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Abstract Human–computer interaction (HCI) lies at the
crossroads of many scientific areas including artificial
intelligence, computer vision, face recognition, motion
tracking, etc. It is argued that to truly achieve effective
human–computer intelligent interaction, the computer
should be able to interact naturally with the user, similar to
the way HCI takes place. In this paper, we discuss training
probabilistic classifiers with labeled and unlabeled data for
HCI applications. We provide an analysis that shows under
what conditions unlabeled data can be used in learning to
improve classification performance, and we investigate the
implications of this analysis to a specific type of proba-
bilistic classifiers, Bayesian networks. Finally, we show
how the resulting algorithms are successfully employed
in facial expression recognition, face detection, and skin
detection.

Keywords Semisupervised learning · Bayesian networks ·
Face detection · Facial expression recognition · Skin
detection

1 Introduction

Recent years have seen a growing interest in improving all
aspects of the interaction between humans and computers
with the clear goal of achieving a natural interaction, simi-
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lar to the way human–human interaction (HCI) takes place.
Humans interact with each other mainly through speech, but
also through body gestures, to emphasize a certain part of
the speech and display of emotions. As a consequence, the
new interface technologies are steadily driving toward ac-
commodating information exchanges via the natural sensory
modes of sight, sound, and touch. In face-to-face exchange,
humans employ these communication paths simultaneously
and in combination, using one to complement and enhance
another. The exchanged information is largely encapsulated
in this natural, multimodal format. Typically, conversational
interaction bears a central burden in human communication,
with vision, gaze, expression, and manual gestures often
contributing critically, as well as frequently embellishing at-
tributes such as emotion, mood, attitude, and attentiveness.
But the roles of multiple modalities and their interplay re-
main to be quantified and scientifically understood. What is
needed is a science of human–computer communication that
establishes a framework for multimodal “language” and “di-
alog,” much like the framework we have evolved for spoken
exchange.

Another important aspect is the development of human-
centered information systems. The most important issue
here is how to achieve synergism between man and ma-
chine. The term “human-centered” is used to emphasize the
fact that, although all existing information systems were de-
signed with human users in mind, many of them are far
from being user friendly. What can the scientific/engineering
community do to effect a change for the better?

Information systems are ubiquitous in all human en-
deavors including scientific, medical, military, transporta-
tion, and consumer. Individual users use them for learning,
searching for information (including data mining), doing re-
search (including visual computing), and authoring. Multi-
ple users (groups of users and groups of groups of users)
use them for communication and collaboration, and either
single or multiple users use them for entertainment. An in-
formation system consists of two components: computer
(data/knowledge base and information processing engine)
and humans. It is the intelligent interaction between the two
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that we address in this paper. To do this, in what follows we
present in detail three essential components of such an in-
formation system for HCI: facial emotion recognition, face
detection, and skin detection.

Skin is arguably the most widely used primitive in hu-
man image processing research, with applications ranging
from face detection [66] and person tracking [55] to pornog-
raphy filtering [4, 24]. We are especially interested in skin
detection as a cue for detecting people (and their faces) in
real-world photographs and live videos. Many of the recent
applications designed for human–computer intelligent inter-
action use the human face as an input. Systems that per-
form face tracking for various applications, facial expression
recognition, and pose estimation of faces all rely on detec-
tion of human faces in the video frames [48, 49]. Human be-
ings possess and express emotions in everyday interactions
with others. Emotions are often reflected on the face, in hand
and body gestures, and in the voice to express our feelings
or likings [46]. While a precise, generally agreed upon def-
inition of emotion does not exist, it is undeniable that emo-
tions are an integral part of our existence. Facial expressions
and vocal emotions are commonly used in everyday human-
to-human communication, as one smiles to show greeting,
frowns when confused, or raises one’s voice when enraged.
People infer a great deal from perceived facial expressions:
“You look tired” or “You seem happy.” The fact that we un-
derstand emotions and know how to react to other people’s
expressions greatly enriches the interaction and defines us as
human beings.

Maybe no movie of modern time has explored the defini-
tion of what it means to be human better than Blade Runner.
The Tyrell Corporation’s motto, “More human than human,”
serves as the basis for exploring the human experience
through true humans and created humans, or replicants.
Replicants are androids that were built to look like humans
and to work or fight their wars. In time, they began to
acquire emotions (so much like humans), and it became
difficult to tell them apart. With emotions they began to
feel oppressed, and many of them became dangerous and
committed acts of extreme violence to be free. Fortunately,
Dr. Elden Tyrell, the creator of the replicants, installed a
built-in safety feature in these models: a 4-year life span.

It is evident from the above story that it is not sufficient
for a machine (computer) to look like a human (e.g., have
skin, face and facial features, limbs, etc). Something else is
also essential: the ability to acquire emotions. Moreover, the
machine should learn to recognize faces and to understand
the emotions to be able to have a humanlike interaction with
its human counterpart. This paper tries to make only a small
dent in this huge task of providing computers with the ability
to understand humans.

2 Background

We present first the current research and the challenges we
all face in achieving an automatic HCI system. As we men-

tioned in the previous section, we focus on three compo-
nents: emotion recognition, face detection, and skin detec-
tion.

2.1 Emotion recognition research

In many important HCI applications such as computer-aided
tutoring and learning, it is highly desirable (even mandatory)
that the response of the computer take into account the emo-
tional or cognitive state of the human user. Emotions are
displayed by visual, vocal, and other physiological means.
There is a growing amount of evidence showing that emo-
tional skills are part of what is called “intelligence” [28].
Computers today can recognize much of what is said and, to
some extent, who said it. But they are almost completely “in
the dark” when it comes to how things are said, the affec-
tive channel of information. This is true not only in speech
but also in visual communications despite the fact that facial
expressions, posture, and gestures communicate some of the
most critical information: how people feel. Affective com-
munication explicitly considers how emotions can be recog-
nized and expressed during HCI.

The most expressive way humans display emotion is
through facial expressions. Humans detect and interpret
faces and facial expressions in a scene with little or no effort.
Still, developing an automated system that accomplishes this
task is rather difficult. There are several related problems:
detection of an image segment as a face, extraction of the fa-
cial expression information, and classification of the expres-
sion (e.g., in emotion categories). A system that performs
these operations accurately and in real time would be a ma-
jor step forward in achieving humanlike interaction between
human and machine.

Since the early 1970s Paul Ekman and his colleagues
have performed extensive studies of human facial expres-
sions [20]. They found evidence to support universality in
facial expressions. These “universal facial expressions” are
those representing happiness, sadness, anger, fear, surprise,
and disgust. They studied facial expressions in different cul-
tures, including preliterate cultures, and found much com-
monality in the expression and recognition of emotions on
the face. However, they observed differences in expressions
as well and proposed that facial expressions are governed by
“display rules” in different social contexts.

