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ABSTRACT
Automatic classification by machines is one of the basic tasks re-
quired in any pattern recognition and human computer interaction
applications. In this paper, we discuss training probabilistic clas-
sifiers with labeled and unlabeled data. We provide an analysis
which shows under what conditions unlabeled data can be used
in learning to improve classification performance. We discuss the
implications of this analysis to a specific type of probabilistic clas-
sifiers, Bayesian networks, and propose a structure learning algo-
rithm that can utilize unlabeled data to improve classification. Fi-
nally, we show how the resulting algorithms are successfully em-
ployed in a facial expression recognition application.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; I.2.6
[Computing Methodologies]: Artificial Intelligence—learning

General Terms
Algorithms

Keywords
Semi-supervised learning, Bayesian networks, facial expression
recognition
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1. INTRODUCTION
Maybe no movie of modern time has explored the definition of

what it means to be human better than Blade Runner. The Tyrell
Corporation’s motto, “More human than human”, serves as the
basis for exploring the human experience through true humans and
created humans, or Replicants. Replicants are androids that were
built to work for humans or fight their wars. In time, they began to
acquire emotions (so much like humans) and it became difficult to
tell them apart. With emotions, they began to feel oppressed and
many of them became dangerous and committed acts of extreme
violence to be free. Fortunately, Dr. Elden Tyrell, the creator of
the Replicants, installed a built-in safety feature in these models:
a four-year life span.

It is evident from the above story that it is not sufficient for a
machine (computer) to look like a human. Something else is es-
sential: the ability to acquire the emotions. Moreover, the machine
should learn to recognize and understand these emotions to be able
to have a human-like interaction with its human counterpart. It is
argued that to truly achieve effective human-computer intelligent
interaction (HCII), there is a need for the computer to be able to in-
teract naturally with the user, similar to the way human-human in-
teraction takes place. Human beings possess and express emotions
in everyday interactions with others. Emotions are often reflected
on the face, in hand and body gestures, and in the voice, to express
our feelings or likings. While a precise, generally agreed upon
definition of emotion does not exist, it is undeniable that emo-
tions are an integral part of our existence. Facial expressions and
vocal emotions are commonly used in everyday human-to-human
communication, as one smiles to show greeting, frowns when con-
fused, or raises one’s voice when enraged. People do a great deal
of inference from perceived facial expressions: “You look tired,”
or “You seem happy.” The fact that we understand emotions and
know how to react to other people’s expressions greatly enriches
the interaction. There is a growing amount of evidence showing
that emotional skills are part of what is called “intelligence” [29,



19]. Computers today, on the other hand, are still quite “emotion-
ally challenged.” They neither recognize the user’s emotions nor
possess emotions of their own.

The most expressive way humans display emotions is through
facial expressions. Humans detect and interpret faces and facial
expressions in a scene with little or no effort. Still, development
of an automated system that accomplishes this task is rather dif-
ficult. There are several related problems: detection of an image
segment as a face, extraction of the facial expression information,
and classification of the expression (e.g., in emotion categories). A
system that performs these operations accurately and in real time
would be a major step forward in achieving a human-like interac-
tion between the man and machine.

This paper tries to make a small dent in the huge task of provid-
ing computers with the ability to understand humans. The focus
of the paper is on the task of learning how to classify events from
data which is labeled and unlabeled. The theoretical and algorith-
mic results are then applied to facial expression recognition.

2. SEMI-SUPERVISED LEARNING
An important component of image understanding is the ability

to classify objects, sequences, or events to different characteriz-
ing classes. Learning classifiers is typically done with training
data, which can be either labeled to the different classes, or unla-
beled. Learning with labeled data is known as supervised learning.
This paper is concerned with the use of unlabeled data in super-
vised learning of classifiers, i.e., a set of labeled data is appended
with a, typically much larger, set of unlabeled data. This learning
paradigm is known as semi-supervised learning. The motivation
for semi-supervised learning stems from the fact that labeled data
are typically much harder to obtain compared to unlabeled data,
e.g., in object classification, unlabeled data are all the images in a
database, while labeled data require the manual labeling of each
image to one of the object classes.

