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Abstract—This paper describes a multimodal approach to
detect viewers’ engagement through psycho-physiological affec-
tive signals. We investigate the individual contributions of the
different modalities, and report experimental results obtained
using several fusion strategies, in both per-clip and per-subject
cross-validation settings. A sequence of clips from a short movie
was showed to 15 participants, from whom we collected per-clip
engagement self-assessments. Cues of the users’ affective states
were collected by means of (i) galvanic skin response (GSR), (ii)
automatic facial tracking, and (iii) electroencephalogram (EEG)
signals. The main findings of this study can be summarized as
follows: (i) each individual modality significantly encodes the level
of engagement of the viewers in response to movie clips, (ii) the
GSR and EEG signals provide comparable contributions, and
(iii) the best performance is obtained when the three modalities
are used together.

I. INTRODUCTION

From the gaming domain [1], [2] to visual arts [13] the
design and validation of systems for automatic engagement
assessment has drawn significant attention from the Affective
Computing community. Motivated by the fall in production
costs on one hand, and by the advent of Smart-TVs and
web-series streamed on the internet, this paper adds a further
scenario to such research efforts: affective cinema. We envision
a novel movie-telling paradigm, making use of both hyper-
narrative screenwriting (that is, multiple coherent narrative
paths for a given movie) and viewers sensing through selected
affective channels.

In a gaming scenario, as suggested in [2], the player’s
engagement (i.e., positive excitation) is crucial to a game’s
success: it should be maintained while two main factors (the
player’s skills and the game difficulty) vary over time, in order
to prevent the player falling in a state of anxiety (i.e., negative
excitement) or boredom (i.e., negative calm). Conversely, in
the scenario we propose, the viewer’s engagement represents
a variable that screen-writers must take into account during
the scripting process: by defining segments of interest within
the stimulus (i.e., the script and thus the movie) during which
the viewers engagement response is automatically assessed,
they will be able to use this response to drive the movie
narrative and thus provide a novel and adaptive experience
to the audience.

In this study we investigate the effectiveness of different
psycho-physiological channels, and combinations thereof, for
classifying a viewer’s level of engagement while watching
a movie. The modalities we take into account are galvanic
skin response (GSR), electroencephalogram (EEG), and facial

motion tracking. Evaluation is carried out under several exper-
imental settings on a 15-subjects dataset.

This paper aims to:

1) bridge the gap between affective computing and hyper-
narrative movies;

2) introduce a multimodal system that combines face anal-
ysis with EEG and GSR;

3) present a systematic analysis of the importance of the
channels of information and their best combination for
detecting a viewer’s level of engagement.

The main findings can be summarized as follows: (i) if
taken independently, the different channels employed (GSR,
EEG, Facial Motion) are found to significantly encode the
viewers’ level of engagement; (ii) contributions from GSR
and EEG are found to be comparable, and complemented by
Facial Motion; (iii) the best performance is obtained when
considering all channels under a late fusion strategy.

This paper is structured as follows: section II summarizes
the previous research efforts in the contexts of both engage-
ment assessment through psycho-physiological channels and
of structuring hyper-narrative movies; section III provides an
overview of the experimental protocol we followed; section IV
describes the data pre-processing and feature extraction steps
taken; finally, after reporting experimental results in section V,
we discuss them along with the future research directions in
section VI.

II. RELATED WORKS

Our case study is a system in which the viewer is in fact
considered more as a sensor than as an interactor, driving
the narrative flow implicitly through the psycho-physiological
signals sensed. In this section we thus briefly review significant
research efforts in the domains of Affective Computing and
Hyper-Narrative Movies. While these domains are quite clearly
separated in terms of practices and goals, we choose to hereby
bridge them, since they both are crucial to our case study.

The affective states induced in viewers by multimedia con-
tents depend on several psychological and contextual factors,
and are thus highly subjective. Nonetheless, the creators of
such contents have a strong interest to convey certain feelings
at given moments in the experience. Investigating the relations
between the observed affective response on one hand, and the
ones the creators intended to elicit on the other, is therefore a
very interesting line of research.