Ekman and Friesen [21] developed the Facial Action
Coding System (FACS) to code facial expressions where
movements on the face are described by a set of action units
(AUs). Each AU has some related muscular basis. This sys-
tem of coding facial expressions is done manually by follow-
ing a set of prescribed rules. The inputs are still images of
facial expressions, often at the peak of the expression. This
process is very time consuming.

Ekman’s work inspired many researchers to analyze fa-
cial expressions by means of image and video processing.
By tracking facial features and measuring the amount of fa-
cial movement, they attempt to categorize different facial
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expressions. Recent work on facial expression analysis and
recognition has used these “basic expressions” or a subset of
them. The two recent surveys in the area [23, 45] provide an
in-depth review of much of the research done in automatic
facial expression recognition in recent years.

Work in computer-assisted quantification of facial ex-
pressions did not start until the 1990s. Black and Yacoob [2]
used local parameterized models of image motion to re-
cover nonrigid motion. Once recovered, these parameters
were used as inputs to a rule-based classifier to recognize
the six basic facial expressions. Rosenblum et al. [51] com-
puted optical flow of regions on the face, then applied a
radial basis function network to classify expressions. Essa
and Pentland [22] used an optical-flow-region-based method
to recognize expressions. Donato et al. [18] tested differ-
ent features for recognizing facial AUs and inferring the
facial expression in a frame. Nefian and Hayes [40] pro-
posed an embedded hidden Markov model (HMM) approach
for face recognition that uses an efficient set of observation
vectors based on the DCT coefficients. Oliver et al. [42]
used lower face tracking to extract mouth shape features
and used them as inputs to an HMM-based facial expres-
sion recognition system (recognizing neutral, happy, sad,
and an open mouth). Chen [9] used a suite of static classifiers
to recognize facial expressions, reporting on both person-
dependent and person-independent results. Cohen et al. [14]
describe classification schemes for facial expression recog-
nition in two types of settings: dynamic and static classifica-
tion. In the static setting, the authors learned the structure of
Bayesian network classifiers using as input 12 motion units
given by a face tracking system for each frame in a video.
For the dynamic setting, they used a multilevel HMM clas-
sifier that combines the temporal information and allows one
not only to classify video segments with the corresponding
facial expressions, as in the previous works on HMM-based
classifiers, but also to automatically segment an arbitrary
long sequence to the different expression segments without
resorting to heuristic methods of segmentation.

These methods are similar in that they first extract some
features from the images, then use these features as inputs
into a classification system, and the outcome is one of the
preselected emotion categories. They differ mainly in the
features extracted from the video images and in the classi-
fiers used to distinguish between the different emotions.

2.2 Face detection

Images containing a face are essential to intelligent
vision-based HCI. The rapidly expanding research in face
processing is based on the premise that information about
a user’s identity, state, and intention can be extracted from
images and that computers can react accordingly, e.g., by
observing a person’s facial expression. Given an arbitrary
image, the goal of face detection is to automatically locate
a human face in an image or video, if it is present. Face
detection in a general setting is a challenging problem for
various reasons. The first set of reasons are inherent: there

are many types of faces, with different colors, texture, sizes,
etc. In addition, the face is a nonrigid object that can change
its appearance. The second set of reasons are environmental:
changing lighting, rotations, translations, and scales of faces
in natural images.

To solve the problem of face detection, two main ap-
proaches can be taken. The first is a model-based approach,
where a description of what is a human face is used for de-
tection. The second is an appearance-based approach, where
we learn what faces are directly from their appearance in
images. In this work, we focus on the latter.

There have been numerous appearance-based ap-
proaches. We list a few from recent years and refer to the
reviews of Yang et al. [66] and Hjelmas and Low [31]
for further details. Rowley et al. [52] and Kouzani [35]
used neural networks to detect faces in images by training
from a corpus of face and nonface images. Colmenarez and
Huang [16] used maximum entropic discrimination between
faces and nonfaces to perform maximum likelihood classifi-
cation, which was used for a real-time face tracking system.
Yang et al. [65] used SNoW-based classifiers to learn the
face and nonface discrimination boundary on natural face
images. Others used support vector machines [30]. Wang
et al. [62] learned a minimum spanning weighted tree for
learning pairwise dependency graphs of facial pixels, fol-
lowed by a discriminant projection to reduce complexity. Vi-
ola and Jones [61] used boosting and a cascade of classifiers
for face detection.

Very relevant to our work is the research of
Schneiderman [54], who learns a sparse structure of statis-
tical dependecies for several object classes including faces.
While analyzing such dependencies can reveal useful infor-
mation, we go beyond the scope of Schneiderman’s work
and present a framework that not only learns the structure of
a face but also allows the use of unlabeled data in classifica-
tion.

Face detection provides interesting challenges to the
underlying pattern classification and learning techniques.
When a raw or filtered image is considered as input to a
pattern classifier, the dimension of the space is extremely
large (i.e., the number of pixels in normalized training im-
ages). The classes of face and nonface images are decidedly
characterized by multimodal distribution functions, and ef-
fective decision boundaries are likely to be nonlinear in the
image space. To be effective, the classifiers must be able to
extrapolate from a modest number of training samples.

2.3 Skin detection

The automated detection and tracking of humans in com-
puter vision necessitates improved modeling of human skin
appearance. Skin detection is largely used in applications
ranging from face detection [60, 66] and person track-
ing [55] to pornography filtering [4, 24]. The main challenge
is to make skin detection robust to the large variations in ap-
pearance that can occur. Skin appearance changes in color
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and shape are often affected by occlusion (clothing, hair, eye
glasses, etc.). Moreover, changes in intensity, color, and lo-
cation of light sources affect skin appearance. Other objects
in the scene may cast shadows or reflect additional light and
so forth. Finally, many other objects are easily confused with
skin: certain types of wood, copper, sand as well as clothes
often have skinlike colors.

Research has been performed on the detection of human
skin pixels in color images and on the discrimination be-
tween skin pixels and nonskin pixels by use of various sta-
tistical color models [32]. Saxe and Foulds [53] proposed an
iterative skin identification method that uses histogram in-
tersection in HSV color space. An initial patch of skin color
pixels, called the control seed, is chosen by the user and used
to initiate the iterative algorithm. To detect skin color re-
gions, their method moves through the image, one patch at a
time, and presents a control histogram and current histogram
from the image for comparison using the histogram intersec-
tion. If the match score is greater than a threshold, the cur-
rent patch is classified as being skin color. In contrast to the
nonparametric methods mentioned above, Gaussian density
functions [64] and a mixture of Gaussians [7, 38] are of-
ten used to model skin color. The parameters in a unimodal
Gaussian distribution are often estimated using maximum
likelihood. The motivation for using a mixture of Gaus-
sians is based on the observation that the color histogram for
the skin of people with different ethnic backgrounds does
not form a unimodal distribution but rather a multimodal
distribution. The parameters in a mixture of Gaussians are
usually estimated using an EM algorithm. Recently, Jones
and Rehg [33] conducted a large-scale experiment in which
nearly 1 billion labeled skin-tone pixels were collected (in
normalized RGB color space). Comparing the performance
of histogram and mixture models for skin detection, they
found histogram models to be superior in accuracy and com-
putational cost.

