problem of overfitting several approaches
are possible. The first is cross-validation; the labeled
training data is split to smaller sets and several tests are
performed using the smaller sets as test sets. However, this
approach can significantly slow down the search and is
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Fig. 4. Stochastic structure search algorithm.



suitable only if the labeled training set is moderately large.
Another approach is to penalize different structures
according to some complexity measure. We could use the
BIC or MDL complexity measure, but we chose to use the
multiplicative penalty term derived from structural risk
minimization since it is directly related to the relationship
between training error and generalization error. We define
a modified error term for use in (7) and (8):

ðp̂pSerrorÞ
mod ¼ p̂pSerror

1� c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSðlog2nhSþ1Þ�logð�=4Þ

n

q ; ð9Þ

where hS is the Vapnik-Chervonenkis (VC) dimension of
the classifier with structure S, n is the number of training
records, � and c are between 0 and 1.

Toapproximate theVCdimension,weusehS / NS ,where
NS is thenumberof (free)parameters in theMarkovblanketof
the class variable in the network, assuming that all variables
arediscrete.Wepoint the reader to [52], inwhich itwasshown
that the VC dimension of a Naive Bayes classifier is linearly
proportional to the number of parameters. It is possible to
extend this result to networks where the features are all
descendants of the class variable. Formore general networks,
features thatarenot in theMarkovblanketof theclassvariable
cannot effect its value in classification (assuming there are no
missing values for any feature), justifying the above approx-
imation. In our initial experiments, we found that the
multiplicative penalty outperformed the holdout method
and the MDL and BIC complexity measures.

3.3 Evaluation Using UCI Machine Learning
Data Sets

To evaluate structure learning methods with labeled and
unlabeled data, we startedwith an empirical study involving
simulated data. We artificially generated data to investigate:
1) whether the SSS algorithm finds a structure that is close to
the structure that generated the data and 2) whether the
algorithm uses unlabeled data to improve the classification
performance. A typical result is as follows: We generated
data from a TAN structure with 10 features. The data set
consisted of 300 labeled and 30,000 unlabeled records. We
first estimated the Bayes error rate by learning with the
correct structure and with a very large fully labeled data set.
We obtained a classification accuracy of 92:49 percent. We
learned one Naive Bayes classifier with only the labeled
records and another with both labeled and unlabeled
records; likewise, we learned a TAN classifier only with the

labeled records and another with both labeled and unlabeled

records, using the EM-TAN algorithm, and, finally, we

learned a Bayesian network classifier with our SSS algorithm

using both labeled and unlabeled records. The results are

presented in the first row of Table 1. With the correct

structure, adding unlabeled data improves performance

significantly (columns TAN-L and EM-TAN). Note that

adding unlabeled data degraded the performance from

16 percent error to 40 percent error when we learned the

Naive Bayes classifier. The structure search algorithm comes

close to the performance of the classifier learned with the

correct structure. Fig. 5a shows the changes in the test and

train error during the search process. The graph shows the

first 600moves of the search, initializedwith theNaive Bayes

structure. The error usually decreases as new structures are

accepted; occasionally, we see an increase in the error

allowed by Metropolis-Hastings sampling.
Next, we performed experiments with some of the

UCI data sets, using relatively small labeled sets and large

unlabeled sets (Table 1). The results suggest that structure

learning holds the most promise in utilizing the unlabeled

data. There is no clear “winner” approach, although

SSS yields better results in most cases. We see performance

degradation with NB for every data set. EM-TAN can

sometimes improve performance over TANwith just labeled

data (Shuttle). With the Chess data set, discarding the

unlabeled data andusing only TANseems the best approach.

We have compared two likelihood-based structure learning

methods (K2 and MCMC) on the same data sets as well [34],

showing that, even if we allow the algorithms to use large

labeleddata sets to learn the structure, the resultant networks

still suffer fromperformance degradationwhen learnedwith

unlabeled data.
Illustrating the iterations of the SSS algorithm, Fig. 5b

shows the changes in error for the shuttle data set.

4 LEARNING BAYESIAN NETWORK CLASSIFIERS

FOR HCI APPLICATIONS

Theexperiments in theprevious sectiondiscussed commonly

used machine learning data sets. In the next sections, we

discuss two HCI applications that could benefit from the use

ofunlabeleddata.Westartwith facial expression recognition.
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Fig. 5. Train and test error during the structure search for (a) the artificial data and (b) shuttle data for the labeled and unlabeled data experiments.