Several efforts from the Affective Computing community
have focused on this problem [7], [22], [25]. Commonly, such
works have shared the assumption that the range of human
emotions is defined, as demonstrated in [5], on a plane whose
two dimensions are represented by arousal (i.e., excitement vs
boredom), and valence (i.e., positive vs negative) [6]. More-
over, they often shared the selection of presentation stimuli or
relied on ratings of contents on the arousal/valence plane from
large pools of subjects, in order to ensure consistency of the
observed/expected emotions.

In [20] several psycho-physiological signals, such as heart-
beat rate, skin temperature and conductivity, facial electromyo-
graphy (EMG), have been found to correlate with affective
states in response to visual content. In particular, increases
of heartbeat and respiration rates were found to be linked
to states of excitement, and physiological responses to visual
contents eliciting anger or fear were significantly different
from the response to neutral contents. Soleymani et al. [21]
contributed the MAHNOB-HCI multimodal database to the
Affective Computing community: it consists of face videos,
audio, physiological signals, and eye-gaze patterns, recorded
on 27 participants who were presented with 20 emotional
clips in one task, and 14 short videos and 28 images in
the other. Furthermore, Koelstra et al. [10] assembled the
DEAP dataset, in which they presented viewers with 40 one-
minute music video-clips and collected their ratings on arousal,
valence, liking, and dominance. During the experiment, they
recorded blood volume pressure, respiration rate, EEG, GSR,
skin temperature, and electrooculogram (EOG) patterns, to be
used in a binary classification task; the performance obtained
was above 60% of mean accuracy.

Lisetti and Nasoz [15] presented 29 participants with video-
clips evoking fear, anger, amusement, surprise and sadness,
and induced frustration by asking them to solve difficult
mathematical questions on the fly. They recorded physiological
responses through an armband sensing heartbeat rate, GSR,
temperature, EMG and heat flow, and obtained over 80%
accuracy in classification experiments. Staiano et al. [23]
exploited facial motion features to detect interaction difficulties
in a User Experience (UX) evaluation scenario.

Moving to the Media Studies domain, the pioneering
work Kinoautomat1 by Raduz Činčera is considered the first
example of interactive movie: exhibited in 1967, the viewers’
experience would be interrupted at five binary decision points
in which the audience could choose the narrative path to
follow. Other media, from video-games, to adventure-games,
to “choose-your-own” paperbacks, have seldom adopted such
strategies and users have gradually become accustomed to it.

From a theoretical point of view, it is argued [19] that
hyper-narrative works should be “consonant with, rather than
alien to human cognitive, affective and sensual faculties” in
order to be deeply engaging.

Recently, the use of computational models of surprise and
suspense for narrative generation [16], [17] has been proposed.
In this study, we take a further step in bridging the research ex-
periences gained within these two very different communities,
as quickly summarized above: findings coming from Affective

1http://www.kinoautomat.cz

Computing researches can open valuable novel scenarios in
the Movie Studies field, and nonetheless in the Movie industry
(e.g. along with the rise of Smart-TVs); conversely, Affective
Computing researchers will benefit from a wealth of high level
affective content directly proportional to the level of interest
such scenarios will spawn in the Movie Studies community.

III. EXPERIMENTAL PROTOCOL

In this section, we (a) detail the experimental set-up and the
protocol followed, (b) report the analysis of the self-reported
engagement assessments, and (c) describe the modalities and
correspondent features used in this study.

A. Experimental set-up and protocol

1) Material and setup: The study was conducted in a lab
environment with the aim of investigating to what extent the
psycho-physiological features may be used to infer the view-
ers’ level of engagement. The subjects were tested individually,
sitting on a comfortable sofa, facing the monitor (see Figure 1).