3 Learning classifiers for human–computer interaction

Many pattern recognition and HCI applications require the
design of classifiers. Classification is the task of system-
atic arrangement in groups or categories according to some
set of observations, e.g., classifying images as those con-
taining human faces and those that do not or classifying
individual pixels as being skin or nonskin. Classification
is a natural part of daily human activity and is performed
on a routine basis. One of the tasks in machine learning
has been to give computers the ability to perform clas-
sification in different problems. In machine classification,
a classifier is constructed that takes as input a set of ob-
servations (such as images in the face detection problem)
and outputs a prediction of the class label (e.g., face or no
face). The mechanism that performs this operation is the
classifier.

We are interested in probabilistic classifiers, in which
the observations and class are treated as random variables

and a classification rule is derived using probabilistic argu-
ments (e.g., if the probability of an image being a face given
that we observed two eyes, nose, and mouth in the image
is higher than some threshold, classify the image as a face).
We consider two aspects. First, most of the research men-
tioned in the previous section tried to classify each observ-
able independently of the others. We want to take a different
approach: can we learn the dependencies (the structure) be-
tween the observables (e.g., the pixels in an image patch)?
Can we use this structure for classification? To achieve this
we use Bayesian networks. Bayesian networks can repre-
sent joint distributions in an intuitive and efficient way; as
such, Bayesian networks are naturally suited for classifica-
tion. Second, we are interested in using a framework that
allows for the usage of labeled and unlabeled data (also
called semisupervised learning). The motivation for semisu-
pervised learning stems from the fact that labeled data are
typically much harder to obtain compared to unlabeled data.
For example, in facial expression recognition it is easy to
collect videos of people displaying emotions, but it is very
tedious and difficult to link the video to the corresponding
expressions. Bayesian networks are very well suited for this
task: they can be learned with labeled and unlabeled data
using maximum-likelihood estimation.

Is there value in unlabeled data in supervised learning of
classifiers? This fundamental question has been increasingly
discussed in recent years, with a general optimistic view that
unlabeled data hold great value. Due to an increasing num-
ber of applications and algorithms that successfully use un-
labeled data [1, 3, 6, 27, 41, 57, 58] and magnified by the-
oretical issues over the value of unlabeled data in certain
cases [8, 43, 50], semisupervised learning is seen optimisti-
cally as a learning paradigm that can relieve the practitioner
of the need to collect many expensive labeled training data.
However, several disparate empirical evidences in the liter-
ature suggest that there are situations in which the addition
of unlabeled data to a pool of labeled data causes degrada-
tion of the classifier’s performance [1, 6, 41, 58], in con-
trast to improvement of performance when adding more la-
beled data. Intrigued by these discrepancies, we performed
extensive experiments, reported in [12, 15]. Our experiments
suggested that performance degradation can occur when the
assumed classifier’s model is incorrect. Such situations are
quite common as one rarely knows whether the assumed
model is an accurate description of the underlying true data-
generating distribution. More details are given below.

The goal is to classify an incoming vector of observables
X. Each instantiation of X is a sample. There exists a class
variable C ; the values of C are the classes. Let P(C, X)
be the true joint distribution of the class and features from
which any sample of some (or all) of the variables from the
set {C, X} is drawn, and let p(C, X) be the density distri-
bution associated with it. We want to build classifiers that
receive a sample x and output either of the values of C .

We take that the probabilities of (C, X), or functions
of these probabilities, are estimated from data and then
“plugged” into the optimal classification rule. We assume
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that a parametrical model p(C, X | θ) is adopted. An esti-
mate of θ is denoted by θ̂ , and we denote throughout by θ̂∗
the assimptotic value of θ̂ . If the distribution p(C, X) be-
longs to the family p(C, X | θ), we say the “model is cor-
rect”; otherwise, we say the “model is incorrect.” We use
“estimation bias” loosely to mean the expected difference
between p(C, X) and the estimated p(C, X | θ̂ ).

We base our analysis on the work of White [63] on
the properties of maximum-likelihood estimators without
assuming model correctness. White [63] showed that un-
der suitable regularity conditions, maximum-likelihood es-
timators converge to a parameter set θ∗ that minimizes the
Kullback–Leibler (KL) distance between the assumed fam-
ily of distributions, p(Y | θ), and the true distribution, p(Y ).
White also showed that the estimator is asymptotically nor-
mal, i.e.,

√
N (θ̂N − θ∗) ∼ N (0, CY (θ)) as N (the num-

ber of samples) approaches infinity. CY (θ) is a covariance
matrix equal to AY (θ)−1 BY (θ)AY (θ)−1, evaluated at θ∗,
where AY (θ) and BY (θ) are matrices whose (i, j)th element
(i, j = 1, . . . , d , where d is the number of parameters) is
given by:

AY (θ) = E[∂2 log p(Y | θ) /∂θiθ j ],
BY (θ) = E[(∂ log p(Y | θ) /∂θi )(∂ log p(Y | θ) /∂θ j )].

Using these definitions, we obtain the following theo-
rem.

Theorem 1 Consider supervised learning where samples
are randomly labeled with probability λ. Adopt the regular-
ity conditions in Theorems 3.1, 3.2, 3.3 from [63], with Y
replaced by (C, X) and by X, and also assume identifiability
for the marginal distributions of X. Then the value of θ∗, the
limiting value of maximum likelihood estimates, is:

arg max
θ

(λE[log p(C, X | θ)] + (1 − λ)E[log p(X | θ)]) ,

(1)
where the expectations are with respect to p(C, X). Addi-
tionally,

√
N (θ̂N − θ∗) ∼ N (0, Cλ(θ)) as N → ∞, where

Cλ(θ) is given by:

Cλ(θ) = Aλ(θ)−1 Bλ(θ)Aλ(θ)−1 with,

Aλ(θ) = (
λA(C,X)(θ) + (1 − λ)AX(θ)

)
and (2)

Bλ(θ) = (
λB(C,X)(θ) + (1 − λ)BX(θ)

)
,

evaluated at θ∗. �

Expression 1 indicates that semisupervised learning
can be viewed asymptotically as a “convex” combina-
tion of supervised and unsupervised learning. The ob-
jective function for semisupervised learning is a combi-
nation of the objective function for supervised learning
(E[log p(C, X | θ)]) and the objective function for unsuper-
vised learning (E[log p(X | θ)]).