Is there value to unlabeled data in supervised learning of classi-
fiers? This fundamental question has been increasingly discussed
in recent years, with a general optimistic view that unlabeled data
hold great value. Due to an increasing number of applications and
algorithms that successfully use unlabeled data [3, 25, 32, 1, 5,
2, 18, 31] and magnified by theoretical issues over the value of
unlabeled data in certain cases [6, 28, 26], semi-supervised learn-
ing is seen optimistically as a learning paradigm that can relieve
the practitioner from the need to collect many expensive labeled
training data. However, several disparate empirical evidences in
the literature suggest that there are situations in which the addition
of unlabeled data to a pool of labeled data, causes degradation of
the classifier’s performance [25, 32, 1, 5], in contrast to improve-
ment of performance when adding more labeled data. Intrigued
by these discrepancies, we performed extensive experiments, re-
ported in [10]. Our experiments suggested that performance degra-
dation can occur when the assumed classifier’s model is incorrect.
Such situations are quite common, as one rarely knows whether
the assumed model is an accurate description of the underlying
true data generating distribution.

Despite the shortcomings of semi-supervised learning, we do
not discourage its use. Understanding the causes of performance
degradation with unlabeled data motivates the exploration of new
methods attempting to use positively the available unlabeled data.
We restrict ourselves mainly to classifiers based on Bayesian net-
works (Section 3.1). Incorrect modeling assumptions in Bayesian

networks culminate mainly as discrepancies in the graph structure,
signifying incorrect independence assumptions among variables.
To eliminate the increased bias caused by the addition of unlabeled
data we can try simple solutions, such as model switching (Sec-
tion 3.2) or attempt to learn better structures. We describe likeli-
hood based structure learning methods (Section 3.3) and a possible
alternative: classification driven structure learning (Section 3.4).
In cases where relatively mild changes in structure still suffer from
performance degradation from unlabeled data, there are different
approaches that can be taken: discard the unlabeled data or give
them a different weight (Section 3.5), or use the alternative of ac-
tively labeling some of the unlabeled data (Section 3.6).

To summarize, the main conclusions that can be derived from
our analysis are:

• Labeled and unlabeled data contribute to a reduction in vari-
ance in semi-supervised learning under maximum likelihood
estimation.This is true regardless of whether the model is
correct or not.

• If the model is correct, the maximum likelihood estimator is
unbiased and both labeled and unlabeled data contribute to
a reduction in classification error by reducing variance.

• If the model is incorrect, there may be different asymptotic
estimation biases for different values ofλ (the ratio between
the number of labeled and unlabeled data). Asymptotic clas-
sification error may also be different for different values of
λ. An increase in the number of unlabeled samples may
lead to a larger bias from the true distribution and a larger
classification error.

In the next section we discuss several possible solutions for the
problem of performance degradation in the framework of Bayesian
network classifiers.

3. LEARNING THE STRUCTURE OF
BAYESIAN NETWORK CLASSIFIERS

The conclusion of the previous section indicates the impor-
tance of obtaining the correct structure when using unlabeled data
in learning a classifier. If the correct structure is obtained, unla-
beled data improve the classifier; otherwise, unlabeled data can
actually degrade performance. Somewhat surprisingly, the option
of searching for better structures was not proposed by researchers
that previously witnessed the performance degradation. Appar-
ently, performance degradation was attributed to unpredictable,
stochastic disturbances in modeling assumptions, and not to mis-
takes in the underlying structure – something that can be detected
and fixed.