For designing the system we tried to minimize invasiveness
and hardware costs. The system is composed of a consumer-
level personal computer, equipped with a standard webcam,
and commercially available EEG and GSR sensors. Stereo
speakers were also placed in the acquisition room for rendering
the audio.

2) Protocol and stimuli: For the purpose of this study,
15 participants were shown a sequence of 11 movie clips of
different lengths – 7 short ones (µ=26s, σ=14s) and 4 long
ones (µ=118s, σ=69s), composing one of the possible narrative
paths of a short movie. At the end of each clip, the experience
was interrupted and users were prompted with a simple slider
interface in order to self-report their level of engagement in
the continuous range of -10 to 10.

Fig. 1. A viewer, wearing the headphone-like EEG sensor on his head and
the watch-like GSR sensor on his left hand while watching the movie.

B. Analysis of self-assessment ratings

In this section, we analyze the ratings provided by the
participants for the movie clips. Participants’ ratings are

• considered a conscious reflection of their level of
engagement while viewing the stimuli, and should
therefore be correlated with their physiological re-
sponses;

• ultimately used for classification purposes, and hence
the distribution of the ratings and the correlation of the



ratings with other artifacts (e.g. clips’ length) should
be carefully analyzed;

• indicative of whether the presented stimuli can effec-
tively elicit engagement in viewers.

1) Subjects’ ratings and the clips’ length: To have a better
sense of the distribution of participants’ ratings, we report
in Table I some statistical measures over the median2 and
standard deviation of each subject’s ratings. While Table I
suggests that the participants rated longer clips with higher
level of engagement, a correlation analysis shows that there
is no correlation between the ratings of individual subjects
and the length of the clips (mean of p-values=0.58, std of p-
values=0.30).

TABLE I. MEAN, STANDARD DEVIATION (STD), MINIMUM, AND
MAXIMUM VALUES OVER MEDIAN/STANDARD DEVIATION OF INDIVIDUAL

SUBJECTS’ RATINGS.

The measure over each subject’s ratings Mean STD Min Max
Median - all clips +1.4 2.6 -3.6 +4.6
STD - all clips 2.8 1.6 0.8 6.3
Median - short clips +0.5 3.4 -6.0 +4.6
STD - short clips 2.7 1.4 1.0 5.5
Median - long clips +2.0 3.7 -3.9 +9.8
STD - long clips 2.8 1.9 0.3 7.8

2) Pre-processing the subjects’ ratings for classification
purposes: We aim at training a system that is able to recognize
low/high engagement level of viewers, and thus design a binary
classification task for the purpose. Being this study inherently
viewer-centered, we dichotomize ratings on a subject basis:
each clip watched and rated by subject x is given a high/low
engagement label when it is rated above/below the mean of
all ratings provided by x. Thus, the obtained labels reasonably
reflect whether the viewer was more/less engaged in watching
the clip in comparison to the other clips.

3) Agreement between raters: We employed Fleiss kappa
[4] to analyze the agreement between all viewers over the
ratings. In this case, we have 15 raters (participants), 11
items (clips) and 2 labels (more/less engaging). The outcome
of Fleiss kappa is 0.23 (p-value=0), which according to the
rules of thumb provided by Ladis and Koch [11] represents
a fair agreement between raters. This suggests that the clip
sequence used as stimuli was perceived in a similar way by
the participants.

C. Modalities and features

We collected affective cues of the viewers in response to
the stimuli through three different modalities: (i) facial motion
tracking, (ii) a commercial headphone-like one-channel EEG
sensor, and (iii) galvanic skin response.

To extract facial motion features, we exploited an effective,
realtime facial expression recognition system provided by
Joho et al. [8]. The system tracks 12 facial interest points
and provides features representing their motion at each video
frame.