Denote by θ∗
λ the value of θ that maximizes Eq. 1 for

a given λ. Then, θ∗
1 is the asymptotic estimate of θ for

supervised learning, denoted by θ∗
rml . Likewise, θ∗

0 is the

asymptotic estimate of θ for unsupervised learning, denoted
by θ∗

u .
The asymptotic covariance matrix is positive definite as

BY (θ) is positive definite, AY (θ) is symmetric for any Y ,
and

θ A(θ)−1 BY (θ)A(θ)−1θT = w(θ)BY (θ)w(θ)T > 0,

where w(θ) = θ AY (θ)−1. We see that asymptotically, an
increase in N , the number of labeled and unlabeled samples,
will lead to a reduction in the variance of θ̂ . Such a guaran-
tee can perhaps be the basis for the optimistic view that un-
labeled data should always be used to improve classification
accuracy. In what follows, we show this view is valid when
the model is correct and that it is not always valid when the
model is incorrect.

3.1 Model is correct

Suppose first that the family of distributions P(C, X | θ)
contains the distribution P(C, X); that is, P(C, X | θ�) =
P(C, X) for some θ�. Under this condition, the maximum-
likelihood estimator is consistent; thus θ∗

l = θ∗
u = θ� given

identifiability. Thus θ∗
λ = θ� for any 0 ≤ λ ≤ 1.

Additionally, using White’s results [63], A(θ∗
λ ) =

−B(θ∗
λ ) = I(θ∗

λ ), where I( ) denotes the Fisher information
matrix. Thus, the Fisher information matrix can be written
as:

I(θ) = λIl(θ) + (1 − λ)Iu(θ), (3)

which matches the derivations made by Zhang and
Oles [67]. The significance of Eq. 3 is that it allows the use
of the Cramer–Rao lower bound (CRLB) on the covariance
of a consistent estimator:

Cov(θ̂N ) ≥ 1

N
(I(θ))−1, (4)

where N is the number of data (both labeled and unlabeled)
and Cov(θ̂N ) is the estimator’s covariance matrix with N
samples.

Consider the Taylor expansion of the classification
error around θ�, as suggested by Shahshahani and
Landgrebe [58], linking the decrease in variance associated
with unlabeled data to a decrease in classification error, and
assume the existence of necessary derivatives:

e(θ̂) ≈ eB + ∂e(θ)

∂θ

∣
∣∣∣
θ�

(θ̂ − θ�)

+ 1

2
tr

(
∂2e(θ)

∂θ2

∣∣
∣∣∣
θ�

(θ̂ − θ�)(θ̂ − θ�)T

)

. (5)

Take expected values on both sides. Asymptotically the
expected value of the second term in the expansion is
zero, as maximum-likelihood estimators are asymptotically
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unbiased when the model is correct. Shahshahani and
Landgrebe [58] thus argue that

E[e(θ̂)] ≈ eB + (1/2)tr((∂2e(θ)/∂θ2)|θ�Cov(θ̂)),

where eB = e(θ�) is the Bayes error rate. They also show
that if Cov(θ ′) ≥ Cov(θ ′′) for some θ ′ and θ ′′, then the
second term in the approximation is larger for θ ′ than for
θ ′′. Because Iu(θ) is always positive definite, Il(θ) ≤ I(θ).
Thus, using the Cramer–Rao lower bound (Eq. 4) the co-
variance with labeled and unlabeled data is smaller than the
covariance with just labeled data, leading to the conclusion
that unlabeled data must cause a reduction in classification
error when the model is correct. It should be noted that
this argument holds as the number of records approaches
infinity and is an approximation for finite values.

3.2 Model is incorrect

We now study the more realistic scenario where the distribu-
tion P(C, X) does not belong to the family of distributions
P(C, X | θ). In view of Theorem 1, it is perhaps not surpris-
ing that unlabeled data can have the deleterious effect ob-
served occasionally in the literature. Suppose that θ∗

u �= θ∗
l

and that e(θ∗
u ) > e(θ∗

l ).1 If we observe a large number
of labeled samples, the classification error is approximately
e(θ∗

l ). If we then collect more samples, most of them unla-
beled, we eventually reach a point where the classification
error approaches e(θ∗

u ). So the net result is that we started
with a classification error close to e(θ∗

l ) and, when we added
a large number of unlabeled samples, classification perfor-
mance degraded. The basic fact here is that estimation and
classification bias are affected differently by different val-
ues of λ. Hence, a necessary condition for this kind of per-
formance degradation is that e(θ∗

u ) �= e(θ∗
l xs); a sufficient

condition is that e(θ∗
u ) > e(θ∗

l ).
The focus on asymptotics is adequate as we want to

eliminate phenomena that can vary from dataset to dataset.
If e(θ∗

l ) is smaller than e(θ∗
u ), then a large enough labeled

dataset can be dwarfed by a much larger unlabeled dataset –
the classification error using the whole dataset can be larger
than the classification error using the labeled data only.

3.3 Discussion

Despite the shortcomings of semisupervised learning pre-
sented in the previous sections, we do not discourage its
use. Understanding the causes of performance degradation
with unlabeled data motivates the exploration of new meth-
ods attempting to use positively the available unlabeled

1 We must address a difficulty with e(θ∗
u ): given only unlabeled data,

there is no information to decide the labels for decision regions, and
then the classification error is 1/2 [8]. Instead of actually using e(θ∗

u ),
we could consider e(θ∗

ε ) for any value of ε > 0. To simplify the dis-
cussion, we avoid the complexities of e(θ∗

ε ) by assuming that, when
λ = 0, an “oracle” will be available to indicate the labels of the deci-
sion regions.

data. Incorrect modeling assumptions in Bayesian networks
culminate mainly as discrepancies in the graph structure,
signifying incorrect independence assumptions among vari-
ables. To eliminate the increased bias caused by the addition
of unlabeled data, we can try simple solutions, such as model
switching (Sect. 4.2), or attempt to learn better structures.
We describe likelihood-based structure learning methods
(Sect. 4.3) and a possible alternative: classification-driven
structure learning (Sect. 4.4). In cases where relatively mild
changes in structure still suffer from performance degrada-
tion from unlabeled data, there are different approaches that
can be taken: discard the unlabeled data, give them a dif-
ferent weight (Sect. 4.5), or use the alternative of actively
labeling some of the unlabeled data (Sect. 4.6).

To summarize, the main conclusions that can be derived
from our analysis are:

• Labeled and unlabeled data contribute to a reduction
in variance in semisupervised learning under maximum-
likelihood estimation. This is true regardless of whether
or not the model is correct.

• If the model is correct, the maximum-likelihood estima-
tor is unbiased and both labeled and unlabeled data con-
tribute to a reduction in classification error by reducing
variance

• If the model is incorrect, there may be different asymp-
totic estimation biases for different values of λ (the ra-
tio between the number of labeled and unlabeled data).
Asymptotic classification error may also be different for
different values of λ. An increase in the number of un-
labeled samples may lead to a larger bias from the true
distribution and a larger classification error.