4.1 Facial Expression Recognition Using Bayesian
Network Classifiers

Since the early 1970s, Ekman and his colleagues have
performed extensive studies of human facial expressions
[53] and found evidence to support universality in facial
expressions. These “universal facial expressions” are those
representing happiness, sadness, anger, fear, surprise, and
disgust. Ekman’s work inspiredmany researchers to analyze
facial expressions by means of image and video processing.
By tracking facial features andmeasuring the amountof facial
movement, they attempt to categorize different facial
expressions. Recent work on facial expression analysis and
recognition has used these “basic expressions” or a subset of
them. In [54], Pantic and Rothkrantz provide an in-depth
review of much of the research done in automatic facial
expression recognition in recent years.

One of the challenges facing researchers attempting to
design facial expression recognition systems is the relatively
small amount of available labeled data. Construction and
labeling of a good database of images or videos of facial
expressions requires expertise, time, and training of sub-
jects. Only a few such databases are available, such as the
Kanade et al. database [55]. However, collecting, without
labeling, data of humans displaying expressions is not as
difficult. Therefore, it is beneficial to use classifiers that can
be learned with a combination of some labeled data and a
large amount of unlabeled data. As such we use (generative)
Bayesian network classifiers.

We have developed a real-time facial expression recogni-
tion system [56]. The system uses a model-based nonrigid
face tracking algorithm[57] to extractmotion features (seen in
Fig. 7) that serve as input toaBayesiannetwork classifier used
for recognizing the different facial expressions. There are two

main motivations for using Bayesian network classifiers in
this problem. The first is the ability to learn with unlabeled
data and infer the class label even when some of the features
are missing (e.g., due to failure in tracking because of
occlusion). The second motivation is that it is possible to
extend the system to fuse othermodalities, such as audio, in a
principled way by simply adding subnetworks representing
the audio features.

4.1.1 Experimental Design

Weuse two different databases, a database collected byChen
[58] and the Kanade et al. AU code facial expression database
[55]. The first is a database of subjects that were instructed to
display facial expressions corresponding to the six types of
emotions. All the tests of the algorithms are performed on a
set of five people, each one displaying six sequences of each
one of the six emotions, starting and ending at the neutral
expression. The video sampling rate was 30 Hz and a typical
emotion sequence is about 70 samples long (� 2s). Fig. 6
(upper row) shows one frame of each subject.
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TABLE 1
Classification Results (in %) for Naive Bayes, TAN, EM-CBL1, and Stochastic Structure Search

xx-L indicates learning only with the available labeled data.

Fig. 6. Examples of images from the video sequences used in the experiment. The top row shows subjects from the Chen-Huang DB, the bottom row
shows subjects from the Kanade et al. DB (printed with permission from the researchers).

Fig. 7. Motion units extracted from face tracking.



The Kanade et al. database [55] consists of expression
sequences of subjects, starting from a neutral expression
and ending in the peak of the facial expression. There are
104 subjects in the database. Because, for some of the
subjects, not all of the six facial expressions sequences were
available to us, we used a subset of 53 subjects, for which at
least four of the sequences were available. For each subject,
there is at most one sequence per expression with an
average of eight frames for each expression. Fig. 6 (lower
row) shows some examples used in the experiments. A
summary of both databases is presented in Table 2. We
measure the accuracy with respect to the classification
result of each frame, where each frame in the video
sequence was manually labeled to one of the expressions
(including neutral). This manual labeling can introduce
some “noise” in our classification because the boundary
between neutral and the expression of a sequence is not
necessarily optimal and frames near this boundary might
cause confusion between the expression and the neutral.

4.1.2 Experimental Results with Labeled Data

We start with experiments using all our labeled data. This
can be viewed as an upper bound on the performance of the
classifiers trained with most of the labels removed. For the
labeled only case, we also compare results with training of
an artificial Neural network (ANN) so as to test how
Bayesian network classifiers compare with a different kind
of classifier for this problem. We perform person indepen-
dent tests by partitioning the data such that the sequences
of some subjects are used as the test sequences and the
sequences of the remaining subjects are used as training
sequences. Table 3 shows the recognition rate of the test for
all classifiers. The classifier learned with the SSS algorithm
outperforms both the NB and TAN classifiers, while ANN
does not perform well compared to all the others.

4.1.3 Experiments with Labeled and Unlabeled Data

We perform person-independent experiments with labeled
and unlabeled data. We first partition the data to a training
set and a test set (2/3 training, 1/3 for testing) and choose at
random a portion of the training set and remove the labels.
This procedure ensures that the distribution of the labeled
and the unlabeled sets are the same.

We then train Naive Bayes and TAN classifiers, using
just the labeled part of the training data and the combina-
tion of labeled and unlabeled data. We also use the SSS and
the EM-CBL1 algorithms to train a classifier, using both
labeled and unlabeled data (we do not search for the
structure with just the labeled part because it is too small for
performing a full structure search).