Koelstra et al. [10] reported the mean correlations (over
a population of 32 participants) of emotional dimensions
(arousal, valence and, and general ratings) with the power in

2Due to the small number of clips, the median is used to estimate more
reliably the actual mean value.

the broad frequency bands of theta (4-7 Hz), alpha (8-13 Hz),
beta (14-29 Hz) and gamma (30-47 Hz) in ElectroEncephaloG-
raphy (EEG). According to [10], frontal EEG channels are
significantly correlated with emotions evoked by dynamic
stimuli (Music Videos). In this study we used a bluetooth
single-dry EEG sensor. The sensor is commercially available3

and captures the frontal EEG activities. The EEG processing
module provides 8 features corresponding to the values of
low/high alpha, low/high beta, mid/low gamma, delta, and
theta EEG bands, along with 2 aggregate features representing
the level of attention and meditation of the users. We recorded
the module output features while the users were watching the
clips. These features were sampled at each second.

Galvanic skin response (GSR) measures the electrical resis-
tance of the skin between two electrodes that are positioned on
the medial phalanges of the middle and the index fingers. The
GSR sensor passes a negligible current through the body and
the measured electrical resistance changes due to variations in
perspiration rate. Therefore, GSR signal involves information
of sweat glands that are controlled by the sympathetic nervous
system, and hence the signal contains information about the
emotion of the users. Particularly, GSR values decrease due to
an increase of perspiration, which usually occurs when the user
is experiencing stress or surprise. Lang et al. [12] showed that
the mean value of the GSR signal is correlated with the level
of arousal. We recorded the GSR signal at a 100Hz sample
rate using a commercially available4 bluetooth GSR sensor.

IV. DATA ANALYSIS

This section describes (a) the steps taken to pre-process
the data and extract the features used in our experiments (b)
the procedure followed to assign each clip with a label repre-
senting engagement, and the classification strategies adopted.

A. Data pre-processing and feature extraction

1) Facial Motion features: The facial tracking module
provides 12 Motion-Units (MUs) [18] features for each frame
of the facial video captured by the webcam. Over each clip and
for each user we report some statistical measures in Table II,
describing the overall temporal distribution of the MUs.

2) EEG features: The EEG signal analyzer module pro-
vides 10 features/s, corresponding to the values of low/high
alpha, low/high beta, mid/low gamma, delta, theta EEG bands,
and the level of attention and meditation5. Similar to what we
did for MU features for face, over each clip and for each user
we calculated statistics (see Table II) that describe best the
overall temporal distribution of the individual features.

3) GSR features: The pre-processing of the GSR signal
and the feature extraction procedure in this study follows the
state of the art techniques adopted by Kim and Andre [9],
Soleymani et al. [21], and Koelstra et al. [10]. We removed
the trend of the GSR signal by subtracting the temporal low
frequency drift computed by smoothing the signal with a 100
points moving average. The features extracted from the GSR
signal are presented in table II.

3http://www.neurosky.com
4http://www.shimmer-research.com
5The algorithms used for computing attention and meditation levels are

closed-source and patented by the hardware manufacturer.



TABLE II. FEATURES EXTRACTED FROM EACH MODALITY.

Modality Extracted Features

Facial Motion (n=72)
mean, skewness, variance, std of each MU over time,
as well as the percentage of times each MU had a value
above/below its mean ± std.

Frontal EEG (n=60)
mean, skewness, variance, std of each raw feature over
time, as well as the percentage of times each entry had
a value above/below its mean ± std.

GSR (n=31)

average skin resistance, average of derivative, average
of derivative for negative values only (average decrease
rate during decay time), proportion of negative samples
in the derivative vs. all samples, number of local
minima in the GSR signal, average rising time of
the GSR signal, 10 spectral power in the [0-2.4]Hz
bands, zero crossing rate of Skin conductance slow
response (SCSR) [0-0.2]Hz, zero crossing rate of Skin
conductance very slow response (SCVSR) [0-0.08]Hz,
SCSR and SCVSR mean of peaks magnitude

B. Classification strategies

Several approaches have been adopted in previous research
efforts to model human affective responses; many rely on
multimodal setups (i.e., collecting affective responses through
several channels) [2], [9], [10], [15], [21], [22]. Advantages
of choosing a multimodal strategy include (i) the information
coming from the channels can be fused at different stages
of the experimental pipeline, providing researchers with in-
sights on the interaction between different modalities, (ii) in
controlled scenarios it is possible to compare the information
content provided by each channel, and (iii) the model built
can benefit from some degree of fault-tolerance: if a channel
sensory infrastructure fails for some reason, the overall system
might still be able to work thanks to information derived from
other channels.