In the next section, we discuss several possible solutions for
the problem of performance degradation in the framework
of Bayesian network classifiers.

4 Learning the structure of Bayesian network classifiers

The conclusion of the previous section indicates the
importance of obtaining the correct structure when using
unlabeled data in learning a classifier. If the correct struc-
ture is obtained, unlabeled data improve the classifier; oth-
erwise, unlabeled data can actually degrade performance.
Somewhat surprisingly, the option of searching for better
structures was not proposed by researchers who previously
witnessed the performance degradation. Apparently, perfor-
mance degradation was attributed to unpredictable, stochas-
tic disturbances in modeling assumptions and not to mis-
takes in the underlying structure – something that can be
detected and fixed.

4.1 Bayesian networks

Bayesian networks [47] are tools for modeling and classifi-
cation. A Bayesian network (BN) is composed of a directed
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acyclic graph in which every node is associated with a vari-
able Xi and with a conditional distribution p(Xi |�i ), where
�i denotes the parents of Xi in the graph. The joint proba-
bility distribution is factored to the collection of conditional
probability distributions of each node in the graph as:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi | �i ) . (6)

The directed acyclic graph is the structure, and the distri-
butions p(Xi | �i) represent the parameters of the network.
We say that the assumed structure for a network, S′, is cor-
rect when it is possible to find a distribution, p

(
C, X | S′),

that matches the distribution that generates data, p(C, X);
otherwise, the structure is incorrect. In the above notations,
X is an incoming vector of features. The classifier receives
a record x and generates a label ĉ(x). An optimal classifica-
tion rule can be obtained from the exact distribution p(C, X)
which represents the a posteriori probability of the class
given the features.

Maximum-likelihood estimation is one of the main
methods to learn the parameters of a network. When there
are missing data in a training set, the expectation maximiza-
tion (EM) algorithm [17] can be used to maximize the like-
lihood.

As a direct consequence of the analysis in Sect. 3, a BN
that has the correct structure and the correct parameters is
also optimal for classification because the a posteriori distri-
bution of the class variable is accurately represented. There-
fore, to solve the problem of performance degradation in
BNs, we need to take a careful look at the assumed struc-
ture of the classifier.

4.2 Switching between simple models

One attempt to overcome the performance degradation from
unlabeled data could be to switch models as soon as degra-
dation is detected. Suppose that we learn a classifier with
labeled data only and we observe a degradation in perfor-
mance when the classifier is learned with labeled and unla-
beled data. We can switch to a more complex structure at
that point. An interesting idea is to start with a Naive Bayes
Classifier [56] in which the features are assumed indepen-
dent given the class. If performance degrades with unlabeled
data, switch to a different type of BN classifier, namely, the
Tree-Augmented Naive Bayes classifier (TAN) [26].

In the TAN classifier structure the class node has no par-
ents and each feature has the class node and at most one
other feature as parents such that the result is a tree structure
for the features. Learning the most likely TAN structure has
an efficient and exact solution [26] using a modified Chow–
Liu algorithm [11]. Learning the TAN classifiers when there
are unlabeled data requires a modification of the original al-
gorithm to what we named the EM-TAN algorithm [14].

If the correct structure can be represented using a TAN
structure, this approach will indeed work. However, even the

TAN structure is only a small set of all possible structures.
Moreover, as the examples in the experimental section show,
switching from NB to TAN does not guarantee that the per-
formance degradation will not occur.

Very relevant is the research of Baluja [1]. The author
uses labeled and unlabeled data in a probabilistic classifier
framework to detect the orientation of a face. In his study,
he obtained excellent classification results, but there were
cases where unlabeled data degraded performance. As a con-
sequence, he decided to switch from a Naive Bayes approach
to more complex models. Following this intuitive direction
we explain Baluja’s observations and provide a solution to
the problem: structure learning.

4.3 Beyond simple models

A different approach to overcoming performance degrada-
tion is to learn the structure of the BN without restrictions
other than the generative one.2 There are a number of such
algorithms in the literature (among them [5, 10, 25]). Nearly
all structure-learning algorithms use the ‘likelihood-based’
approach. The goal is to find structures that best fit the data
(with perhaps a prior distribution over different structures).
Since more complicated structures have higher likelihood
scores, penalizing terms are added to avoid overfitting to the
data, e.g., the minimum description length (MDL) term. The
difficulty of structure search is the size of the space of pos-
sible structures. With finite amounts of data, algorithms that
search through the space of structures maximizing the like-
lihood can lead to poor classifiers because the a posteriori
probability of the class variable could have a small effect on
the score [26]. Therefore, a network with a higher score is
not necessarily a better classifier. Friedman et al. [26] sug-
gest changing the scoring function to focus only on the pos-
terior probability of the class variable, but they show that it
is not computationally feasible.

The drawbacks of likelihood-based structure-learning al-
gorithms could be magnified when learning with unlabeled
data; the posterior probability of the class has a smaller ef-
fect during the search, while the marginal of the features
would dominate. Therefore, we decided to take a different
approach, presented in the next section.

4.4 Classification-driven stochastic structure search

In our approach, instead of trying to estimate the best a pos-
teriori probability, we try to find the structure that minimizes
the probability of classification error directly. To do this we
designed a classification-driven stochastic search algorithm
(SSS) [13, 15]. The basic idea of this approach is that, since
we are interested in finding a structure that performs well
as a classifier, it would be natural to design an algorithm

2 A BN classifier is a generative classifier when the class variable is
an ancestor (e.g., parent) of some (or all) features.
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that uses classification error as the guide for structure learn-
ing. Here we can further leverage the properties of semisu-
pervised learning: we know that unlabeled data can indicate
incorrect structure through degradation of classification per-
formance, and we also know that classification performance
improves with the correct structure. Thus, a structure with
higher classification accuracy over another indicates an im-
provement toward finding the optimal classifier.

To learn structure using classification error, we must
adopt a strategy of searching through the space of all struc-
tures in an efficient manner while avoiding local maxima.
As we have no simple closed-form expression that relates
structure to classification error, it would be difficult to design
a gradient descent algorithm or a similar iterative method.
Even if we did that, a gradient search algorithm would be
likely to find a local minimum because of the size of the
search space.

First we define a measure over the space of structures
that we want to maximize:

Definition 1 The inverse error measure for structure S′ is

inve(S′) =
1

pS′ (ĉ(X)�=C)
∑

S
1

pS(ĉ(X)�=C)

, (7)

where the summation is over the space of possible structures
and pS(ĉ(X) �= C) is the probability of error of the best
classifier learned with structure S.