Table 4 shows the results of the experiments. We see that
with NB and TAN when using 200 and 300 labeled samples,
adding the unlabeled data degrades the performance of the
classifiers and we would have been better off not using the
unlabeled data. We also see that EM-CBL1 performs poorly
in both cases. Using the SSS algorithm, we are able to
improve the results and utilize the unlabeled data to
achieve performance which is higher than using just the
labeled data with NB and TAN. The fact that the
performance is lower than in the case when all the training
set was labeled (about 75 percent compared to over
80 percent) implies that the relative value of labeled data
is higher than of unlabeled data, as was shown by Castelli
[26]. However, had there been more unlabeled data, the
performance would be expected to improve.

4.2 Applying Bayesian Network Classifiers to Face
Detection

We apply Bayesian network classifiers to the problem of
face detection with the purpose of showing that, using our
proposed methods, semisupervised learning can be used to
learn good face detectors. We take an appearance-based
approach, using the intensity of image pixels as the features
for the classifier. For learning and defining the Bayesian
network classifiers, we must look at fixed size windows and
learn how a face appears in such windows, where we
assume that the face appears in most of the window’s
pixels. The goal of the classifier would be to determine if the
pixels in a fixed size window are those of a face or nonface.

Wenote that there have beennumerous appearance-based
approaches for face detection, many with considerable
success (see Yang et al. [59] for a detailed review on the
state-of the-art in facedetection).However, therehasnot been
any attempt, to our knowledge, to use semisupervised
learning in face detection. While labeled databases of face
images are available, a universally robust face detector is still
difficult to construct. The main challenge is that faces appear
very different under different lighting conditions, expres-
sions, with or without glasses, facial hair, makeup, etc. A
classifier trained with some labeled images and a large
number of unlabeled images would enable incorporating
many more facial variations without the need to label huge
data sets.

In our experiments, we used a training set consisting of
2,429 faces and 10,000 nonfaces obtained from theMIT CBCL
Face database #1 [60]. Each face image is cropped and
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Summary of the Databases
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resampled to an 8� 8window, thuswe have a classifier with
64 features. We also randomly rotate and translate the face
images to create a training set of 10,000 face images. In
addition, we have available 10,000 nonface images. We leave
out 1; 000 images (faces andnonfaces) for testing and train the
Bayesian network classifier on the remaining 19,000. In all the
experiments,we learn aNaiveBayes, a TAN, and twogeneral
generative Bayesian network classifiers, the latter using the
EM-CBL1 and the SSS algorithms.

To compare the results of the classifiers, we use the
receiving operating characteristic (ROC) curves. The ROC
curves show, under different classification thresholds,
ranging from 0 to 1, the probability of detecting a face in
a face image, PD ¼ P ðĈC ¼ facejC ¼ faceÞ, against the
probability of falsely detecting a face in a nonface image,
PFD ¼ P ðĈC ¼ facejC 6¼ faceÞ.

We first learn using all the training data being labeled.
Fig. 8a shows the resultant ROC curve for this case. The
classifier learned with the SSS algorithm outperforms both
the TAN and NB classifiers and all perform quite well,
achieving about 96 percent detection rates with a low rate of
false alarm.

Next, we remove the labels of 95 percent of the training
data (leaving only 475 labeled images) and train the
classifiers. Fig. 8b shows the resultant ROC curve for this
case. We see that the NB classifier using both labeled and
unlabeled data performs very poorly. The TAN based on
the 475 labeled images and the TAN based on the labeled
and unlabeled images are close in performance, thus there
was no significant degradation of performance when
adding the unlabeled data. The classifier using all data
and the SSS outperforms the rest with an ROC curve close
to the best ROC curve in Fig. 8a. Fig. 8c shows the ROC
curve with only 250 labeled data used. Again, NB with both

labeled and unlabeled performs poorly, while SSS outper-

forms the other classifiers with no great reduction of

performance compared to the two other ROC curves. The

experiment shows that using structure search, the unlabeled

data was utilized successfully to achieve a classifier almost

as good as if all the data was labeled.

5 SUMMARY AND DISCUSSION

Using unlabeled data to enhance the performance of
classifiers trained with few labeled data has many applica-

tions in pattern recognition, computer vision, HCII, data
mining, text recognition, and more. To fully utilize the
potential of unlabeled data, the abilities and limitations of

existing methods must be understood.
The main contributions of this paper can be summarized

as follows:

1. We have derived and studied the asymptotic
behavior of semisupervised learning based on max-
imum-likelihood estimation. We presented a de-
tailed analysis of performance degradation from
unlabeled data, showing that it is directly related to
modeling assumptions, regardless of numerical
instabilities or finite sample effects.