3.1 Bayesian Networks
Bayesian networks [27] are tools for modeling and classifica-

tion. A Bayesian network (BN) is composed of a directed acyclic
graph in which every node is associated with a variableXi and
with a conditional distributionp(Xi|Πi), whereΠi denotes the
parents ofXi in the graph. The joint probability distribution is
factored to the collection of conditional probability distributions
of each node in the graph as:

p(X1, ..., Xn) =

n∏
i=1

p(Xi|Πi) . (1)



The directed acyclic graph is thestructure, and the distributions
p(Xi|Πi) represent theparametersof the network. We say that the
assumed structure for a network,S′, is correctwhen it is possible
to find a distribution,p(C,X|S′), that matches the distribution
that generates data,p(C,X); otherwise, the structure isincorrect.
In the above notations,X is an incoming vector of features (MU’s
- see Section 4). Each instantiation ofX is a record. We assume
that there is aclass variableC; the values ofC are thelabels,
one of the facial expressions. The classifier receives a recordx
and generates a labelĉ(x). An optimal classification rule can be
obtained from the exact distributionp(C,X) which represents the
a-posteriori probability of the class given the features.

Maximum likelihood estimation is one of the main methods to
learn the parameters of the network. When there are missing data
in training set, the Expectation Maximization (EM) algorithm [13]
can be used to maximize the likelihood.

As a direct consequence of the analysis in Section 2, a Bayesian
network that has the correct structure and the correct parameters is
also optimal for classification because the a-posteriori distribution
of the class variable is accurately represented. Therefore, to solve
the problem of performance degradation in BNs, we need to take
a careful look at the assumed structure of the classifier.

3.2 Switching between Simple Models
One attempt to overcome the performance degradation from

unlabeled data could be to switch models as soon as degradation
is detected. Suppose that we learn a classifier with labeled data
only and we observe a degradation in performance when the clas-
sifier is learned with labeled and unlabeled data. We can switch
to a more complex structure at that point. An interesting idea is
to start with a Naive Bayes classifier [30] in which the features
are assumed independent given the class. If performance degrades
with unlabeled data, switch to a different type of Bayesian net-
work classifier, namely the Tree-Augmented Naive Bayes classi-
fier (TAN) [15].

In the TAN classifier structure the class node has no parents
and each feature has the class node and at most one other feature
as parents, such that the result is a tree structure for the features.
Learning the most likely TAN structure has an efficient and exact
solution [17] using a modified Chow-Liu algorithm [9]. Learning
the TAN classifiers when there are unlabeled data requires a mod-
ification of the original algorithm to what we named the EM-TAN
algorithm [12].

If the correct structure can be represented using a TAN struc-
ture, this approach will indeed work. However, even the TAN
structure is only a small set of all possible structures. Moreover,
as the examples in the experimental section show, switching from
NB to TAN does not guarantee that the performance degradation
will not occur.

3.3 Beyond Simple Models
A different approach to overcome performance degradation is

to learn the structure of the Bayesian network without restrictions
other than the generative one1. There are a number of such algo-
rithms in the literature (among them [21, 16, 4, 8]). Nearly all
structure learning algorithms use the ’likelihood based’ approach.
The goal is to find structures that best fit the data (with perhaps
a prior distribution over different structures). Since more compli-

1A Bayesian network classifier is agenerativeclassifier when the
class variable is an ancestor (e.g., parent) of some (or all) features.

cated structures have higher likelihood scores, penalizing terms are
added to avoid overfiting to the data, e.g, the minimum description
length (MDL) term. The difficulty of structure search is the size
of the space of possible structures. With finite amounts of data,
algorithms that search through the space of structures maximizing
the likelihood, can lead to poor classifiers because the a-posteriori
probability of the class variable could have a small effect on the
score [17, 20]. Therefore, a network with a higher score is not
necessarily a better classifier. Friedman et al [17] suggest chang-
ing the scoring function to focus only on the posterior probability
of the class variable, but show that it is not computationally feasi-
ble.

The drawbacks of likelihood based structure learning algo-
rithms could be magnified when learning with unlabeled data; the
posterior probability of the class has a smaller effect during the
search, while the marginal of the features would dominate. There-
fore, we decided to take a different approach presented in the next
section.