We use Metropolis–Hastings sampling [39] to generate
samples from the inverse error measure, without having to
ever compute it for all possible structures. To construct the
Metropolis–Hastings sampling, we define a neighborhood of
a structure as the set of directed acyclic graphs to which we
can transit in the next step. Transition is done using a pre-
defined set of possible changes to the structure; at each tran-
sition a change consists of a single edge addition, removal,
or reversal. We define the acceptance probability of a can-
didate structure, Snew, to replace a previous structure, St , as
follows:

min

(

1,

(
inve(Snew)

inve(St )

)1/T q(St | Snew)

q(Snew|St )

)

= min

(

1,

(
pt

error

pnew
error

)1/T Nt

Nnew

)

, (8)

where q(S′ | S) is the transition probability from S to S′ and
Nt and Nnew are the sizes of the neighborhoods of St and
Snew, respectively; this choice corresponds to equal prob-
ability of transition to each member in the neighborhood
of a structure. This choice of neighborhood and transition
probability creates a Markov chain that is aperiodic and ir-
reducible, thus satisfying the Markov chain Monte Carlo
(MCMC) conditions [36].

T is used as a temperature factor in the acceptance prob-
ability. Roughly speaking, T close to 1 would allow accep-
tance of more structures with higher probability of error than

previous structures. T close to 0 would mostly allow accep-
tance of structures that improve the probability of error. A
fixed T amounts to changing the distribution being sampled
by the MCMC, while a decreasing T is a simulated anneal-
ing run aimed at finding the maximum of the inverse er-
ror measures. The rate of decrease of the temperature deter-
mines the rate of convergence. Asymptotically in the number
of data, a logarithmic decrease of T guarantees convergence
to a global maximum with probability that tends to 1 [29].

The SSS algorithm, with a logarithmic cooling schedule
T , can find a structure that is close to minimum probability
of error. We estimate the classification error of a given struc-
ture using the labeled training data. Therefore, to avoid over-
fitting, we add a multiplicative penalty term derived from the
Vapnik–Chervonenkis (VC) bound on the empirical classi-
fication error. This penalty term penalizes complex classi-
fiers, thus keeping the balance between bias and variance
(for more details we refer the reader to [13] and [15]).

4.5 Should unlabeled data be weighed differently?

An interesting strategy, suggested by Nigam et al. [41], is
to change the weight of the unlabeled data (reducing their
effect on the likelihood). The basic idea in Nigam et al.’s es-
timators is to produce a modified log-likelihood of the form:

λ′Ll(θ) + (1 − λ′)Lu(θ) , (9)

where Ll(θ) and Lu(θ) are the likelihoods of the labeled
and unlabeled data, respectively. For a sequence of λ′, max-
imize the modified log-likelihood functions to obtain θ̂λ′ (θ̂
denotes an estimate of θ ), and choose the best one with re-
spect to cross-validation or testing. This estimator is simply
modifying the ratio of labeled to unlabeled samples for any
fixed λ′. Note that this estimator can only make sense under
the assumption that the model is incorrect. Otherwise, both
terms in Eq. 9) lead to unbiased estimators of θ .

Our experiments in [12] suggest that there is then no rea-
son to impose different weights on the data, and much less
reason to search for the best weight, when the differences are
solely in the rate of reduction of variance. Presumably there
are a few labeled samples available and a large number of
unlabeled samples; why should we increase the importance
of the labeled samples, giving more weight to a term that
will contribute more heavily to the variance?

4.6 Active learning

All the methods presented above consider a “passive” use
of unlabeled data. A different approach is known as ac-
tive learning, in which an oracle is queried as to the label
of some of the unlabeled data. Such an approach increases
the size of the labeled dataset, reduces the classifier’s vari-
ance, and thus reduces the classification error. There are dif-
ferent ways to choose which unlabeled data to query. The
straightforward approach is to choose a sample randomly.
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This approach ensures that the data distribution p(C, X) is
unchanged, a desirable property when estimating generative
classifiers. However, the random sample approach typically
requires many more samples to achieve the same perfor-
mance as methods that choose to label data close to the de-
cision boundary. We note that, for generative classifiers, the
latter approach changes the data distribution, thereby leading
to estimation bias. Nevertheless, McCallum and Nigam [37]
used active learning with generative models with success.
They proposed to first actively query some of the labeled
data followed by estimation of the model’s parameters with
the remainder of the unlabeled data.

We performed extensive experiments in [12]. Here we
present only the main conclusions. With correctly speci-
fied generative models and a large pool of unlabeled data,
“passive” use of the unlabeled data is typically sufficient
to achieve good performance. Active learning can help re-
duce the chances of numerical errors (improve EM starting
point, for example) and help in the estimation of classifica-
tion error. With incorrectly specified generative models, ac-
tive learning is very profitable in quickly reducing the error,
while adding the remainder of unlabeled data might not be
desirable.

4.7 Summary

The idea of structure search is particularly promising when
unlabeled data are present. It seems that simple heuristic
methods, such as the solution proposed by Nigam et al. [41]
of weighing down the unlabeled data, are not the best strate-
gies for unlabeled data. We suggest that structure search,
and in particular stochastic structure search, holds the most
promise for handling large amounts of unlabeled data and
relatively scarce labeled data for classification. We also be-
lieve that the success of structure search methods for classi-

Fig. 1 A snapshot of our real-time facial expression recognition system. On the right-hand side is a wireframe model overlaid on a face being
tracked. On the left-hand side the correct expression, angry, is detected (the bars show the relative probability of angry compared to the other
expressions). The subject shown is from the Cohn–Kanade database

fication increases significantly the breadth of applications of
BNs.

In a nutshell, when faced with the option of learn-
ing with labeled and unlabeled data, our discussion sug-
gests pursuing the following path. Start with Naive Bayes
and TAN classifiers, learn with only labeled data, and test
whether the model is correct by learning with the unlabeled
data, using EM and EM-TAN. If the result is unsatisfactory,
then SSS can be used to attempt to further improve per-
formance with enough computational resources. If none of
the methods using the unlabeled data improves performance
over the supervised TAN (or Naive Bayes), active learning
can be used, as long as there are resources to label some
samples.

5 Experiments

In this section we show our experimental results of BN
classifiers learned with labeled and unlabeled data for the
three HCI applications discussed in Sect. 2: facial expres-
sion recogition, face detection, and skin detection.

5.1 Facial expression recognition experiments

For these experiments we used our real-time facial expres-
sion recognition system [14]. This is composed of a face
tracking algorithm that outputs a vector of motion features
of certain regions of the face. The features are used as inputs
to a BN classifier. A snapshot of the system, with the face
tracking and the corresponding recognition result, is shown
in Fig. 1.

The face tracking we use in our system is based on a sys-
tem developed by Tao and Huang [59] called the piecewise
Bézier volume deformation (PBVD) tracker.
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Fig. 2 The facial motion measurements

The face tracker uses a model-based approach where
an explicit 3D wireframe model of the face is constructed.
In the first frame of the image sequence, landmark facial
features such as the eye corners and mouth corners are
selected interactively. The generic face model is then
warped to fit the selected facial features. The face model
consists of 16 surface patches embedded in Bézier volumes.
The surface patches defined in this way are guaranteed to
be continuous and smooth. The shape of the mesh can be
changed by changing the locations of the control points in
the Bézier volume.