Approaches to fuse the information content of different
modalities can be divided into two broad categories, namely
(i) feature fusion (or early integration), and (ii) decision fusion
(or late integration) [14]:

• in feature fusion, the features extracted from different
modalities are concatenated into a single feature vec-
tor which serves as input to the recognition system;
hence, the synchronous characteristics of the involved
modalities are fed into the system;

• in decision fusion, the feature vectors coming from
each channel serve as input for independent classifiers,
whose outputs are then combined to obtain the final as-
sessment. A decision fusion-based system can be thus
thought as a mixture of expert classifiers (uni-modal
classifiers). The decision fusion technique allows to
model asynchronous characteristics of the modalities.

An important advantage of decision fusion over feature
fusion is that, since the information content of each modality
is processed independently, it is relatively easy to employ an
optimal weighting method to adjust the relative contribution
of each modality to the final decision, in accordance with the
reliability of each channel [10].

In our study, we built a multimodal recognition system
using two different experimental settings: (a) a clip-based
setup, for which we generated 10 random folds from the
complete set of samples (i.e., video-clips); and (b) a subject-
based setup, for which we adopted a leave-one-subject out
cross-validation approach. For the former, the generation of

the random folds was repeated 100 times and the results were
averaged in order to properly assess the performance of the
system.

In both settings, in order to better exploit the information
content of the modalities in different levels (feature/decision
fusion), we trained and evaluated 4 classifiers (all linear kernel
SVMs) independently as follows: (i) the EMO classifier that
gets the 72 features related to facial motion; (ii) the EEG
classifier using the 60 features obtained by the EEG sensor;
(iii) the GSR classifier using the 31 GSR features; and (iv)
the early-integration classifier using feature-level fusion of all
available features as input. At feature-fusion level, in order
to reduce the dimensionality of the feature vector, Principal
Component Analysis (PCA) projections of the EEG and EMO
feature vectors were concatenated to the GSR feature vector;
from the experimental point of view, at each train/test fold
the PCA projection matrices were calculated over the training
samples and used at testing stage.

Furthermore, we report the performance of the system
when using two different decision-fusion techniques: (i) a
simple majority vote over the three classifiers’ decisions
(EMO/EEG/GSR), and (ii) a late-fusion strategy for finding
the optimum weights to be given to the three classifiers
for obtaining the best performance. We observe that (i) the
best performance is obtained when using the majority-voting
approach, and (ii) the contributions of EEG and GSR based
classifiers are comparable. The next section elaborates and
describes the results in more depth.

V. EXPERIMENTAL RESULTS

In section III, we described how we derived clip la-
bels from the viewers’ self-assessments. Upon assigning the
low/high engagement labels to the affective responses, we
provide an analysis of their distribution. The proportion of the
number of samples belonging to the high engagement class
is calculated for all the subjects; the mean and STD of this
value over all the users are respectively 0.57 and 0.07, which
gives a sense of how much the classes are imbalanced. Thus,
in order to reliably assess performance, we report the F1-score
(average of F1-scores for each class) along with accuracy.