3.4 Classification Driven Stochastic Structure
Search

In our approach, instead of trying to estimate the best a-posteriori
probability, we try to find the structure that minimizes the proba-
bility of classification error directly. To do so we designed a clas-
sification driven stochastic search algorithm (SSS) [11].

First we define a measure over the space of structures which
we want to maximize:

DEFINITION 1. Theinverse error measurefor structureS′ is

inve(S
′) =

1
pS′ (ĉ(X) 6=C)∑
S

1
pS(ĉ(X) 6=C)

, (2)

where the summation is over the space of possible structures and
pS(ĉ(X) 6= C) is the probability of error of the best classifier
learned with structureS.

We use Metropolis-Hastings sampling [24] to generate samples
from the inverse error measure, without having to ever compute it
for all possible structures. We estimate the classification error of a
given structure using the labeled training data. Therefore, to avoid
overfitting, we add a multiplicative penalty term derived from the
Vapnik-Chervonenkis (VC) bound on the empirical classification
error. This penalty term penalizes complex classifiers thus keeping
the balance between bias and variance (for more details we refer
the reader to [11]).

3.5 Should Unlabeled Be Weighed Differently?
An interesting strategy, suggested by Nigam et al [25] is to

change the weight of the unlabeled data (reducing their effect on
the likelihood). The basic idea in Nigam et al’s estimators is to
produce a modified log-likelihood that is of the form:

λ′Ll(θ) + (1− λ′)Lu(θ) (3)

whereLl(θ) andLu(θ) are the likelihoods of the labeled and un-
labeled data, respectively. For a sequence ofλ′, maximize the
modified log-likelihood functions to obtain̂θλ′ (θ̂ denotes an esti-
mate ofθ), and choose the best one with respect to cross-validation
or testing. This estimator is simply modifying the ratio of labeled
to unlabeled samples for any fixedλ′. Note that this estimator can
only make sense under the assumption that the model is incorrect.



Figure 1: A snap shot of our realtime facial expression recognition system. On the right side is a wireframe model overlayed on
a face being tracked. On the left side the correct expression, Angry, is detected (the bars show the relative probability of Angry
compared to the other expressions). The subject shown is from the Cohn-Kanade database.

Otherwise, both terms in Expression (3) lead to unbiased estima-
tors ofθ.

Our experiments in [10] suggest that there is then no reason
to impose different weights on the data, and much less reason to
search for the best weight, when the differences are solely in the
rate of reduction of variance. Presumably there are a few labeled
samples available and a large number of unlabeled samples; why
should we increase the importance of the labeled samples, giving
them more weight to a term that will contribute more heavily to
the variance?

3.6 Active Learning
All the methods presented above consider a “passive” use of

unlabeled data. A different approach is known as active learning,
in which an oracle is queried as to the label of some of the unla-
beled data. Such an approach increases the size of the labeled data
set, reduces the classifier’s variance and thus reduces the classifica-
tion error. There are different ways to choose which unlabeled data
to query. The straightforward approach is to choose a sample ran-
domly. This approach ensures that the data distributionp(C,X) is
unchanged, a desirable property when estimating generative clas-
sifiers. However, the random sample approach typically requires
many more samples to achieve the same performance as meth-
ods that choose to label data close to the decision boundary. We
note that, for generative classifiers, the latter approach changes the
data distribution therefore leading to estimation bias. Neverthe-
less, McCallum and Nigam [23] used active learning with gener-
ative models with success. They proposed to first actively query
some of the labeled data followed by estimation of the model’s
parameters with the remainder of the unlabeled data.

We performed extensive experiments in [10]. Here we present
only the main conclusions. With correctly specified generative
models and a large pool of unlabeled data, “passive” use of the
unlabeled data is typically sufficient to achieve good performance.
Active learning can help reduce the chances of numerical errors
(improve EM starting point, for example), and help in the estima-

tion of classification error. With incorrectly specified generative
models, active learning is very profitable in quickly reducing er-
ror, while adding the remainder of unlabeled data might not be
desirable.