The recovered motions are represented in terms of mag-
nitudes of some predefined motion of various facial features.
Each feature motion corresponds to a simple deformation
on the face, defined in terms of the Bézier volume control
parameters. We refer to these motions vectors as motion
units (MUs). Note that they are similar but not equivalent
to Ekman’s AUs [21] and are numeric in nature, represent-
ing not only the activation of a facial region, but also the
direction and intensity of the motion. The 12 MUs used in
the face tracker are shown in Fig. 2. The MUs are used as
the features for the BN classifiers learned with labeled and
unlabeled data.

There are seven categories of facial expressions corre-
sponding to neutral, joy, surprise, anger, disgust, sad, and
fear. For testing we use two databases, in which all the data
are labeled. We remove the labels of most of the training
data and learn the classifiers with the different approaches
discussed in Sect. 4.

The first database was collected by Chen and Huang [9]
and is a database of subjects instructed to display facial
expressions corresponding to the six types of emotions.
All the tests of the algorithms are performed on a set of

Table 1 Experimental setup and classification results for facial expression recognition with labeled data (L) and labeled + unlabeled data (LUL).
Accuracy is shown with the corresponding 95% confidence interval

Train

Dataset # labeled # unlabeled Test NB-L NB-LUL TAN-L TAN-LUL SSS-LUL

Chen–Huang 300 11,982 3,555 71.25 ± 0.75% 58.54 ± 0.81% 72.45 ± 0.74% 62.87 ± 0.79% 74.99 ± 0.71%
Cohn–Kanade 200 2,980 1,000 72.50 ± 1.40% 69.10 ± 1.44% 72.90 ± 1.39% 69.30 ± 1.44% 74.80 ± 1.36%

five people, each one displaying six sequences of each
of the six emotions, starting and ending at the neutral
expression. The video sampling rate was 30 Hz, and a
typical emotion sequence is about 70 samples long (∼2 s).
The second database is the Cohn–Kanade database [34]
and consists of expression sequences of subjects, starting
from a neutral expression and ending in the peak of the
facial expression. There are 104 subjects in the database,
but, because for some of the subjects not all six facial
expression sequences were available to us, we used a subset
of 53 subjects, for which at least four of the sequences were
present. For each subject there is at most one sequence
per expression with an average of eight frames for each
expression.

We measure the accuracy with respect to the classifi-
cation result of each frame, where each frame in the video
sequence was manually labeled to one of the expressions
(including Neutral). The results are shown in Table 1, show-
ing classification accuracy with 95% confidence intervals.
We see that the classifier trained with the SSS algorithm
improves classification performance to about 75% for both
datasets. Model switching from Naive Bayes to TAN does
not significantly improve the performance; apparently, the
increase in the likelihood of the data does not cause a
decrease in the classification error. In both the NB and TAN
cases, we see a performance degradation as the unlabeled
data are added to the smaller labeled dataset (TAN-L and
NB-L compared to TAN-LUL and NB-LUL). An interesting
fact arises from learning the same classifiers with all the
data being labeled (i.e., original database without removal
of any labels). Now, SSS achieves about 83% accuracy,
compared to the 75% achieved with the unlabeled data. Had
we had more unlabeled data, it might have been possible
to achieve similar performance as with the fully labeled
database. This result points to the fact that labeled data are
more valuable than unlabeled data (see [8] for a detailed
analysis).

5.2 Face detection experiments

In our face detection experiments we propose to use BN
classifiers, with the image pixels of a predefined window
size as the features in the BN. Among the various studies,
those of Colmenarez and Huang [16] and Wang et al. [62]
are most related to the BN classification methods for face
detection. Both learn some “structure” between the facial
pixels and combine them to a probabilistic classification
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rule. Both use the entropy between the different pixels to
learn pairwise dependencies.

Our approach to detecting faces is an appearance-based
one, where the intensity of image pixels serves as the fea-
ture for the classifier. In a natural image, faces can appear
at different scales, rotations, and location. For learning and
defining the BN classifiers, we must look at fixed-size win-
dows and learn how a face appears in such windows, where
we assume that the face appears in most of the windows’
pixels.

The goal of the classifier is to determine if the pixels
in a fixed-size window are those of a face or nonface.
While faces are a well-defined concept and have a relatively
regular appearance, it is harder to characterize nonfaces.
We therefore model the pixel intensities as discrete random
variables, as it would be impossible to define a parametric
probability distribution function (pdf) for nonface images.
For 8-bit representation of pixel intensity, each pixel has
256 values. Clearly, if all these values are used for the
classifier, the number of parameters of the joint distribution
is too large for learning dependencies among the pixels
(as is the case with TAN classifiers). Therefore, there is
a need to reduce the number of values representing pixel
intensity. Colmenarez and Huang [16] used fourxs values
per pixel using fixed and equal bin sizes. We use nonuniform
discretization using the class conditional entropy as the
mean to bin the 256 values to a smaller number. We use the
MLC++ software for that purpose, as described in [19].

Note that our methodology can be extended to other face
detection methods that use different features. The complex-
ity of our method is O(n), where n is the number of features
(pixels in our case) considered in each image window.

We tested the different approaches described in Sect. 4,
with both labeled and unlabeled data. For training the clas-
sifier we used a dataset consisting of 2,429 faces and 10,000
nonfaces obtained from the MIT CBCL Face database #1.3

Examples of face images from the database are presented
in Fig. 3. Each face image was cropped and resampled to a
19 × 19 window; thus we had a classifier with 361 features.
We also randomly rotated and translated the face images to
create a training set of 10,000 face images. In addition, we
had available 10,000 nonface images. We left out 1,000 im-
ages (faces and nonfaces) for testing and trained the BN clas-
sifiers on the remaining 19,000. In all the experiments we
learned a Naive Bayes, TAN, and a general generative BN
classifier, the latter using the SSS algorithm.