We performed a weighted sum decision fusion over the
output of the uni-modal classifiers. Assuming fGSR, fEEG , and
fEMO represent the output of the uni-modal classifiers, the
decision output is calculated as:

fout = wGSR×fGSR+wEEG×fEEG+wEMO×fEMO (1)

where wGSR, wEEG , and wEMO represent the weights given
to the contribution of each uni-modal classifier and are nor-
malized by:

wGSR + wEEG + wEMO = 1 (2)

The optimal values for the weights are estimated by a exhaus-
tive search in the regular grid space, where each weight is
incremented from 0 to 1 by 0.01 steps: at each train/test fold,
the values producing the best recognition performance over the
training data are selected and used in the classifying the test
samples (see table III).

Table III shows measured classification accuracy and F1-
scores of engagement classification for both the clip-based



TABLE III. AVERAGE ACCURACIES (ACC) AND F1-SCORES
OBTAINED. * INDICATE WHETHER THE F1-SCORE DISTRIBUTION OVER

SUBJECTS IS SIGNIFICANTLY HIGHER THAN THE BASELINE
(∗ = p < 0.05,∗∗ = p < 0.01,∗∗∗ = p < 0.001)).

Clips-based Subjects-based
Feature Type/ Fusion Technique ACC F1 ACC F1
Facial Motion 0.57 0.59*** 0.62 0.60*
Frontal EEG 0.57 0.58*** 0.65 0.62**
GSR 0.57 0.63*** 0.71 0.68**
Feature-Fusion 0.55 0.62*** 0.71 0.69***
Decision-Fusion (weighted sum) 0.68 0.66*** 0.75 0.73***
Majority Vote - equally weighted sum 0.69 0.67*** 0.76 0.74***
Best possible performance 0.70 0.68 0.76 0.75

Fig. 2. The outcome of weighted decision fusion for the subject-based setup.
The plots show the best possible performance for the different combinations
of weights, and suggests that the EEG and GSR channels provide similar
contributions. Image best viewed in color.

and the subject-based cross-validation setups. To test their
significance, the F1-distribution over all the runs/participants is
compared to the 0.5 baseline using an independent one-sample
t-test. As shown in the table, uni-modal performance for the
GSR modality is better than the other uni-modal approaches.
Moreover, fusing techniques are found to significantly improve
the recognition rates: in particular, majority-voting decision
fusion works better than the other employed fusion techniques.

Classification performance for the subject-based cross-
validation setup is found to be significantly better in com-
parison with the clip-based setup: this suggests that affective
responses have higher inter-subject variability, while showing
consistent intra-subject patterns. The best possible perfor-
mances reported in Table III are calculated by assigning fixed
weights to the uni-modal classifiers according to Eq. 1, and
choosing the ones providing best performance.

For the sake of comparison, Figure 2 displays the mean
performance (F1-score) over all participants/folds when dif-
ferent weights are used for the weighted sum decision-fusion
approach.

Furthermore, table IV reports the correlations between the
users’ self assessment ratings and the extracted features (only
for p ≤ 0.05). Likewise the standard features extracted from
the GSR signal, interestingly, the percentage of time the level
of meditation was above/below the relative µ±σ value turned
out to be correlated with the users’ level of engagement. More-
over, the movement of lip corner is significantly correlated
with the level of engagement which is consistent with the
findings reported in [23], [24]. Figure 3 displays results of
a correlation analysis between the top-15 features listed in
Table IV), showing the degree of redundancy between them.

Based on the presented results, we summarize our main
observations as follows:

1) as shown in Table IV the facial motion features signifi-

TABLE IV. FEATURES SHOWING SIGNIFICANT (p < .05)
CORRELATION WITH USERS’ RATINGS. WE REPORT THE MEAN OF
SUBJECT-WISE CORRELATIONS (R̄), THE MOST NEGATIVE (R−)

CORRELATION, THE MOST POSITIVE CORRELATION (R+), AND RELATED
p-VALUES.