3.7 Concluding Remarks
The idea of structure search is particularly promising when un-

labeled data are present. It seems that simple heuristic methods,
such as the solution proposed by Nigam et al [25] of weighing
down the unlabeled data, are not the best strategies for unlabeled
data. We suggest that structure search, and in particular stochastic
structure search, holds the most promise for handling large amount
of unlabeled data and relatively scarce labeled data for classifica-
tion. We also believe that the success of structure search methods
for classification increases significantly the breadth of applications
of Bayesian networks.

In a nutshell, when faced with the option of learning with la-
beled and unlabeled data, our discussion suggests following the
following path. Start with Naive Bayes and TAN classifiers, learn
with only labeled data and test whether the model is correct by
learning with the unlabeled data, using EM and EM-TAN. If the
result is not satisfactory, then SSS can be used to attempt to fur-
ther improve performance with enough computational resources.
If none of the methods using the unlabeled data improve perfor-
mance over the supervised TAN (or Naive Bayes), active learning
can be used, as long as there are resources to label some samples.

4. FACIAL EXPRESSION RECOGNITION
SYSTEM

Our real time facial expression recognition system is composed
of a face tracking algorithm which outputs a vector of motion fea-
tures of certain regions of the face. The features are used as inputs
to a Bayesian network classifier. A snap shot of the system, with
the face tracking and the corresponding recognition result is shown
in Figure 1.



Figure 3: Examples of images from the video sequences used in the experiment. Top row shows subjects from the Chen-Huang DB,
bottom row shows subjects from the Cohn-Kanade DB (printed with permission from the researchers).
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Figure 2: The facial motion measurements

The face tracking we use in our system is based on a system
developed by Tao and Huang [33] called the piecewise Bézier vol-
ume deformation (PBVD) tracker.

The face tracker uses a model-based approach where an explicit
3D wireframe model of the face is constructed. In the first frame
of the image sequence, landmark facial features such as the eye
corners and mouth corners are selected interactively. The generic
face model is then warped to fit the selected facial features. The
face model consists of 16 surface patches embedded in Bézier vol-
umes. The surface patches defined in this way are guaranteed to be
continuous and smooth. The shape of the mesh can be changed by
changing the locations of the control points in the Bézier volume.

The recovered motions are represented in terms of magnitudes
of some predefined motion of various facial features. Each feature
motion corresponds to a simple deformation on the face, defined
in terms of the B́ezier volume control parameters. We refer to
these motions vectors as motion-units (MU’s). Note that they are
similar but not equivalent to Ekman’s AU’s [14], and are numeric
in nature, representing not only the activation of a facial region,
but also the direction and intensity of the motion. The 12 MU’s
used in the face tracker are shown in Figure 2. The MU’s are used
as the features for the Bayesian network classifiers.

5. EXPERIMENTS
We show results of Bayesian network classifiers learned with

labeled and unlabeled data for facial expression recognition. We
use our non-rigid face tracking system presented in Section 4 and

extract features in the form of 12 facial motion units. There are
seven categories of facial expressions corresponding toneutral,
joy, surprise, anger, disgust, sad,andfear. For testing we use two
databases, in which all the data is labeled. We removed the labels
of most of the training data and learned the classifiers with the
different approaches discussed in Section 3.

The first database was collected by Chen and Huang [7] and
is a database of subjects that were instructed to display facial ex-
pressions corresponding to the six types of emotions. All the tests
of the algorithms are performed on a set of five people, each one
displaying six sequences of each one of the six emotions, starting
and ending at the Neutral expression. The video sampling rate was
30 Hz, and a typical emotion sequence is about 70 samples long (
∼2s). Figure 3 (upper row) shows one frame of each subject from
this database.