In Table 2 we summarize the results obtained for differ-
ent algorithms and in the presence of increasing numbers of
unlabeled data. We fixed the false alarm to 1, 5, and 10%,
and we computed the detection rates. We first learned using
all the training data being labeled (that is 19,000 labeled
images). The classifier learned with the SSS algorithm out-
performed both TAN and NB classifiers, and all performed
quite well, achieving high detection rates with a low rate
of false alarm. Next we removed the labels of some of the

3 CBCL Face Database #1. MIT Center For Biological and Compu-
tation Learning, http://www.ai.mit.edu/projects/cbcl

Fig. 3 Randomly selected face examples

training data and trained the classifiers. In the first case, we
removed the labels of 97.5% of the training data (leaving
only 475 labeled images). We see that the NB classifier us-
ing both labeled and unlabeled data performed very poorly.
The TAN based only on the 475 labeled images and the
TAN based on the labeled and unlabeled images were close
in performance; thus there was no significant degradation

Table 2 Detection rates (%) for various numbers of false positives

False positives

Detector 1% 5% 10%

NB
19,000 labeled 74.31 89.21 92.72
475 labeled 68.37 86.55 89.45
475 labeled + 18,525 unlabeled 66.05 85.73 86.98
250 labeled 65.59 84.13 87.67
250 labeled + 18,750 unlabeled 65.15 83.81 86.07
19,000 labeled 91.82 96.42 99.11
475 labeled 86.59 90.84 94.67
475 labeled + 18,525 unlabeled 85.77 90.87 94.21
250 labeled 75.37 87.97 92.56

TAN
250 labeled + 18,750 unlabeled 77.19 89.08 91.42
19,000 labeled 90.27 98.26 99.87
475 labeled + 18,525 unlabeled 88.66 96.89 98.77

SSS
250 labeled + 18,750 unlabeled 86.64 95.29 97.93
19,000 labeled 87.78 93.84 94.14
475 labeled 82.61 89.66 91.12

SVM
250 labeled 77.64 87.17 89.16
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of performance after adding the unlabeled data. When only
250 labeled data were used (the labels of about 98.7% of
the training data were removed), NB with both labeled and
unlabeled data performed poorly, while SSS outperformed
the other classifiers with no great reduction of performance
compared to the previous cases. For benchmarking, we also
implemented a support verctor machine classifier (we used
the implementation of Osuna et al. [44]). Note that this clas-
sifier started off very good but did not improve performance.

In summary, note that the detection rates for NB are
lower than those obtained for the other detectors. Overall,
the results obtained with SSS are the best. We see that even
in the most difficult cases, there was a sufficient amount of
unlabeled data to achieve almost the same performance as
with a large labeled dataset.

We also tested our system on the CMU test set [52]
consisting of 130 images with a total of 507 frontal faces.
The results are summarized in Table 3. Note that the results
we obtained are comparable to those obtained by Viola and

Fig. 4 Output of the system on some images of the CMU test using the SSS classifier learned with 19,000 labeled data. MFs represents the
number of missed faces, and FDs is the number of false detections

Table 3 Detection rates (%) for various numbers of false positives on
the CMU test set

False positives

Detector 10% 20%

SSS
19,000 labeled 91.7 92.84
475 labeled + 18,525 unlabeled 89.67 91.03
250 labeled + 18,750 unlabeled 86.64 89.17

Viola–Jones [61] 92.1 93.2
Rowley et al. [52] – 89.2

Jones [61] and better than those of Rowley et al. [52]. Ex-
amples of the detection results on some of the images of the
CMU test are presented in Fig. 4. We noticed similar fail-
ure modes as Viola and Jones [61]. Since the face detector
was trained only on frontal faces, our system failed to detect
faces if they had a significant rotation out of the plane (to-
ward a profile view). The detector also had problems with
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Fig. 5 Examples of detected skin patches
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Fig. 6 ROC curves showing detection rates of skin compared to false detection with all data labeled (left) and 90% unlabeled data (right): SSS,
NB learned with labeled data only (NB-L) and with labeled and unlabeled data (NB-LUL), and TAN learned with labeled data only (TAN-L)
and with labeled and unlabeled data (TAN-LUL)

the images in which the faces appeared dark and the back-
ground was relatively light. Inevitably, we also detected false
positives especially in some texture regions.

5.3 Skin detection experiments

In our experiments, we used image patches of nine pixels (a
3×3 patch) as the features in the Bayesian network. We con-
sidered the rg chromaticity space, which is the most popular
color space for skin color modeling [66].

We used the database of Jones and Rehg [33], which
consists of 3,475 images containing skin and 8,796 non-
skin images. Each image was manually segmented such that
the skin pixels were labeled. Examples of detected skin
patches are presented in Fig. 5. In the experiments, we ran-
domly selected 3 × 3 skin and nonskin patches (100,000 in
total). We left out 40,000 patches for testing and trained
the BN classifiers on the remaining 60,000. To compare
the results of the classifiers, we used the receiving oper-
ating characteristic (ROC) curves. The ROC curves show,
under different classification thresholds ranging from 0 to
1, the probability of detecting a skin patch in a skin im-
age, PD = P(Ĉ = skin | C = skin), against the proba-
bility of falsely detecting a skin patch in a nonskin image,
PF D = P(Ĉ = nonskin | C �= nonskin).

We first learned using all the training data being labeled
(that is, 60,000 labeled patches). Figure 6 (left) shows the re-
sultant ROC curve for this case. The classifier learned with
the SSS algorithm outperformed both TAN and NB classi-
fiers, and all performed quite well, achieving high detection
rates with a low rate of false alarm. Next we removed the
labels of some of the training data and trained the classi-
fiers. Figure 6 (right) shows the case where the labels of 90%
of the training data (leaving only 600 labeled patches) were
removed. We see that the NB classifier using both labeled
and unlabeled data (NB-LUL) performed very poorly. The
TAN based only on the 600 labeled images (TAN-L) and the
TAN based on the labeled and unlabeled images (TAN-LUL)
were close in performance, and thus there was no significant
degradation of performance when adding the unlabeled data.

6 Conclusion

In this work we presented a Bayesian network approach
for three human–computer interaction applications: facial
expression recognition, face detection, and skin detection.
We considered several instances of Bayesian networks and
showed that learning the structure of Bayesian network clas-
sifiers enables learning good classifiers with a small labeled
set and a large unlabeled set.



14 N. Sebe et al.

Our discussion of semisupervised learning for Bayesian
networks suggests the following path: when faced with the
option of learning Bayesian networks with labeled and unla-
beled data, start with Naive Bayes and TAN classifiers, learn
with only labeled data, and test whether the model is cor-
rect by learning with the unlabeled data. If the result is not
satisfactory, then SSS can be used to attempt to further im-
prove performance with enough computational resources. If
none of the methods using the unlabeled data improves per-
formance over the supervised TAN (or Naive Bayes), either
discard the unlabeled data or try to label more data, using
active learning, for example.

In closing, it is possible to view some of the components
of this work independently of each other. The theoretical re-
sults of Sect. 3 do not depend on the choice of probabilis-
tic classifier and can be used as a guide to other classifiers.
Structure learning of Bayesian networks is not a topic mo-
tivated solely by the use of unlabeled data. The three ap-
plications we considered could be solved using classifiers
other than Bayesian networks. However, this work should
be viewed as a combination of all three components: (1) the
theory showing the limitations of unlabeled data is used to
motivate (2) the design of algorithms to search for better-
performing structures of Bayesian networks, and, finally, (3)
the successful applications to a human–computer interaction
problem we are interested in solving by learning with la-
beled and unlabeled data.
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