id Feature R̄ R− R+ p
1 Horizontal movement of the left lip corner

(Mean)
-0.18 -0.69 0.25 0.014

2 Left cheek (Skewness) 0.24 -0.31 0.62 0.020
3 Level of meditation (Nsamples > µ+σ) 0.22 -0.11 0.43 0.007
4 Level of meditation (Nsamples < µ−σ) 0.22 -0.43 0.11 0.007
5 Power of delta band (Nsamples > µ+σ) -0.19 -0.83 0.24 0.033
6 Power of delta band (Nsamples < µ−σ) -0.19 -0.24 0.83 0.033
7 Power of high beta band (Skewness) -0.13 -0.55 0.32 0.037
8 Zero crossing rate of skin conductance in

slow response (SCSR) [0-0.2]Hz
-0.28 -0.54 -0.06 0.001

9 Proportion of negative samples in the
derivative vs. all samples

0.27 -0.21 0.70 0.001

10 Average of absolute values of the derivative
of skin conductance

-0.28 -0.75 0.51 0.003

11 Average of absolute values of the second
derivative of skin conductance

-0.35 -0.74 0.07 0.004

12 Zero crossing rate of skin conductance in
very slow response (SCVSR) [0-0.08]Hz

-0.24 -0.47 0.07 0.005

13 Average number of peaks in the GSR signal -0.25 -0.69 0.71 0.009
14 SCSR mean of peaks magnitude -0.21 -0.42 0.29 0.010
15 SCVSR mean of peaks magnitude -0.21 -0.42 0.29 0.010

(a) (b)

Fig. 3. Pearson coefficients (a) and p-values (b) of a correlation analysis
between the top-15 features in Table IV.

cantly correlated with the users’ ratings are the ones that
are very likely to capture micro-expressions [3];

2) psycho-physiological indications of a state of engagement
seem to be highly subjective, as indicated by results in
Table III;

3) although the best modality for predicting the level of en-
gagement in our scenario was found to be the GSR chan-
nel, the best performance is obtained using a decision-
level fusion strategy. Thus, the employed modalities seem
to complementary contribute information for prediction of
engagement level.

4) finally, according to the results reported in Table III, the
performance of the majority-voting decision-fusion (that
is, using equal weights for each classifier) is very close
to the best possible performance.

VI. CONCLUSIONS AND FUTURE WORKS

We have described a multimodal approach to engagement
classification, framing it in the context of Affective Cinema.
We envision novel experiences led by advances in the Affective
Computing research, on the one hand, and Movie Studies,
supported by the foreseeable wide deployment of consumer-
level entertainment infrastructure (e.g., Smart-TVs) on the
other.



Focusing on the relation between psycho-physiologic chan-
nels and affective responses to visual contents, this work
contributes in understanding which channels and combinations
thereof are effective for detecting a viewer’s level of engage-
ment. The use of cheap and commercially available hardware
allows the deployment of similar Affective Cinema systems for
both research and artistic purposes. Limitations of this work
can be identified in (i) the single-viewer experience, and (ii)
the relatively small size of the sample used.

Our findings show that the fusion of multiple modalities
is beneficial to the classification performance, and provide
insights on the cross-modal dynamics of the different affective
channels investigated: in particular, EEG and GSR responses
seem to contribute similarly to the engagement classification
task under study; moreover, Facial Motion features seem
to provide complementary information; finally, the psycho-
physiologic features employed to asses the viewers’ state of
engagement seem to indicate high inter-subject variability.

Besides collecting data from more subjects under the same
laboratory setting, for the purpose of further investigating their
psycho-physiologic responses, future developments of this
study will tackle the issue of moving beyond the single-viewer
experience, towards the assessment of collective engagement
in distributed scenarios. Leveraging the aforementioned (ex-
pected) wide deployment of Smart-TVs in conjunction with
the ever-increasing availability of broad-band connectivity, the
latter research line will build upon techniques from Social
Network Analysis (SNA) and Natural Language Processing
(NLP) communities.

Behavior-based technologies can, in our vision, foster new
ways to produce and experience movies: not only Affective
Computing researchers might benefit from a rising interest
in real-word applications which would give access to large
collections of real-usage data, but they could also have a major
role in innovating the movie industry.
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