The second database is the Cohn-Kanade database [22] and
consists of expression sequences of subjects, starting from a Neu-
tral expression and ending in the peak of the facial expression.
There are 104 subjects in the database but, because for some of
the subjects not all of the six facial expressions sequences were
available to us, we used a subset of 53 subjects, for which at least
four of the sequences were present. For each subject there is at
most one sequence per expression with an average of 8 frames for
each expression. Figure 3 (lower row) shows some examples used
in the experiments.

A summary of both databases is presented in Table 1. We mea-
sure the accuracy with respect to the classification result of each
frame, where each frame in the video sequence was manually la-
beled to one of the expressions (including Neutral). This manual
labeling can introduce some ’noise’ in our classification because
the boundary between Neutral and the expression of a sequence
is not necessarily optimal, and frames near this boundary might
cause confusion between the expression and the Neutral.

The results are shown in Table 2, showing classification ac-
curacy with 95% confidence intervals. We see that the classi-
fier trained with the SSS algorithm improves classification per-
formance to about 75% for both datasets. Model switching from
Naive Bayes to TAN does not significantly improve the perfor-
mance; apparently, the increase in the likelihood of the data does
not cause a decrease in the classification error. In both the NB and
TAN cases, we see a performance degradation as the unlabeled
data are added to the smaller labeled dataset (TAN-L and NB-L
compared to TAN-LUL and NB-LUL). An interesting fact arises
from learning the same classifiers with all the data being labeled



Table 1: Summary of the databases and the description of the datasets.

Overall # of sequences # of sequences per subjectaverage # of frames Train
Database # of Subjects per expression per expression per expression # labeled # unlabeled Test

Chen-Huang DB 5 30 6 70 300 11982 3555
Cohn-Kanade DB 53 53 1 8 200 2980 1000

Table 2: Classification results for facial expression recognition with labeled data (L) and labeled + unlabeled data (LUL). Accuracy
is shown with the corresponding 95% confidence interval.

Dataset NB-L NB-LUL TAN-L TAN-LUL SSS-LUL

Chen-Huang 71.25±0.75% 58.54±0.81% 72.45±0.74% 62.87±0.79% 74.99±0.71%
Cohn-Kanade 72.50±1.40% 69.10±1.44% 72.90±1.39% 69.30±1.44% 74.80±1.36%

(i.e., the original database without removal of any labels). Now,
SSS achieves about 83% accuracy, compared to the 75% achieved
with the unlabeled data. Had we had more unlabeled data, it might
have been possible to achieve similar performance as with the fully
labeled database. This result points to the fact that labeled data are
more valuable than unlabeled data (see [6] for a detailed analysis).

6. CONCLUSION
Using unlabeled data to enhance the performance of classi-

fiers trained with few labeled data has many applications in pattern
recognition, computer vision, HCII, data mining, text recognition,
and more. To fully utilize the potential of unlabeled data, the abil-
ities and limitations of existing methods must be understood.

Our discussion of semi-supervised learning for Bayesian net-
works suggests the following path: when faced with the option of
learning Bayesian networks with labeled and unlabeled data, start
with Naive Bayes and TAN classifiers, learn with only labeled data
and test whether the model is correct by learning with the unla-
beled data. If the result is not satisfactory, then SSS can be used
to attempt to further improve performance with enough computa-
tional resources. If none of the methods using the unlabeled data
improve performance over the supervised TAN (or Naive Bayes),
either discard the unlabeled data or try to label more data, using
active learning for example.

In closing, it is possible to view some of the components of
this work independently of each other. The theoretical results of
Section 2 do not depend on the choice of probabilistic classifier
and can be used as a guide to other classifiers. Structure learning
of Bayesian networks is not a topic motivated solely by the use of
unlabeled data. Facial expression recognition could be solved us-
ing classifiers other than Bayesian networks. However, this work
should be viewed as a combination of all three components; (1)
the theory showing the limitations of unlabeled data is used to mo-
tivate (2) the design of algorithms to search for better performing
structures of Bayesian networks and finally, (3) the successful ap-
plication to an image understanding problem we are interested in
solving by learning with labeled and unlabeled data.
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