2. We discussed the implications of the analysis of
semisupervised learning on Bayesian network clas-
sifiers, namely, the importance of structure when
unlabeled data are used in training. We listed the
possible shortcomings of likelihood-based structural
learning algorithms when learning classifiers, espe-
cially when unlabeled data are present.

3. We introduced a classification driven structure
search algorithm based on Metropolis-Hastings

1564 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 12, DECEMBER 2004

TABLE 4
Classification Results for Facial Expression Recognition with Labeled and Unlabeled Data

Fig. 8. ROC curves showing detection rates of faces compared to false detection of faces of the different (SSS, TAN, and NB) classifiers and

different ratios of labeled and unlabeled data, (a) with all the data labeled (no unlabeled data), (b) with 95 percent of the data unlabeled, and (c) with

97.5 percent of the data unlabeled.



sampling and showed that it performs well both on
fully labeled data sets and on labeled and unlabeled
training sets. As a note for practitioners, the SSS
algorithm appears to work well for relatively large
data sets and difficult classification problems that are
represented by complex structures. Large data sets
are those where there are enough labeled data for
reliable estimation of the empirical error, allowing
search for complex structures, and there are enough
unlabeled data to reduce the estimation variance of
complex structures.

4. We presented our real-time facial expression recogni-
tion system using a model-based face tracking
algorithm and Bayesian network classifiers. We
showed experiments using both labeled and unla-
beled data.

5. We presented the use of Bayesian network classifiers
for learning to detect faces in images. We note that,
while finding a good classifier is a major part of any
face detection system, there are many more compo-
nents that need to be designed for such a system to
work on natural images (e.g., ability to detect at
multiscales, highly varying illumination, large rota-
tions of faces, and partial occlusions). Our goal was
to present the first step in designing such a system
and show the feasibility of the approach when
training with labeled and unlabeled data.

Our discussion of semisupervised learning for Bayesian
networks suggests the following path: When faced with the
option of learning Bayesian networks with labeled and
unlabeled data, start with Naive Bayes and TAN classifiers,
learn with only labeled data, and test whether the model is
correct by learning with the unlabeled data. If the result is
not satisfactory, then SSS can be used to attempt to further
improve performance with enough computational re-
sources. If none of the methods using the unlabeled data
improve performance over the supervised TAN (or Naive
Bayes), either discard the unlabeled data or try to label
more data, using active learning for example.

Following our investigation of semisupervised learning,
there are several important open theoretical questions and
research directions:

. Is it possible to find necessary and sufficient
conditions for performance degradation to occur?
Finding such conditions are of great practical
significance. Knowing these conditions can lead to
the design of new useful tests that will indicate when
unlabeled can be used or when they should be
discarded or if a different model should be chosen.

. An important question is whether other semisuper-
vised learning methods, such as transductive SVM
[61] or cotraining [62], will exhibit the phenomenon of
performancedegradation?While no extensive studies
have been performed, a few results from the literature
suggest that it is a realistic conjecture. Zhang andOles
[2] demonstrated that transductive SVM can cause
degradation of performance when unlabeled data are
added. Ghani [63] described experiments where the
same phenomenon occurred with cotraining. If the
causes of performance degradation are similar for
different algorithms, it should be possible to present a
unified theory for semisupervised learning.

. Are there performance guarantees for semisuper-
vised learning with finite amounts of data, labeled
and unlabeled? In supervised learning, such guar-
antees are studied extensively. PAC and risk mini-
mization bounds help in determining the minimum
amount of (labeled) data necessary to learn a
classifier with good generalization performance.
However, there are no existing bounds on the
classification performance when training with la-
beled and unlabeled data. Finding such bounds can
be derived using principles in estimation theory,
based on the asymptotic covariance properties of the
estimator. Other bounds can be derived using PAC
theoretical approaches. The existence of such bounds
can immediately lead to new algorithms and
approaches, better utilizing unlabeled data.

. Can we use the fact that unlabeled data indicate
model incorrectness to actively learn better models?
The use of active learning seems promising when-
ever possible and it might be possible to extend
active learning to learn better models, not just
enhancement of the parameter estimation.

In closing, this work should be viewed as a combination

of three main components. The theory showing the

limitations of unlabeled data is used to motivate the design

of algorithms to search for better performing structures of

Bayesian networks and finally, the successful application to

the real-world problems we were interested in solving by

learning with labeled and unlabeled data.
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